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a b s t r a c t

Spectrum sensing is a key function of cognitive radio to prevent the harmful interference
with licensed users and identify the available spectrum for improving the spectrum’s
utilization. However, detection performance in practice is often compromised with
multipath fading, shadowing and receiver uncertainty issues. To mitigate the impact of
these issues, cooperative spectrum sensing has been shown to be an effective method
to improve the detection performance by exploiting spatial diversity. While cooperative
gain such as improved detection performance and relaxed sensitivity requirement can
be obtained, cooperative sensing can incur cooperation overhead. The overhead refers
to any extra sensing time, delay, energy, and operations devoted to cooperative sensing
and any performance degradation caused by cooperative sensing. In this paper, the state-
of-the-art survey of cooperative sensing is provided to address the issues of cooperation
method, cooperative gain, and cooperation overhead. Specifically, the cooperation method
is analyzed by the fundamental components called the elements of cooperative sensing,
including cooperation models, sensing techniques, hypothesis testing, data fusion, control
channel and reporting, user selection, and knowledge base.Moreover, the impacting factors
of achievable cooperative gain and incurred cooperation overhead are presented. The
factors under consideration include sensing time and delay, channel impairments, energy
efficiency, cooperation efficiency, mobility, security, and wideband sensing issues. The
open research challenges related to each issue in cooperative sensing are also discussed.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The rapid growth in wireless communications has con-
tributed to a huge demand on the deployment of new
wireless services in both the licensed and unlicensed fre-
quency spectrum. However, recent studies show that the
fixed spectrum assignment policy enforced today results
in poor spectrum utilization. To address this problem, cog-
nitive radio (CR) [1,2] has emerged as a promising tech-
nology to enable the access of the intermittent periods of
unoccupied frequency bands, called white space or spec-
trumholes, and thereby increase the spectral efficiency. The
fundamental task of each CR user in CR networks, in the
most primitive sense, is to detect the licensed users, also
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known as primary users (PUs), if they are present and iden-
tify the available spectrum if they are absent. This is usually
achieved by sensing the RF environment, a process called
spectrum sensing [1–4]. The objectives of spectrum sens-
ing are twofold: first, CR users should not cause harmful in-
terference to PUs by either switching to an available band
or limiting its interference with PUs at an acceptable level
and, second, CRusers should efficiently identify and exploit
the spectrumholes for required throughput andquality-of-
service (QoS). Thus, the detection performance in spectrum
sensing is crucial to the performance of both primary and
CR networks.

The detection performance can be primarily deter-
mined on the basis of twometrics: probability of false alarm,
which denotes the probability of a CR user declaring that a
PU is present when the spectrum is actually free, and prob-
ability of detection, which denotes the probability of a CR
user declaring that a PU is present when the spectrum is
indeed occupied by the PU. Since a miss in the detection
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Fig. 1. Receiver uncertainty and multipath/shadow fading.

will cause the interference with the PU and a false alarm
will reduce the spectral efficiency, it is usually required for
optimal detection performance that the probability of de-
tection is maximized subject to the constraint of the prob-
ability of false alarm.

Many factors in practice such as multipath fading,
shadowing, and the receiver uncertainty problem [1] may
significantly compromise the detection performance in
spectrum sensing. In Fig. 1, multipath fading, shadowing
and receiver uncertainty are illustrated. As shown in the
figure, CR1 and CR2 are located inside the transmission
range of primary transmitter (PU TX) while CR3 is outside
the range. Due to multiple attenuated copies of the PU
signal and the blocking of a house, CR2 experiences
multipath and shadow fading such that the PU’s signal
may not be correctly detected. Moreover, CR3 suffers from
the receiver uncertainty problem because it is unaware
of the PU’s transmission and the existence of primary
receiver (PU RX). As a result, the transmission from CR3
may interfere with the reception at PU RX. However,
due to spatial diversity, it is unlikely for all spatially
distributed CR users in a CR network to concurrently
experience the fading or receiver uncertainty problem.
If CR users, most of which observe a strong PU signal
like CR1 in the figure, can cooperate and share the
sensing resultswith other users, the combined cooperative
decision derived from the spatially collected observations
can overcome the deficiency of individual observations at
each CR user. Thus, the overall detection performance can
be greatly improved. This is why cooperative1 spectrum
sensing (simply called cooperative sensing thereafter)
[5–7] is an attractive and effective approach to combat
multipath fading and shadowing and mitigate the receiver
uncertainty problem.

The main idea of cooperative sensing is to enhance the
sensing performance by exploiting the spatial diversity
in the observations of spatially located CR users. By
cooperation, CR users can share their sensing information
for making a combined decision more accurate than the
individual decisions [5]. The performance improvement
due to spatial diversity is called cooperative gain. The
cooperative gain can be also viewed from the perspective
of sensing hardware. Owing to multipath fading and

1 Cooperation and collaboration are interchangeable in this paper.
Fig. 2. Improvement of sensitivity with cooperative sensing [7].

shadowing, the signal-to-noise ratio (SNR) of the received
primary signal can be extremely small and the detection of
which becomes a difficult task. Since receiver sensitivity
indicates the capability of detecting weak signals, the
receiverwill be imposed on a strict sensitivity requirement
greatly increasing the implementation complexity and
the associated hardware cost. More importantly, the
detection performance cannot be improved by increasing
the sensitivity, when the SNR of PU signals is below a
certain level known as a SNR wall [8]. Fortunately, the
sensitivity requirement and the hardware limitation issues
can be considerably relieved by cooperative sensing. As
shown in Fig. 2, the performance degradation due to
multipath fading and shadowing can be overcome by
cooperative sensing such that the receiver’s sensitivity can
be approximately set to the same level of nominal path
loss without increasing the implementation cost of CR
devices [7]. However, cooperative gain is not limited to
improved detection performance and relaxed sensitivity
requirement. For example, if the sensing time can be
reduced due to cooperation, CR users will have more time
for data transmission so as to improve their throughput.
In this case, the improved throughput is also a part
of cooperative gain. Thus, a well-designed cooperation
mechanism for cooperative sensing can significantly
contribute to a variety of achievable cooperative gain.

Although cooperative gain can be achieved in coopera-
tive sensing as previously discussed, the achievable coop-
erative gain can be limited by many factors. For example,
whenCRusers blocked by the sameobstacle are in spatially
correlated shadowing, their observations are correlated.
More spatially correlated CR users participating in coop-
eration can be detrimental to the detection performance
[6,7]. This raises the issue of user selection for coopera-
tion in cooperative sensing. In addition to gain-limiting
factors, cooperative sensing can incur cooperation over-
head. The overhead refers to any extra sensing time, delay,
energy, and operations devoted to cooperative sensing
compared to the individual (non-cooperative) spectrum
sensing case. Moreover, any performance degradation
in correlated shadowing or the vulnerability to security
attacks is also a part of the cooperation overhead. Thus, we
are motivated to explore the idea of cooperation in spec-
trum sensing and provide an insight on how cooperative
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Fig. 3. Classification of cooperative sensing: (a) centralized, (b) distributed, and (c) relay-assisted.
sensing can be effectively leveraged to achieve the opti-
mal cooperative gain without being compromised by the
incurred cooperation overhead.

In [5], Cabric et al. identified the ‘‘three main questions
regarding cooperative sensing’’ as follows [5]

• How can cognitive radios cooperate?
• How much can be gained from cooperation?
• What is the overhead associated with cooperation?

These three questions surrounding the issues of Coopera-
tion Method, Cooperative Gain, and Cooperation Overhead,
respectively, should be addressed in every cooperative
sensing scheme. In this paper, we aim to survey the state-
of-the-art research in cooperative sensing centering these
three issues by first analyzing the cooperation method
with the fundamental components of cooperative sensing
and thenpresenting the impacting factors of achievable co-
operative gain and incurred cooperation overhead. In addi-
tion, we identify open research challenges related to each
issue in cooperative sensing along with the discussion.

The remainder of this paper is organized as follows.
In Section 2, cooperative sensing schemes are classified
by how CR users share their sensing data. In addition,
the framework of cooperative sensing is presented. In
Section 3, the process of cooperative sensing is analyzed
in detail by its components. In Section 4, an insight into
cooperative sensing tradeoff between cooperative gain and
cooperation overhead is provided. Finally, the paper is
concluded in Section 5.

2. Classification and framework of cooperative sensing

In this section, we present the problem of the primary
signal detection in cooperative sensing and introduce the
classification and the framework of cooperative sensing.

2.1. Primary signal detection

The process of cooperative sensing startswith spectrum
sensing performed individually at each CR user called
local sensing. Typically, local sensing for primary signal
detection can be formulated as a binary hypothesis
problem as follows [2]:

x(t) =

n(t), H0
h(t) · s(t)+ n(t), H1

(1)
where x(t) denotes the received signal at the CR user, s(t)
is the transmitted PU signal, h(t) is the channel gain of
the sensing channel, n(t) is the zero-mean additive white
Gaussian noise (AWGN), H0 and H1 denote the hypothesis
of the absence and the presence, respectively, of the PU
signal in the frequency band of interest. For the evaluation
of the detection performance, the probabilities of detection
Pd and false alarm Pf are defined as [9]

Pd = P{decision = H1|H1} = P{Y > λ | H1} (2)
Pf = P{decision = H1|H0} = P{Y > λ | H0} (3)

where Y is the decision statistic and λ is the decision
threshold. The value of λ is set depending on the
requirements of detection performance. Based on these
definitions, the probability of a miss or miss detection is
defined as Pm = 1 − Pd = P{decision = H0|H1}. The
plot that demonstrates Pd versus Pf is called the receiver
operating characteristic (ROC) curve, which is the metric
for the performance evaluation of sensing techniques. In
cooperative sensing, the probabilities of detection and
false alarms for evaluating the performance of cooperative
decisions are denoted by Qd and Qf , respectively, which
will be discussed in Section 3.5.

2.2. Classification of cooperative sensing

To facilitate the analysis of cooperative sensing, we
classify cooperative spectrum sensing into three categories
based on how cooperating CR users share the sensing data
in the network: centralized [10,6,11], distributed [12], and
relay-assisted [13–15]. These three types of cooperative
sensing are illustrated in Fig. 3.

In centralized cooperative sensing, a central identity
called fusion center (FC)2 controls the three-step process
of cooperative sensing. First, the FC selects a channel or
a frequency band of interest for sensing and instructs all
cooperating CR users to individually perform local sensing.
Second, all cooperating CR users report their sensing
results via the control channel. Then the FC combines
the received local sensing information, determines the
presence of PUs, and diffuses the decision back to

2 The fusion center [16,11,17,18] is also known as base station
[19,20], common receiver [21,22,13,14], combining node [23,24], master
node [10], designated controller [7], and others.
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Fig. 4. Framework of centralized cooperative sensing.
cooperating CR users. As shown in Fig. 3(a), CR0 is the FC
and CR1–CR5 are cooperating CR users performing local
sensing and reporting the results back to CR0. For local
sensing, all CR users are tuned to the selected licensed
channel or frequency bandwhere a physical point-to-point
link between the PU transmitter and each cooperating CR
user for observing the primary signal is called a sensing
channel. For data reporting, all CR users are tuned to
a control channel where a physical point-to-point link
between each cooperating CR user and the FC for sending
the sensing results is called a reporting channel. Note
that centralized cooperative sensing can occur in either
centralized or distributed CR networks. In centralized
CR networks, a CR base station (BS) is naturally the FC.
Alternatively, in CR ad hoc networks (CRAHNs) where a CR
BS is not present, any CR user can act as a FC to coordinate
cooperative sensing and combine the sensing information
from the cooperating neighbors.

Unlike centralized cooperative sensing, distributed
cooperative sensing does not rely on a FC for making the
cooperative decision. In this case, CR users communicate
among themselves and converge to a unified decision on
the presence or absence of PUs by iterations. Fig. 3(b)
illustrates the cooperation in the distributedmanner. After
local sensing, CR1–CR5 share the local sensing results with
other users within their transmission range. Based on a
distributed algorithm, each CR user sends its own sensing
data to other users, combines its data with the received
sensing data, and decides whether or not the PU is present
by using a local criterion. If the criterion is not satisfied,
CR users send their combined results to other users again
and repeat this process until the algorithm is converged
and a decision is reached. In this manner, this distributed
schememay take several iterations to reach the unanimous
cooperative decision.

In addition to centralized and distributed cooperative
sensing, the third scheme is relay-assisted cooperative
sensing. Since both sensing channel and report channel are
not perfect, a CR user observing a weak sensing channel
and a strong report channel and a CR user with a strong
sensing channel and a weak report channel, for example,
can complement and cooperatewith each other to improve
the performance of cooperative sensing. In Fig. 3(c), CR1,
CR4, and CR5, who observe strong PU signals, may suffer
from a weak report channel. CR2 and CR3, who have a
strong report channel, can serve as relays to assist in
forwarding the sensing results from CR1, CR4, and CR5 to
the FC. In this case, the report channels fromCR2andCR3 to
the FC can also be called relay channels. Note that although
Fig. 3(c) shows a centralized structure, the relay-assisted
cooperative sensing can exist in distributed scheme. In
fact, when the sensing results need to be forwarded by
multiple hops to reach the intended receive node, all the
intermediate hops are relays. Thus, if both centralized and
distributed structures are one-hop cooperative sensing,
the relay-assisted structure can be considered asmulti-hop
cooperative sensing. In addition, the relay for cooperative
sensing here serves a different purpose from the relays in
cooperative communications [25], where the CR relays are
used for forwarding the PU traffic.

2.3. Framework of cooperative sensing

The framework of cooperative sensing consists of the
PUs, cooperating CR users including a FC, all the elements
of cooperative sensing, which will be introduced in Sec-
tion 3, the RF environment including licensed channels
and control channels, and an optional remote database.
Fig. 4 illustrates the framework of centralized coopera-
tive sensing from the perspective of the physical layer.
In this framework, a group of cooperating CR users per-
forms local sensing with an RF frontend and a local pro-
cessing unit. The RF frontend can be configured for data
transmission or spectrum sensing. In addition, the RF fron-
tend includes the down-conversion of RF signals and the
sampling at Nyquist rate by an analog-to-digital converter
(ADC). The raw sensing data from the RF frontend can be
directly sent to the FC or be locally processed for local deci-
sion. To minimize the bandwidth requirement of the con-
trol channel, certain local processing is usually required.
The processing includes the calculation of test statistics,
and a threshold device for local decision. Once the raw
sensing data or the local decisions are ready, a medium
access control (MAC) scheme is required to access the con-
trol channel for reporting the sensing results. The sensing
results may also be used by higher network protocol layers
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Fig. 5. Elements of cooperative spectrum sensing.

for spectrum-aware routing selection [26] for example. The
FC in the framework is a powerful CR user, which includes
all the capabilities of a regular CR user and the additional
user selection capabilitywith the assistance of a embedded
knowledge base. If the FC is as powerful as a base station,
it may have the connection to the remote database for PU
activity andwhite space information. For the framework of
distributed cooperative sensing, all CR users are essentially
the same and similar to the FC in the framework of cen-
tralized cooperative sensing with an optional and smaller
knowledge base for local use.

In the next section, we analyze the process of coopera-
tive sensing by its elements.

3. Elements of cooperative spectrum sensing

As described in Section 2.2, conventional cooperative
sensing is generally considered as a three-step process:
local sensing, reporting, and data fusion. In addition to
these steps, there are other fundamental components that
are crucial to cooperative sensing. We call these funda-
mental and yet essential components as the elements of
cooperative sensing. In this section, we analyze and present
the process of cooperative sensing by seven key elements:
(i) cooperationmodels, (ii) sensing techniques, (iii) control
channel and reporting, (iv) data fusion, (v) hypothesis test-
ing, (vi) user selection, and (vii) knowledge base. As shown
in Fig. 5, these elements are briefly introduced as follows:
• Cooperation models consider the modeling of how

CR users cooperate to perform sensing. We consider
the most popular parallel fusion network models and
recently developed game theoretical models.
• Sensing techniques are used to sense the RF environ-

ment, taking observation samples, and employing sig-
nal processing techniques for detecting the PU signal or
the available spectrum. The choice of the sensing tech-
nique has the effect on how CR users cooperate with
each other.
• Hypothesis testing is a statistical test to determine the

presence or absence of a PU. This test can be performed
individually by each cooperating user for local decisions
or performed by the fusion center for cooperative
decision.
• Control channel and reporting concerns about how the
sensing results obtained by cooperating CR users can be
efficiently and reliably reported to the fusion center or
shared with other CR users via the bandwidth-limited
and fading-susceptible control channel.
• Data fusion is the process of combining the reported

or shared sensing results for making the cooperative
decision. Based on their data type, the sensing results
can be combined by signal combining techniques or
decision fusion rules.
• User selection deals with how to optimally select the

cooperating CR users and determine the proper cooper-
ation footprint/range to maximize the cooperative gain
and minimize the cooperation overhead.
• Knowledge base stores the information and facilitates

the cooperative sensing process to improve the detec-
tion performance. The information in the knowledge
base is either a priori knowledge or the knowledge ac-
cumulated through the experience. The knowledgemay
include PU and CR user locations, PU activity models,
and received signal strength (RSS) profiles.

Next, we discuss each element of cooperative sensing in
detail.

3.1. Cooperation models

The cooperation of CR users for spectrum sensing can
be modeled by different approaches. The modeling in
cooperative sensing is primarily concerned with how CR
users cooperate to perform spectrum sensing and achieve
the optimal detection performance. The most popular and
dominating approach originated from the parallel fusion
(PF) model in distributed detection and data fusion [27].
Nevertheless, recent studies [28,29] model the behaviors
of cooperating CR users in cooperative sensing by using
game theory [30]. The PF models aim to achieve the
detection performance by using the distributed signal
processing techniques to determine how the observations
are combined and tested and how the decisions are made.
Unlike the PF models, game theoretical models focus
on improving the sensing-parametric utility function by
analyzing the interactions and the cooperative or non-
cooperative behaviors of CR users. It can be informally
stated that the parallel cooperation model emphasizes
the ‘‘sensing’’ part while the game model focuses on the
‘‘cooperative’’ part in cooperative sensing. In this paper, we
discuss these two approaches to the modeling of CR user
cooperation.

3.1.1. Parallel fusion model
In the study of distributed detection and data fu-

sion [27], a group of spatially distributed sensors observes
a physical phenomenon H through the observations yi and
report their observations ui to a central processor known as
a FC [16]. The FC combines the reported data by data fusion
andmakes the global decision u by using binary hypothesis
testing. This PFmodel in the context of cooperative sensing
is illustrated in Fig. 6.

Due to the similarity to the process of distributed
detection, a large number of proposed schemes [6,17,11]



I.F. Akyildiz et al. / Physical Communication 4 (2011) 40–62 45
Fig. 6. Cooperation model: parallel fusion model.

adopted the PF model or variations of this model for
cooperative sensing. In these schemes, cooperative sensing
follows the same three-step process: local sensing, data
reporting, and data fusion. All CR users are assumed
to be synchronized by the FC for sensing the channel
or the frequency band of interest and reporting the
sensing results. The FC combines the reported local sensing
data and makes a cooperative decision. This decision is
broadcast to all cooperating CR users. We can see the
similarity by comparing Fig. 6 to Fig. 3(a). In addition, each
cooperating CR user shares, collects, and combines the
sensing data in distributed cooperative sensing is similar
to the FC in the PF model. Thus, distributed cooperative
sensing can also be represented by this model.

3.1.2. Game theoretical model
In game theoretical models, cooperative sensing is

modeled as a game with a set of players, which are the
cooperating CR users. Depending on the nature of the
game, the behaviors of cooperating CR users are modeled
differently. For example, in a coalitional game [28], CR
users cooperate in the form of groups, called coalitions
while in an evolutionary game [29], CR users are selfish
users who may choose to cooperate or not cooperate
depending on their own benefits.

In [28], cooperative sensing is modeled as a non-
transferable (N, v) coalitional game, where N is the set
of cooperating CR users and v is the utility function. The
coalitional game is said to have non-transferable utility
because each CR user has its own utility within the
coalition. The utility of a coalition S is defined as [28]

v(S) = Qd,S − C(Qf ,S) (4)

where Qd,S and Qf ,S are the detection and false alarm
probabilities, respectively, of coalition S, and C(Qf ,S)
is the cost function of Qf ,S defined by a logarithmic
barrier penalty function [31]. In this model, CR users can
autonomously collaborate and self-organize into disjoint
independent coalitions while taking into account the
tradeoff between achievingmaximumQd and cost incurred
in reducing Qf .

The cooperative sensing is performed in each coalition.
To improve the detection performance and respond to PU
activity and topology change, CR users merge or split the
coalitions if the utility of the merged or split coalitions is
larger than the original coalition partitions. An example
of coalitions in the model is illustrated in Fig. 7. The
Fig. 7. Cooperation model: coalitional game.

cooperative game model is then realized by a distributed
algorithm containing three phases: (1) Local Sensing: each
individual CR user performs spectrum sensing locally and
makes binary decisions. (2) Adaptive Coalition Formation:
CR users interact in order to assess whether to share
their sensing results with nearby coalitions. An iteration
of sequential merge-and-split rules occur in the network
whereby each coalition decides to merge or split if the
merging or splitting results in the utility improvement.
(3) Coalition Sensing: after themerge-and split process, the
CR users in the same coalition report their local decisions
to the coalition head, which can use a fusion rule to make
a final cooperative decision.

In [29], distributed cooperative sensing is modeled as
an evolutionary game to study the cooperative and non-
cooperative behaviors of selfish CR users to maximize
their own throughput. In this non-cooperative spectrum
sensing game, a CR user can select an action from the
action set {C,D}, where C represents that the CR user
contributes to cooperative sensing and D represents that
the CR user denies the participation in cooperation. On
one hand, CR users can achieve a stable throughput
by contributing to cooperative sensing at the expense
of reduced throughput due to less time for its own
transmissions. On the other hand, CR users may choose
not to participate in cooperative sensing to enhance their
own throughput at the risk of obtaining zero throughput
when no one contributes to cooperative sensing. Thus, by
using replicator dynamics in evolutionary game theory, CR
users interact with each other and learn the best strategy
of whether or not to cooperate in cooperative sensing.

For each CR user sj with throughput Csj and the received
primary signal SNR γj in distributed cooperative sensing,
the utility of each action C or D can be defined as the
function of the sensing time, the number of cooperating CR
users, the probabilities of detection and false alarm, and the
chosen fusion rule, in addition to Cj and γj. The evolution
dynamics of the probability of CR user sj choosing strategy
h ∈ {C,D} at time t is denoted by xh,sj(t) and given by [29]

ẋh,sj = [Ūsj(h, x−sj)− Ūsj(x)]xh,sj (5)

where Ūsj(h, x−sj) is the average utility of sj choosing h,
x−sj is the set of strategies chosen by other CR users
(excluding sj), and Ūsj(x) is the average utility of sj choosing
mixed strategy xsj . From (5), the growth rate ẋh,sj/xh,sj is
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proportional to the average utility difference of choosing
pure strategy h overmixed strategy xsj . Thus, CR user sj will
choose h with higher probability if a higher utility can be
achieved by selecting h.

By the approximation of Ūsj(h, x−sj) and Ūsj(x), a dis-
tributed learning algorithm is also proposed to iteratively
update the probability of choosing actions in distributed
cooperative sensing and converge to the stable equilib-
rium. As a result, the general cooperation strategy for
distributed cooperative sensing is obtained as follows.
Without compromising its throughput, sj may gradually
increase (decrease) the probability of contributing to co-
operative sensing xC,sj if the initial xC,sj is low (high). In
addition, sj can take advantage of other CR users with
better detection performance by reducing xC,sj and cooper-
ate with other CR users to improve detection performance
by increasing xC,sj .

3.1.3. Research challenges
The dominance of PFN models in the literature results

in the needs of proposing novel models in cooperative
sensing for new applications. Thus, the open challenges
regarding cooperation models include the following:
• Modeling of cooperation overhead:Most existing models

for cooperative sensing are centered at the detection
performance, that is cooperative gain. Only a few
cooperation overhead issues have been discussed in
proposed schemes. For example, in [29], only the
number of cooperating CR users and the sensing time-
throughput tradeoff are considered in forming utility
functions. While cooperative gain is important in the
model, proper modeling of cooperation overhead can
reveal realistic achievable cooperative gain. Thus, the
modeling of cooperation overhead is still an open
challenge in the modeling for cooperative sensing.
• Modeling of primary user cooperation: Most existing

models for cooperative sensing focus on the detection
of a single large-scale PU such as a TV base station and
assume that the PUs do not cooperate with CR users.
However, in certain applications such as military CR
networks, these assumptions may not be true, since
the PUs may be motivated to cooperate with CR users
and the PUs may be connected in an ad hoc manner.
As a result, new models that model the cooperation
between PUs and CR users for cooperative sensing and
cooperative communications such as the one in [32]
are desired. In addition, the detection of small-scale
mobile PUs such as wireless microphones is a known
open challenging research problem, which will need a
new model for cooperative sensing.

3.2. Sensing techniques

Regardless of the cooperation models, the process of
cooperative sensing starts with local spectrum sensing at
each cooperating CR user. Similar to traditional spectrum
sensing without cooperation, the objective of the local
spectrum sensing is primary signal detection. Sensing
techniques are crucial in cooperative sensing in the
sense that how primary signals are sensed, sampled, and
processed is strongly related to how CR users cooperate
with each other. Thus, sensing techniques are one of the
fundamental elements in cooperative sensing.
Fig. 8. Classification of sensing techniques.

From the perspective of signal detection, sensing
techniques can be classified into two broad categories:
coherent and non-coherent detection. In coherent detec-
tion, the primary signal can be coherently detected by
comparing the received signal or the extracted signal char-
acteristics with a priori knowledge of primary signals. In
non-coherent detection, no a priori knowledge is required
for detection. Another way to classify sensing techniques
is based on the bandwidth of the spectrum of interest
for sensing: narrowband and wideband. The classification
of sensing techniques is shown in Fig. 8. Note that our
discussion here focus on the most popular sensing tech-
niques in cooperative sensing rather than an exhaustive
search for all primary detection methods. Thus, we dis-
cussed three most popular sensing techniques in coop-
erative sensing: energy detection, cyclostationary feature
detection, and compressed sensing. The former two tech-
niques are mainly for narrowband sensing while the latter
is primarily used for wideband sensing. The detailed dis-
cussion of other sensing techniques such as matched filter
detection and wavelet detection can be found in [3,4,25].
The hypothesis testing of the detection problem is dis-
cussed in Section 3.3.

3.2.1. Energy detection
Energy detection [33,9] is a non-coherent detection

method that detects the primary signal based on the
sensed energy. Due to its simplicity and no requirement
on a priori knowledge of PU signals, energy detection is
themost popular sensing technique in cooperative sensing.
However, energy detection is often accompanied by a
number of disadvantages. (i) The sensing time taken to
achieve a given probability of detection may be high.
(ii) The detection performance is subject to the uncertainty
of noise power. (iii) Energy detection cannot be used
to distinguish primary signals from CR user signals. As
a result, CR users need to be tightly synchronized and
refrained from transmissions during an interval called
Quiet Period in cooperative sensing. (iv) Energy detection
cannot be used to detect spread spectrum signals. In spite
of these problems, the energy detector remains the most
commondetectionmechanism in cooperative sensing. This
is because some of the issues such as the performance
degradation due to noise uncertainty can be mitigated by
the diversity gain resulting from cooperation.

For the signal detection by using energy detection, it
can be found in [9] that the test statistic is central chi-
square distributed under H0 and non-central chi-square
distributed with N degree of freedom under H1, where
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N/2 is the number of samples from either in-phase (I) or
quadrature (Q ) components. Given the number of samples
N , received SNRγ , noise powerσ 2, anddetection threshold
λ, the closed-form expressions of the probabilities of
detection Pd and false alarm Pf over AWGN channels
and fading channels including Rayleigh and more general
Nakagami fading are given in [9]. From these expressions,
we know that, with other parameters fixed, Pd and Pf are
related throughλ. In general, The detection thresholdλ can
be derived in terms of the required Pf if Pf is specified as the
constraint of the detection problem. By plugging λ into the
expression of Pd, we obtain the corresponding Pd. Thus, by
varying the value of Pf from0 to 1, we obtain the ROC curve
that shows the corresponding detection performance of
the energy detector.

In addition to narrowband sensing, energy detection
has been used formultiband joint detection (MJD) inwide-
band sensing by employing an array of energy detectors,
each of which detects one frequency band [34]. The MJD
method enables CR users to simultaneously detect PU sig-
nals across multiple frequency bands for efficient man-
agement of wideband spectrum resource at the cost of
detection hardware.

3.2.2. Cyclostationary feature detection
Cyclostationary feature detection [35] exploits the pe-

riodicity in the received primary signal to identify the
presence of PUs. The periodicity is commonly embedded
in sinusoidal carriers, pulse trains, spreading code, hop-
ping sequences, or cyclic prefixes of the primary signals.
Due to the periodicity, these cyclostationary signals exhibit
the features of periodic statistics and spectral correlation,
which is not found in stationary noise and interference.
Thus, cyclostationary feature detection is robust to noise
uncertainties and performs better than energy detection in
low SNR regions. Although it requires a priori knowledge of
the signal characteristics, cyclostationary feature detection
is capable of distinguishing the CR transmissions from var-
ious types of PU signals [5,36]. This eliminates the synchro-
nization requirement of energy detection in cooperative
sensing. Moreover, CR users may not be required to keep
silent during cooperative sensing and thus improving the
overall CR throughput. This method has its own shortcom-
ings owing to its high computational complexity and long
sensing time. Due to these issues, this detection method is
less common than energy detection in cooperative sensing.

In [37], a cooperative sensing schemewith cyclostation-
ary feature detection is proposed. By utilizing the general-
ized likelihood ratio test (GLRT) (Section 3.3), the proposed
method enables the detection of cyclostationary signals
over multiple cyclic frequencies. The test statistic for data
fusion at the FC is also developed for cooperative sensing.
Moreover, to improve energy efficiency, this method em-
ploys a censoring technique for each cooperating CR user
to send the local sensing results to the FC subject to a com-
munication rate constraint (Section 4.3).

3.2.3. Compressed sensing
Energy or cyclostationary detection is based on a set of

observations sampled by ADC at Nyquist rate in the band
of interest. Due to hardware limitations on the sampling
speed, these sensing techniques are primarily used to sense
one band at a time. To sense multiple frequency bands,
CR users may need to scan the spectrum or use multiple
RF frontends for sensing multiple bands. However, using
these approaches for wideband sensing either causes long
sensing delay or incurs higher computational complexity
and hardware cost. Recent advances in compressed sens-
ing3 [38–40] enables the sampling of the wideband sig-
nals at sub-Nyquist rate to relax the ADC requirements.
Based on the assumption that the spectrum is underuti-
lized (e.g. suburban or rural area), compressed sensing
can be utilized to approximate and recover the sensed
spectrum, which facilitates the detection of sparse pri-
mary signals in wideband spectrum. Thus, the techniques
of compressed sensing provide promising solutions to
promptly recover wideband signals and facilitate wide-
band sensing at the reasonable computational complexity.

In compressed sensing, a sparse signal can be recov-
ered by random sampling at a sub-Nyquist rate as long
as the sampling matrix satisfies the restricted isometry
property [41,42]. In the conventional compressed sensing
scheme [40], the first step is to generate measurements xt
of size K × 1 by sub-Nyquist-rate random sampling. If rt
of size M × 1 is the discrete-time vector of the received
wideband signal r(t), the compressed sensing process can
be represented by xt = ST rt , where ST is theM×K projec-
tionmatrix,K < M . The second step is to reconstructwide-
band spectrum rf = FMrt from xt , where FM is M-point
discrete Fourier transform. To achieve this, efficient recon-
struction methods such as basis pursuit (BP) [43] can be
used to solve the following convex optimization problem
with the sparseness constraint in rf [44]:

r̂f = argmin
rf
‖ rf ‖1, s.t. xt = (STF−1M )rf . (6)

In addition to the conventional scheme, an alternative ap-
proach for random sampling and spectrum reconstruction
is fast Fourier sampling [45,46] based on the reconstruction
method named orthogonal matching pursuit (OMP) [47].
Once the spectrum is reconstructed, the locations of PU-
occupied bands in a wideband spectrum can be identified.

In wideband cooperative sensing based on compressed
sensing [44,48,42], CR users individually perform com-
pressed sensing, cooperatively estimate the wideband
spectrum by exchanging spectrum estimates, and itera-
tively reach a cooperative decision by exchanging local de-
cisions. The wideband cooperative sensing schemes are
discussed in Section 4.7.

3.2.4. Research challenges
Compressed sensing is a promising wideband sensing

technique in cooperative sensing. However, it also gives
rise to many open research challenges:
• Near far problem: Due to the sub-Nyquist-rate sampling

and insufficient number of samples, a weak PU signal
with a nearby strong signal may not be properly recon-
structed for detection in a wideband spectrum. Thus,
it is a challenge to achieve the detection sensitivity by
compressed sensing in a wideband spectrum.

3 Compressed sensing is also known as compressive sensing or
compressive sampling.
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• Implementation issues: Compressed sensing is achieved
by the random sampling of wideband signals. To
realize random sampling, new ADC architecture with
non-uniform timing and the pseudo-random clock
generator such as the one in [49,50] is needed.
Since the complex clocking system will be the key
factor of random sampling performance, how these
implementation issues in compressed sensing affect
cooperative sensing needs further investigation.

3.3. Hypothesis testing

In spectrum sensing, statistical hypothesis testing
is typically performed to test the sensing results for
the binary decision on the presence of PUs. In this
subsection, we first introduce two binary hypothesis
testing schemes commonly used in spectrumsensing. Then
we discuss composite hypothesis testing methods such as
the generalized likelihood ratio test (GLRT) and sequential
testing methods such as the sequential probability ratio
test (SPRT).

3.3.1. Binary hypothesis testing
There are two basic hypothesis testing methods in

spectrum sensing: the Neyman–Pearson (NP) test and the
Bayes test. In an NP test, the objective is to maximize the
detection probability Pd given the constraint of Pf ≤ α,
where α is the maximum false alarm probability. Based on
the signal detection problem in (1), it can be shown that
the NP test is equivalent to the following likelihood ratio
test (LRT) given by

Λ(y) =
f (y|H1)

f (y|H0)
=

N∏
k=1

f (yk|H1)

f (yk|H0)

H1
≷
H0

λ (7)

where Λ(y) is the likelihood ratio, f (y|Hj) is the distri-
bution of observations y = {yi}N1 under hypothesis Hj,
j ∈ {0, 1}, λ is the detection threshold, and N is the num-
ber of samples. Notice that, in (7), the second equality holds
only if the observations {yi}N1 are independent and identi-
cally distributed (i.i.d.) under Hj. As a result, the optimal
test at FC in cooperative sensing is the NP-based LRT if the
conditional independence is assumed [16]. Thus, the detec-
tor (local sensing) or the FC (cooperative sensing) declares
H1 if Λ(y) > λ and declares H0 otherwise.

In a Bayes test, the objective is tominimize the expected
cost called the Bayes Risk given by R =

∑1
i=0

∑1
j=0 CijP(Hi |

Hj)P(Hj), where Cij and P(Hi | Hj) are the cost and the
probability, respectively, of declaring Hi when Hj is true,
and P(Hi) is the prior probability of hypothesis Hi, i, j ∈
{0, 1}. In this case, Pd = P(H1 | H1), Pm = P(H0 | H1),
and Pf = P(H1 | H0). In other words, the Bayes risk to be
minimized is the sum of all possible costs weighted by the
probabilities of two incorrect detection cases (false alarm
and miss detection) and two correct detection cases. With
the knowledge of a priori probabilities P(Hi), the LRT of a
Bayes test can be represented as

Λ(y) =
f (y|H1)

f (y|H0)

H1
≷
H0

P(H0)(C10 − C00)

P(H1)(C01 − C11)
= λ. (8)

Thus, the detector or the FC can minimize the Bayes Risk
by declaring H1 if Λ(y) > λ and declaring H0 otherwise.
3.3.2. Composite hypothesis testing
In binary hypothesis testing, the distributions under

both hypotheses f (y|Hi) are completely known. When
there are unknown parameters in the PDFs, the test is
called composite hypothesis testing. One of the approaches
to composite hypothesis testing that does not require
prior knowledge of unknownparameters is the generalized
likelihood ratio test (GLRT). In GLRT, the unknown
parameters are determined by the maximum likelihood
estimates (MLE). Although GLRT is not an optimal test, it
is robust and easy to implement.

In [37], GLRT statistics are derived for cyclostationary
detection over multiple cyclic frequencies in cooperative
sensing. In [51], the Rao test and the locally most powerful
(LMP) test are proposed for detecting weak PU signals
at the FC with soft decisions from cooperating CR users
in cooperative sensing. The Rao test is asymptotically
equivalent to GLRT and does not require the MLE of
unknown parameters. Thus, it does not rely on the second
and fourth order PU statistics required by the NP-based
LRT. In addition, in [52], a linear composite hypothesis
testing approach is proposed for cooperative sensing.
The linear test statistics are derived for unknown PU
and channels statistics scenarios. When channel statistics
are known, the test statistics of the LMP detector are
also derived. This method provides the robustness to the
uncertainties in PU signals and channel gains, and its
performance is comparable to the optimal NP-based LRT.

3.3.3. Sequential testing
In the previously discussed hypothesis testing methods

such as the NP-based LRT, the number of required samples
for testing is fixed, which corresponds to the fixed sensing
time. To reduce the sensing time, sequential testing that
requires a variable number of samples can be used.
The sequential probability ratio test (SPRT) developed
by Wald [53] is the sequential testing scheme that
can minimize the sensing time subject to the detection
performance constraints.

In SPRT, samples are taken sequentially and the test
statistics are compared with two thresholds λ0 and λ1,
λ0 < λ1, which are determined by detection requirements.
If the likelihood ratio is greater than λ1, the detector
decides on H1 while if it is smaller than λ0, it decides on
H0. When the ratio falls between the two thresholds, it
waits for the next observation, as the currently available
information is not sufficient to achieve the final decision
that satisfies the target constraints. In this case, the process
is repeated until the decision can be determined. In
cooperative sensing, the SPRT can also be applied to the
detection at the FC.

Themain advantage of the SPRT is that it requires fewer
samples on the average than those fixed-sample testing
methods to achieve the same detection performance.
It is proven that the SPRT is optimal in minimizing
the average number of independent samples and the
corresponding average sensing time. The disadvantage of
the SPRT includes the cost for obtaining samples and
the possibly large number samples needed to reach the
decision resulting in long sensing time [54].
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In [55,56], a sequential detection schemewith the SPRT
is proposed for cooperative sensing. In this method, the FC
sequentially accumulates the log-likelihood statistics from
cooperating CR users and determines when to stop taking
more sequential observations and make a cooperative
decision. This method is further applied to the cases
of unknown parameters in signal statistical models by
exploiting the GLRT and replacing the unknowns with the
MLEs during sequential detection.

3.4. Control channel and reporting

In cooperative sensing, a common control channel
(CCC) [1,57] is commonly used by CR users to report local
sensing data to the FC or share the sensing results with
neighboring nodes. As a result, a control channel is the
element of cooperative sensing. The control channel can
be implemented as a dedicated channel in licensed or
unlicensed bands, or an underlay ultra-wideband (UWB)
channel [5]. A MAC scheme for multiple access is generally
used by all cooperating CR users to access the control
channel. From the perspective of the physical layer, a
physical point-to-point link from a cooperating CR user to
the FC is called a reporting channel.

For reporting sensing data, three major control channel
requirements must be satisfied in cooperative sensing:
bandwidth, reliability, and security. Thus, we discuss
bandwidth and reliability requirements in this subsection,
and will discusses the primary control channel security
issue: control channel jamming in Section 4.6.

3.4.1. Bandwidth requirement
The bandwidth of the control channel is identified in [7]

as one the factors of determining the level of cooperation.
This is because the amount of local sensing data that can
be transmitted to the FC or shared with the neighbors is
limited by the control channel bandwidth.

In [22], the problem of cooperative sensing under con-
trol channel bandwidth constraints is addressed by cen-
soring and quantizing local sensing data. Each cooperating
CR user performs the censoring by reporting the result
only if the local decision is determined by the SPRT test.
Thus, censoring reduces the unnecessary reporting and the
usage of control channel bandwidth. In [23], a bandwidth-
efficient combination scheme is proposed to enable the
simultaneous reporting to the FC with the fixed required
control channel bandwidth in cooperative sensing, regard-
less of the number of cooperating CR users. The test
statistics for testing the superposition of all received local
sensing data are devised for Gaussian and Rayleigh fading
reporting channels.

3.4.2. Reliability requirement
In addition to the bandwidth requirement, the reliabil-

ity of the control channel has the great impact on cooper-
ative sensing performance. Like data channels, the control
channel is susceptible to multipath fading and shadowing.
Hence, the channel impairmentsmust be considered in the
reliability issue of the control channel. While early stud-
ies [6,10] assume a perfect error-free control channel in
cooperative sensing, recent studies investigate the effect of
Gaussian noise [58], multipath fading [15], and correlated
shadowing [59] on the control channel and the sensingper-
formance.

In [15], a transmit diversity-based cooperative sensing
method is proposed to address the performance degrada-
tion caused by reporting channels under fading. Due to
the reporting errors, the results show that the probability
of false alarm Qf is lower bounded and linearly increases
with the probability of reporting errors. In addition, a
censor-and-relay method is proposed for the FC to cen-
sor the received results fromunreliable reporting channels.
The CR users who do not have good reporting channels are
instructed to forward their sensing results to those neigh-
bors in good reporting channel conditions. These neighbors
then report its own results and relay others’ forwarded
results through orthogonal control channels to avoid the
mutual interference. In [60,59], the issue of correlated
log-normal shadowing on the reporting channel is inves-
tigated. The results show that the performance degrada-
tion caused by the shadowing correlation on the reporting
channel is similar to that on the sensing channel.

3.4.3. Research challenges
• Reliability: Apart from the unrealistic assumption of us-

ing a perfect control channel in cooperative sensing, re-
cent studies have focused on the cooperative sensing
performance with the consideration of imperfect con-
trol channels. However, how to design a control channel
resilient to channel impairments, robust to PU activity,
and bandwidth-efficient for delivering sensing data is a
nontrivial task.
• Dynamic allocation: Most existing cooperative sensing

schemes assume a dedicated control channel for data
reporting. In certain applications where the control
channel needs to be dynamic allocated according to
PU activity, channel availability, and network topology,
the dynamic control channel allocation significantly
increases the difficulty for CR user cooperation and data
reporting in cooperative sensing.

3.5. Data fusion

In cooperative sensing, data fusion is a process of
combining local sensing data for hypothesis testing, which
is also an element of cooperative sensing. Depending
on the control channel bandwidth requirement, reported
sensing results may be of different forms, types, and sizes.
In general, the sensing results reported to the FC or shared
with neighboring users can be combined in three different
ways in descending order of demanding control channel
bandwidth: (i) Soft Combining: CR users can transmit the
entire local sensing samples or the complete local test
statistics for soft decision. (ii) Quantized Soft Combining: CR
users can quantize the local sensing results and send only
the quantized data for soft combining to alleviate control
channel communication overhead. (iii) Hard Combining:
CR users make a local decision and transmit the one-
bit decision for hard combining. Obviously, using soft
combining at the FC can achieve the best detection
performance among all three at the cost of control channel
overhead while the quantized soft combining and hard
combining require much less control channel bandwidth
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with possibly degraded performance due to the loss of
information from quantization. In this subsection, we
first discuss soft combining and quantized soft combining
techniques, and then focus on the fusion rules for decision
fusion when the hard combining is used.

3.5.1. Soft combining and quantized soft combining
Existing receiver diversity techniques such as equal

gain combining (EGC) andmaximal ratio combining (MRC)
can be utilized for soft combining of local observations or
test statistics. In [61], an optimal soft combination scheme
based onNP criterion is proposed to combine theweighted
local observations. The proposed scheme reduces to EGC at
high SNR and reduces to MRC at low SNR. Since such a soft
combining scheme results in large overhead, a softened
two-bit hard combining scheme is also proposed in [61] for
energy detection. In this method, there are three decision
thresholds dividing the whole range of test statistics into
four regions. Each CR user reports the quantized two-bit
information of its local test statistics. This method shows
the comparable performance with the EGC scheme with
less complexity and overhead.

Due to the computational complexity of the LRT-based
fusion methods that involves quadratic forms, an efficient
linear combination of local test statistics is proposed
in [58]. In this method, the local test statistics are
weighted by weighting coefficients, which are optimized
based on the target Pf and Pd requirements of the CR
network. Since the combining weights affect the PDF
of the global statistic, a modified deflection coefficient
(MDC) is introduced to measure the effect of the PDF
on the detector performance. Simulation results show
that maximizing the MDC can result in better detection
probability. This heuristic algorithm can significantly
reduce the computationally complexity of obtaining the
global decision with a slight degradation in the detection
performance. Overall, the optimal linear combination
strategy is subject to performance degradation when the
channel noise level increases.

3.5.2. Hard combining and decision fusions
When binary local decisions are reported to the FC, it

is convenient to apply linear fusion rules to obtain the
cooperative decision. The commonly used fusion rules are
AND, OR, and majority rules. Let ui be the local decision of
CR user i and u be the cooperative decisionmade by the FC,
ui, u ∈ {0, 1}, and a ‘‘1’’ and a ‘‘0’’ indicate a PU’s presence
(H1) and absence (H0), respectively. The AND rule refers to
the FC determines u = 1 if ui = 1,∀i. Similarly, the OR
rule refers to u = 1 if ui = 1, for any i. The majority
rule requires at least a half of the CR users to report ‘‘1’’.
These simple fusion rules can be generalized to the k out
of the N rule. Under this rule, the FC declares H1 (H1) if k
out of N CR users report ‘‘1’’. The false alarm and detection
probabilities for cooperative sensing under this rule for
data fusion are given by [62]

Qf = Prob{H1|H0} =

N−
l=k


N
l


P l
f (1− Pf )N−l (9)

Qd = Prob{H1|H1} =

N−
l=k


N
l


P l
d(1− Pd)N−l. (10)
It can be observed in (9) and (10) that when the value of
k is taken as 1 andN , the k out ofN rule becomes theOR and
AND rules, respectively. The OR rule works best when the
number of cooperating CR users is large. Similarly, the AND
rule works well when the number of cooperating users is
small. The majority rule can be obtained from the k out
of N rule under the condition when k ≥ N/2. Thus, it is
important to determine the optimal value of k for which
the detection errors are minimized. It can be shown that
the optimal value of k depends on the detection threshold.
For a small fixed threshold, the optimal rule is the AND
rule, i.e., k = N . Similarly, for a fixed very large threshold,
the OR rule (k = 1) is said to be optimal. The k out of
N rule is also equivalent to Counting Rule or Voting Rule
when the threshold for determining H1 equals k. In [63],
the proposed cooperative sensing scheme uses the k out
of N rule for data fusion at the FC. The optimal value of k
and the optimal sensing time are obtained by optimizing
the average achievable throughput subject to the detection
performance.

If the simple fusion rule is not used, advanced
fusion techniques can be devised to utilize the statistical
knowledge for decision fusion. In [11], a linear-quadratic
(LQ) fusion method is proposed to consider the correlation
between CR users in cooperative sensing. With the binary
local decisions reported by cooperating CR users, this
method provides a suboptimal solution to the decision
fusion problem by using the partial statistical knowledge:
the second-order statistics of the local decisions under
H1 and the fourth-order statistics under H0. Based on
the deflection criterion, the LQ detector compares a LQ
function of the local decisions with a predetermined
threshold and achieves better error probability with a
higher value of deflection. The results show that the
proposed scheme outperforms the Counting Rule in
correlated shadowing.

3.6. User selection

The selection of CR users for cooperative sensing plays
a key role in determining the performance of cooperative
sensing because it can be utilized to improve cooperative
gain and address the overhead issues. For example, when
cooperating CR users experience correlated shadowing, it
is shown in [7] that selecting independent CR users for
cooperation can improve the robustness of sensing results.
Moreover, removing malicious users from cooperation
ensures the security and the reliability of the network. In
Section 4, we will discuss how user selection can be used
to address overhead issues such as correlated shadowing,
cooperation efficiency, security, energy, and mobility. In
this subsection, we present the centralized and cluster-
based user selection schemes in cooperative sensing.

3.6.1. Centralized selection
The centralized user selection schemes is usually

performed at the FC to take advantage of the available
information collected from all cooperating CR users. For
example, the FC is able to select independent users for
cooperation to counter the effect of correlated shadowing
based on the location estimates of CR users.
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In [19], three user selection algorithms with different
degrees of the knowledge of CRuser positions are proposed
for cooperative sensing to address the shadow correlation
problem in a cellular system. The first algorithm aims
to select a set of cooperating users with the minimum
correlation measure among them by a greedy approach.
Specifically, users with the largest summed correlation
with respect to the remaining users are successively
removed one at a time from the set until the desired
number of CR users for cooperation is reached. Based
on the knowledge of CR user locations, the correlation
can be evaluated from the distance between two CR
users. Starting with the BS only in the set of cooperating
users, the second algorithm selects users by successively
adding uncorrelated users to the set if the selected users
are located at a distance greater than the decorrelation
distance d0 from all existing members of the set. The third
algorithm finds K cooperating users within the radius r of
the BS that satisfy the desired probability of uncorrelated
K users with only the radius information from the BS
to users. This method makes use of the probability of
correlated shadowing between two users to compute the
number of users that can be accommodated in circular
cells of different sizes. The complexity in partitioning the
users into two groups: uncorrelated users and correlated
users can be evaluated by two bounds: sphere packing
upper bound and random selection lower bound. As in
sphere packing on a hexagonal lattice, the upper bound
indicates the maximum number of users that experience
uncorrelated shadowing in a cellular area. The lower
bound is obtained by the expected number of randomly
placed CR users in a cell. All aforementioned user selection
algorithms perform better than the lower bound.

3.6.2. Cluster-based selection
Centralized user selection may incur high overhead

such as control channel bandwidth, energy efficiency, and
reporting delay when a large number of CR users need
to cooperate in sensing and report the results to the FC.
To alleviate this problem, grouping the cooperating users
into clusters [64,21,65,66] or coalitions [28] for cooperative
sensing is an effective approach to reduce the cooperation
range and the incurred overhead.

In [64], four clustering methods are considered for
user selection depending on the availability of location
information. First, random clustering is adopted where
the CR users are randomly divided into clusters of equal
size when the positions of both CR users and PUs are
not available. Second, reference-based clustering is based
on CR user positions with respect to a given reference.
In statistical clustering, clusters are formed by using the
statistical information and the proximities of CR users
when only the positions of CR users are known. Lastly, in
distance-based clustering, only k out of K CR users closer to
the PU in a cluster participate in cooperative sensing when
the positions of both CR users and PUs are known.

In [21], clustering is utilized to exploit user selection
diversity to improve the detection performance through
reporting channels under Rayleigh fading. In each cluster,
the CR user with the largest reporting channel gain is
selected as the clusterhead (CH) to reduce the reporting
errors. The CH collects local sensing data from the
members of the cluster and forward the results to the FC.
The results show that this clustering method outperforms
the conventional cooperative sensing scheme. In [65], a
cluster-based cooperative sensing scheme is proposed to
address control channel bandwidth and sensing delay
problems. The CHs are selected by the BS according to the
distance from the BS and the received PU signal power.
Since the overhead is reduced as the number of clusters is
decreased, the method minimizes the number of clusters
subject to the required sensing performance. The results
show that the proposed clustering method outperforms
the K -mean clustering scheme. In [66], a cluster-and-
forward scheme is proposed to address the energy
efficiency issue. To balance the energy consumption of
users, CR users dynamically form clusters with the CH
selected from the user with the largest channel gain at
each time step. Moreover, to further improve the energy
efficiency, the CHs take turn to act as the FC. The results
show that, for each cluster size, there is an optimal number
of clusters that can save the largest amount of energy.

3.6.3. Research challenges
User selection is critical for cooperation performance.

However, devising user selection scheme is nontrivial, es-
pecially when the geolocation information is unavailable.
The challenges are summarized as follows.

• Cooperation footprint: Cooperation footprint [7] is the
area where CR users cooperate with each other. Since
cooperative gain is obtained from spatial diversity, co-
operation footprint is an important parameter to eval-
uate the performance and the overhead in cooperative
sensing. Thus, user selection schemes should consider
the distribution of CR users and the the area covered by
their cooperation, not just the distance between the CR
users. However, deriving the exact footprint of cooper-
ation from the user selection is a challenge.
• User selection and overhead: It is obvious that user

selection is strongly related to every type of cooperative
sensing overhead, among others, from control channel
bandwidth, energy efficiency, to security issues. There
exists a tradeoff between the detection performance
and one type of overhead. Most user selection schemes
target at addressing one or two of these issues. Thus, it
is a challenge to address all the overhead issueswith the
user selection scheme.

3.7. Knowledge base

The performance of cooperative sensing schemes
largely depends on the knowledge of PU characteristics
such as traffic patterns, location, and transmit power. The
PU information, if available in a database, can facilitate the
PU detection. The database that stores all the knowledge of
the RF environments is called a knowledge base. Knowledge
base is an indispensable element of cooperative sensing
because it can be utilized to assist, complement, or even
replace cooperative sensing for detecting PU signals and
identifying the available spectrum.

Knowledge base serves as two roles in cooperative
sensing: (i) to enhance the detection performance by
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Fig. 9. Knowledge base in cooperative sensing.

utilizing the accumulated knowledge and the learned
experience such as statistical models in the database and
(ii) to alleviate the burden of cooperative sensing by
retrieving the spectrum information such as a list of PU-
occupied channels from the database. As shown in Fig. 9,
the knowledge base can provide PU information such as
locations, tracking, transmit power, and activity in the
forms of spatial–temporal–spectral maps for cooperative
sensing. In this subsection, we discuss the following know-
ledge base approaches: radio environment map (REM)
[67], received signal strength (RSS) profiles [68], channel
gain map [69,70], and power spectral density (PSD)
map [71].

3.7.1. Radio environmental maps
Radio environment map (REM) [67] is a central data-

base that can, among other things, be used as the infra-
structure in CR networks to provide radio environment
information for spectrumaccess, such as the locations of CR
users, available spectrum, spectrum regulation and poli-
cies, shadowing areas, and PU signal types. In cooperative
sensing, all the environment information, if available, can
be accessed and utilized by each CR user to improve the
detection performance in local sensing and in cooperative
sensing. However, REMsmay lead to large communication
overhead due to a large amount of information transferred
among CR users.

3.7.2. Spatial received signal strength profiles
In [68], a mechanism to establish spatial received signal

strength (RSS) profiles is proposed for cooperative sensing.
In this scheme, each cooperating CR user accumulates the
RSS samples to establish the distribution of test statistics at
each CR user’s location. When all these temporal profiles
from different CR user locations are combined at the FC,
the spatial RSS profile is constructed and can be used as
the detection criterion at the FC. In cooperative sensing,
the FC can determine the presence of PU signals if the
observed RSS values are similar to those in the profile.
When PU signals are not present, each CR user estimates
the noise power distribution for RSS profiles. The training
period of performing RSS profiling should be long enough
to accurately estimate the RSS distributions. The frequency
of updating the RSS profile can be determined based on the
time variation of the RSS profiles.

3.7.3. Power spatial density maps
In [71], a distributed cooperative sensing scheme based

on power spectral density (PSD) maps is proposed for
CRAHNs. In this scheme, CR users locally collect PSD
samples and cooperatively estimate the basis expansion
coefficients of the PSD map by exchanging messages with
one-hop neighbors. The consensus on the estimates is
reached by using the distributed least-absolute shrinkage
and selection operator (D-Lasso) algorithm. In addition, the
exponentially weighted moving average (EWMA) method
is utilized to track the slowly varying PSDs. Due to the
narrowband PSDs of PU signals in the wideband spectrum
and the sparsely located PUs with active signals in a given
area, the sparsity in both frequency and space are also
exploited to formulate the non-negative Lasso criterion
for ℓ1-norm minimization of the unknowns. With the
constructed PSD maps, this method is able to adapt to the
environment change and track the locations and the power
of PU transmitters.

3.7.4. Channel gain maps
In [69,70], a cooperative sensing scheme by using

channel gain maps is proposed to track the PU locations
and their transmit power. In this scheme, each CR user
maintains a map of channel gain that consists of path
loss, shadowing, and fading components. By extending
the Kalman filter with the linear spatial interpolator, the
Kriged Kalman filtering is used for tracking shadow fading
at any point in an area. Similar to [71], cooperative sensing
is formulated as a sparse regression problem with time-
weighted non-negative Lasso to exploit the sparsity of PU
locations. Based on the established channel gain maps, a
centralized algorithm and a distributed algorithm using
alternating direction method of multipliers (ADMoM) are
used for tracking PU locations.

3.7.5. Research challenges
• Knowledge base for security: Most existing knowledge

base methods are used to identify PU characteristics
such as locations, power, and activity. To address secu-
rity issues in cooperative sensing, the database should
include other knowledge such as the behavior model
of CR users and the model for jammer identification.
Although it is a challenge to cooperatively establish
accurate statistical models for security purposes, the
knowledge derived from these models can significantly
improve the security in cooperative sensing.
• Remote knowledge base access: As a recent FCC rul-

ing [72] removes the spectrum sensing requirement in
TV white space, CR devices are enabled to access PU
activity and spectrum information from a remote spec-
trum database. This ruling raises new challenges in us-
ing the on-demand service and web-based processing
techniques such as cloud computing [73,74] to pro-
vide CR users with a fast, secure, scalable, and energy-
efficient access to remote knowledge base.

4. Gain and overhead in cooperative sensing

The exploitation of spatial diversity in cooperative sens-
ing results in a significant improvement in detection per-
formance. The performance improvement as the result of
cooperation is termed diversity gain or cooperative gain [7].
Regardless of the improvement of detection performance,
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Fig. 10. Dominating factors of cooperative gain and cooperation
overhead.

cooperation among CR users may also introduce a variety
of overheads that limits or even compromises the achiev-
able cooperative gain. The overhead associated with all
elements of cooperative sensing are called cooperation
overhead. In this section, we consider the issues of achiev-
able cooperative gain and incurred cooperation overhead
in cooperative sensing. These issues, called dominating
factors of the cooperative gain and cooperation overhead,
include (i) sensing time and delay, (ii) channel impair-
ments, (iii) energy efficiency, (iv) cooperation efficiency,
(v) mobility, (vi) security, and (vii) wideband sensing,
which are shown in Fig. 10 and extensively discussed as
follows.

4.1. Sensing time and delay

In conventional cooperative sensing [6], all cooperating
CR users are assumed to be perfectly synchronized and
their sensing results are also assumed to be available
instantly and concurrently at the fusion center. As a result,
the sensing delay such as sensing time, reporting delay, and
synchronization issue are seldom addressed in cooperative
sensing. Recent studies [63,24,75] have taken into account
some, if not all, of these practical sensing delay issues.
In this subsection, we address the issues of sensing time,
reporting delay, synchronization issue, and asynchronous
reporting as the cooperative sensing delay overhead in
cooperative sensing.

4.1.1. Sensing time
Sensing delaymainly depends on the sensing technique

being used. The sensing time is proportional to the
number of samples taken by the signal detector. General
speaking, the longer the sensing time is, the better the
detectionwill be. However, due to the hardware limitation
that a single RF transceiver equipped in each CR user
cannot simultaneously perform sensing and transmissions,
the more time is devoted to sensing, the less time is
available for transmissions and thus reducing the CR
user throughput. This is known as the sensing efficiency
problem [76] or the sensing-throughput tradeoff [77] in
spectrum sensing.

In [63], the sensing-throughput tradeoff is formulated
as an optimization problem in cooperative sensing aiming
to maximize the average CR throughput under the
presence and the absence of PUs, subject to the constraint
of detection probability for PU protection. With the energy
detection for local sensing and the ‘‘K-out-of-N rule’’ for
data fusion at the FC, the improvement in the throughput
performance can be achieved when the optimal sensing
time and the number of CR users determining the PU’s
presence (K ) are jointly optimized.

4.1.2. Reporting delay
In cooperative sensing, sharing local sensing data with

the FC or other CR users incurs reporting delay. This is
cooperation overhead because it does not exist in spectrum
sensing with no cooperation. In addition to transmission
delay from the cooperating CR users to the FC, there are
many reasons that can result in reporting delay. First, if
cooperating CR users transmit on the control channel by
a random access scheme, it is possible that the control
messages sent from different CR users collide and then re-
transmission is required. Moreover, delivering the sensing
data bymultiple hops such as the case in the relay-assisted
cooperative sensing incurs extra reporting delay. Thus,
reporting delay is the overhead that should be considered
in cooperative sensing schemes.

In [78], the authors address the issue of cooperation-
processing tradeoff in cooperative sensing. The tradeoff is
formulated as an optimization problem to minimize the
total sensing time subject to constraints of false alarm
and detection probabilities. The total sensing time to be
minimized includes the integration time of the energy
detector for local processing and the reporting time, pro-
portional to the number of cooperating CR users, for
cooperation. The results show that, for higher detection
sensitivity, the longer integration time is generally re-
quired. However, with cooperation, the increasing num-
ber of cooperating CR users reduces the required sensing
time to achieve the same level of detection sensitivity, even
the reporting delay is longer in this case. In [75], a rein-
forcement learning-based cooperative sensing scheme is
proposed to minimize the cooperative sensing delay and
improve the detection probability in spatially correlated
shadowing. By considering the reporting delay and spatial
correlation among CR users in calculating the reward func-
tions, the learning algorithm effectively finds the optimal
solution to obtain the optimal sensing/report sequence and
minimize the total reporting delay from all cooperating CR
users while the detection performance is improved in cor-
related shadowing.

4.1.3. Synchronization issue
In addition to delays, many cooperative sensing sche-

mes [10] require the synchronization of all the cooperating
users and rely on simultaneous reporting of the CR users
to perform the likelihood ratio testing. For example, due to
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the lack of the capability for distinguishing the PU signal
from CR signals, spectrum sensing with energy detectors
requires a scheduled quiet period for simultaneous local
sensing operations. However, the synchronization may
not be easily achieved for a large amount of CR users in
CRAHNs. Thus, many asynchronous cooperative sensing
methods [79,80,24] are proposed to deal with this issue.

In [79], a sliding window algorithm is proposed to
resolve the synchronization issue by detecting the change
point sequentially in the sensing reports received within
an observation window. Similar to SPRT, the window is
advanced if more sensing reports are required to make
a decision. Compared to the WSPRT method [81], this
method is able to achieve higher detection accuracy and
reduce the detection time with and without misbehaving
users. In [80,24], a probability-based combination scheme
is proposed to combine asynchronous reports at the FC.
Based on the knowledge of PU ON/OFF period distribution
and the Bayesian decision rule, the conditional probability
of the sensing reports received at different times and their
combined likelihood ratio can be calculated to make the
final decision.

4.1.4. Research challenges
The challenges to improve cooperative sensing delay

are as follows:
• Multiple tradeoffs in cooperative sensing delay: The

sensing-throughput tradeoff analysis in cooperative
sensing should consider not only the sensing time and
CR throughput, but also the report delay and the delay
for synchronization or asynchronous reporting. Thus,
the challenge is to balance the tradeoff between the
CR throughput and cooperative sensing delay, which
consists of multiple delay components depending on
the cooperative sensing schemes.
• Delay analysis in distributed schemes: Distributed co-

operative sensing schemes usually require an iterative
process to reach the cooperative decision. The coop-
erative sensing delay is dominated by the report de-
lays if the number of iterations for convergence is large.
As a result, the delay analysis and the convergence of
the distributed cooperative algorithm should be jointly
considered.

4.2. Channel impairments

Channel impairments refer to the phenomena that
cause the attenuation and variations of signals propagated
through the wireless channels. These phenomena, includ-
ing path loss, multipath fading, shadowing, and interfer-
ence, can inevitably compromise the accuracy of PU de-
tection in spectrum sensing. While cooperative gain can
be achieved by using cooperative sensing to combat mul-
tipath fading and independent shadowing, spatially corre-
lated shadowing can limit the achievable cooperative gain
and incur overhead. In this subsection, we discuss the gain
and overhead in cooperative sensing as the result of chan-
nel impairments.

4.2.1. Multipath fading and shadowing
Signal power attenuates as the signal travels through

the space. The attenuation is exponentially proportional to
the distance the signal travels. Such a energy loss along the
path from the transmitter to the receiver is the path loss. In
some cooperative sensing schemes, the effect of path loss
is assumed to be same for all CR users. This assumption is
reasonable only when the distance from any CR user to the
PU transmitter is much greater than the distance between
any twoCRusers.When the PU transmission range is small,
the receive power at each CR user can vary significantly
due to path loss. Although cooperative sensing cannot
be used to directly address the path loss issue, CR users
receivingweak PU signals due to path loss can benefit from
cooperative sensing to correctly detect the PU’s presence.

Unlike path loss, multipath fading and log-normal
shadowing are primary channel impairments that can be
countered by cooperative sensing schemes. This is because
only a subset of CR users may experience multipath
fading and shadowing at a given time. It is shown in [6]
that cooperative sensing can effectively combat multipath
fading and independent shadowing. As a result, a large
cooperative gain can be achieved in these cases.

4.2.2. Spatially correlated shadowing
In log-normal shadowing, the observations of two

closely located CR users may be correlated due to their
proximity. In this case, CR users experience similar
shadowing effects called spatially correlated shadowing.
In [6], it is shown that spatial correlation in shadowing
can degrade the detection performance and compromise
the achievable cooperative gain. In [82], it is further
shown that having a small number of CR users over
a large distance may be more effective than a large
number of closely located users in correlated shadowing
scenarios. Hence, it is important to select uncorrelated
CR users for cooperation to minimize the effect of
correlated shadowing. It is obvious that spatially correlated
shadowing incurs overhead.

Due to its importance, spatially correlated shadowing
needs to be considered during the user selection for
cooperation. The selection of uncorrelated users requires
the evaluation of the correlation between users. To achieve
this, a correlationmodel [83,6] derived fromempirical data
with decaying exponential function is commonly used to
determine the spatial correlation in urban and suburban
environments. In general, the spatial correlation between
two CR users exponentially decreases as the distance
between these two increases. These two CR users can be
considered uncorrelated if the distance is larger than a
value, called decorrelation distance.

In addition to the simple correlation model, advanced
models are also needed. It is essential to accurately
model the correlated log-normal shadowing in order
to properly analyze its impact on cooperative sensing.
However, this is a challenging task. For example, in a
cooperative sensing scheme based on energy detection
and square-law combining (SLC) at the FC, the average
detection probability requires the probability density
function (PDF) of the power-sum of correlated log-normal
random variables (RVs) [84]. However, the lack of the
closed-formPDFhas resulted in the inaccuracy inmodeling
correlated shadowing.
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In [60,59], a two-step approximation method is pro-
posed to approximate the power-sum of log-normal RVs
and model the correlated shadowing in sensing and re-
porting channels. This method offers good approximation
accuracy while keeping the computational complexity at
a moderate level. In the first step, the log-normal power-
sum RVs are approximated by a log-normal RV. The PDF
of the log-normal RVs is obtained by log-normal approx-
imation of the power-sum of generically correlated log-
normal RVs when the number of summands (cooperating
CR users) is small. In the second step, a non-log-normal ap-
proximationmethod is used to obtain the PDF of correlated
Log-Normal RVs when the number of summands is large.
The latter gives a more accurate approximation of the log-
normal shadowing effects on the reporting channel.

4.3. Energy efficiency

In cooperative sensing, CR users involve in activity
such as local sensing and data reporting that consumes
additional energy. The energy consumption overhead can
be significant if the number of cooperating CR users or the
amount of sensing results for report is large. Thus, energy
efficiency should be considered in cooperative sensing
schemes. To address this issue, existing solutions reduce
energy consumption by two main approaches: reducing
the amount of reporting data by censoring [21,37] and
improving energy efficiency by optimization [85,86].

4.3.1. Censoring
Censoring was introduced in sensor networks as

an energy-efficient technique for distributed detection
[87,88]. In cooperative sensing, it is used to limit the
amount of reported sensing data according to certain
criteria or constraints. Since the censoring criteria are
chosen to refrain cooperating CR users from transmitting
unnecessary or uninformative data, the energy efficiency
can be improved in cooperative sensing. In addition,
censoring can lower the control channel bandwidth
requirement (Section 3.4) due to the reduced number of
control messages.

In [21], a simple censoring method is proposed to
decrease the average number of sensing bits reported to
the FC. Similar to the SPRT, the energy detector outputOi of
CR user i is compared to two thresholds λ1 and λ2, λ1 < λ2.
If Oi is smaller than λ1 or larger than λ2, decision 0 or 1
is determined, respectively, and sent to the FC. Otherwise,
no decision is made and this sensing output is censored
from reporting. The results show that even though the Qf
maydegrade due to the possibility that the sensing outputs
of all CR users are censored, the amount of reported local
decisions can be dramatically reduced. Thus, the energy
efficiency can be traded off with Qf .

In [89,37], a censoring scheme with communication
rate constraints is proposed to reduce energy consump-
tion in cyclostationarity-based cooperative sensing. In this
scheme, CR users send the test statistic from the cyclosta-
tionary detector T (i) to the FC if the following constraint is
satisfied:

p(T (i) > ti | H0) ≤ κi, i = 1, . . . , L (11)
where κi is the communication rate constraint of user i
for reporting sensing data, ti is the threshold such that the
probability of CR user i sending the test statistic under the
null hypothesis H0 is κi, and L is the number of cooperating
CR users. As a result, energy efficiency is improved by
independently selecting κi for each user i based on the
required detection performance. It is proven in [88] that,
for ti = 0, the probability of miss detection is minimized
if the communication rate constraints κi in (11) are chosen
such that the probability of false alarm is less or equal to
1−

∏L
i=1(1− κi).

4.3.2. Energy minimization
Another approach to improving energy efficiency is to

optimize the CR performance with energy constraints [90]
or minimize energy consumption with detection perfor-
mance constraints [85,86].

In [85], the energy efficiency problem is addressed
by energy minimization under detection performance
constraints. Specifically, this method investigates the
tradeoff between the two aspects of sensing time. On
one hand, longer sensing time consumes more energy of
each CR user. On the other hand, longer sensing time
can improve detection performance at each CR user and
reduce the number of cooperating users and the associated
energy consumption overhead. Thus, this method finds
the optimal sensing time and the optimal number of
cooperating users to balance the energy consumption in
local sensing and the energy overhead due to cooperation
for required detection performance.

In [86], a sleeping and censoring combined scheme
is proposed to jointly optimize the energy consumption
cost under the detection constraints. Specifically, to find
the optimal sleeping rate µ and the censoring thresholds
λ1, λ2, the optimization problem is formulated as

min
µ,λ1,λ2

(1− µ)

N−
i=1

(Csi + Cti(1− ρ))

s.t. Qf ≤ α,Qd ≥ β (12)
where Csi and Cti are the energy cost of CR user i in sensing
and transmission, respectively, ρ = Pr(λ1 < Ei < λ2)
is probability of CR user i’s energy detector output Ei being
censored, andN is the number of cooperating CR users. The
results show that this method significantly reduces energy
consumption with or without a priori knowledge of PU
activity.Moreover, forα = 0.1 andβ = 0.9, as the number
of cooperating users increases, the optimal sleeping rate
increases dramatically to minimize the overall energy
consumption in cooperative sensing.

4.3.3. Research challenges
As the advent of the green communications era,

efficient energy conservation techniques in cooperative
sensing are indispensable. The open research challenges
are the following:
• Energy efficient user selection: Censoring techniques

only reduce the energy consumption on reporting
sensing data. However, the energy is still consumed
by sensing even if the result is censored. Thus, it
is a challenge to properly select the CR users for
cooperation such that all the sensing results are
informative and the energy spent on unnecessary
sensing operations is saved.



56 I.F. Akyildiz et al. / Physical Communication 4 (2011) 40–62
• Modeling of energy consumption: Existing methods
simply model the energy consumption in sensing,
sleeping, and transmission/reporting as fixed values.
However, many factors will affect the degree of
energy efficiency in these operations. For example,
different sensing techniques and sensing interval will
consume different amounts of energy. In addition,
energy consumption in reporting may depend on the
transmit power level adapted to channel conditions.
Thus, a more accurate energy model for cooperative
sensing is needed.

4.4. Sensing efficiency

Cooperative sensing efficiency indicates how often
cooperative sensing should be scheduled to sense an
appropriate number of channels/bands within a time
constraint [91] or how fast a decision can be reached in
each round of cooperative sensing. The former primarily
refers to the sensing scheduling performed at the FC in
centralized cooperative sensing and the latter refers to
the convergence rate of distributed cooperative sensing
schemes. Thus, these efficiency issues have great impact
on the gain and overhead in cooperative sensing.

4.4.1. Sensing scheduling
Conventional centralized cooperative sensing schemes

focus on the detection performance resulted from one co-
operation. However, the efficiency of centralized cooper-
ative sensing is determined by sensing scheduling, which
determines how often CR users cooperate with each other
(sensing period) and what type of sensing CR users should
perform (fast sensing or fine sensing).

In [68], an online sensing scheduling algorithm is
proposed to minimize the sensing period and address the
interactions between sensing scheduling and cooperative
sensing in IEEE 802.22 scenarios. The algorithm regularly
schedules quiet periods for fast sensing. In each round,
the FC collects sensing results from cooperating users and
compares the test statistic ∆ with thresholds A and B, A <
B, derived from the required detection performance, by
using the SPRT. The FC will instruct cooperating users to
vacate the channel if a PU is detected (∆ > B), schedule
fine sensing if no cooperative decision can be determined
after a certain number of times of fast sensing are
performed (A < ∆ < B), or declare if the PU is not present
(∆ < A). The sensing algorithm enables the fast decision at
FC to both meet the IEEE 802.22 timing requirement and
reduce the cost incurred by fine sensing.

In [92,93], an in-band sensing scheduling algorithm
is proposed to find the optimal sensing period and
minimize sensing overhead in cluster-based CR networks.
Specifically, for each value of sensing time TI , the algorithm
finds the optimal sensing period TP by repeatedly reducing
the number of periodic sensings within the sensing
time requirement and checking the probability of miss
detection until the detection performance is satisfied. After
exploring a range of TI values, the optimal pair (TI , TP )
that minimizes the sensing overhead TI/TP is chosen. This
algorithm can be used to schedule either fast sensing or
fine sensing.
4.4.2. Speed of convergence
In distributed cooperative sensing, the concern with

efficiency focuses on how fast CR users can reach a
unanimous cooperative decision, i.e. the convergence
rate of the distributed algorithm for making a decision.
One of the distributed algorithms that is proven for
convergence and commonly used in cooperative sensing is
the consensus scheme.

In [12,94], a consensus-based cooperative sensing
scheme is presented. In this method, cooperating CR users
exchange local sensing information and iteratively update
the test statistic to reach the consensus on the presence
of PUs. Each CR user maintains a consensus variable xi,
which is used as the estimate of local sensing statistics.
To reach the consensus, the individual variable xi at CR
user i asymptotically converges to a common value x∗,
i.e., xi(k) → x∗ as k → ∞, where k is the discrete time
index. Finally, CR users compare the average consensus
x∗ with a predefined threshold λ and reach a cooperative
decision locally. In this scheme, xi(k) is updated based on
the previous state of CR user i and its neighbors as follows.

xi(k+ 1)← xi(k)+ ϵ
−
j∈Ni

(xj(k)− xi(k)) (13)

where ϵ is the step size and Ni is the set of CR user i’s
neighbors. The selection of step size ϵ has a great effect on
the convergence of the consensus scheme.

The average consensus scheme is also incorporated into
the distributed cooperative sensing algorithm in [44,42].
The update equation in their algorithms is given by

cj(t + 1)← cj(t)+
−
k∈Nj

wjk(ck(t)− cj(t)) (14)

where wjk is the set of the weights that guarantee the
asymptotic average consensus [95].

4.4.3. Research challenges
The efficiency issues have not been well-studied in

cooperative sensing. The research challenges are

• Sensing scheduling: MAC sensing usually studies the
optimization of sensing and channel access of one
CR user [92,91]. The sensing scheduling schemes can
consider howCRusers can cooperate to efficiently sense
multiple channels. It is also a challenge to consider
the scheduling of narrowband andwideband sensing in
addition to fast and fine sensing to further improve the
cooperation efficiency.
• Analysis of convergence rate: All distributed cooperative

sensing schemes are required to converge to a coopera-
tive decision. However, how fast the distributed scheme
can converge is usually not well-analyzed. Since a PU’s
behavior may be highly dynamic, it is a challenge to de-
vise an efficient distributed scheme that can converge
in a timely fashion to match the PU’s activity change.

4.5. Mobility

Most existing cooperative sensing techniques do not
consider the movement of PUs and CR users during
cooperative sensing. However, the mobility of PUs and CR
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Fig. 11. CR user mobility and cooperative sensing.

users may have the impact on the detection performance
and how CR users cooperate in cooperative sensing. For
example, as shown in Fig. 11, when CR1 moves from
location A to B, CR1 creates the spatial diversity in the
observations of PU1 bymobility. The cooperation between
CR1 and other CR user like CR2 can be reduced tominimize
the cooperation overhead. On the other hand, if CR1
continues to move to location C and CR3 moves from
location D to E toward CR1, CR1 and CR3may be correlated
due to their proximity. As a result, mobility can induce
the correlated shadowing and the incurred overhead.
Moreover, as CR1 moves, it may need to cooperate with
different CR users depending on the moving direction
and speed, and sense different channels from Ch1 to Ch2
in this case. The scenario could be further complicated
if both PU1 and PU2 are mobile. Thus, mobility may
improve or compromise the achievable cooperative gain.
The cooperation overhead can also occur due to mobility.
Here we focus on the issues of PUmobility and CRmobility
separately as follows.

4.5.1. Primary user mobility
For large-scale PUs such as TV powers or cellular base

station s, it is a reasonable assumption that the PUs
are stationary. On the other hand, for small-scale PUs,
such as wireless microphones in IEEE 802.22 or radios in
emergency and military networks, the PUs can be mobile.
The detection of small-scale PUs by an individual CR user
is a challenge owing to their small transmit power and
mobility. Thus, cooperative sensing with the assistance of
PU tracking methods and the spectrum knowledge base
could be the solution to this problem. To the best of our
knowledge, no solution has yet been proposed to consider
the impact of PU mobility on cooperative sensing.

4.5.2. CR user mobility
Intuitively, the movement of a CR user creates the spa-

tial diversity in the observations taken on the move. As a
result, a mobile CR user can improve the detection per-
formance with its local samples and require less coop-
eration from others to reduce the cooperation overhead,
depending on the speed and the direction of themovement
and the location of the cooperating CR users. However, it is
also likely that the mobility creates the correlation among
CR users if the distance between CR users may be reduced
by CR user movement. In addition, the network topology
changes as CR users move. In this case, CR users may need
to join or leave the group of cooperating CR users similar
to the merge and split of coalitions in [28]. Thus, all the co-
operation overhead due to mobility must be considered in
cooperative sensing of mobile CR users.

In [20], the impact of mobility on spectrum sensing
is investigated. For a single mobile CR user with energy
detection, it is shown that the mobility increases the
spatial–temporal diversity in the received PU signals.
Without the cooperation from other users, the CR user
mobility can improve the detection performance with
increasing moving speed. This is because the observations
are less correlated as the speed is increased. The simulation
results also show that higher mobility speed can reduce
the frequency of scheduled sensing for a given detection
performance. This reduces the frequency of periodic
sensing and the overall sensing time. It is also implied
that it is more efficient to cooperate with other users
than scheduling multiple times of sensing when CR users
are slowly moving. On the other hand, when CR users
are moving at high speed, it is more efficient to sense
individually multiple times than cooperate with other
users. In addition, the number of cooperating CR users can
be decreased if the number of times to perform sensing is
increased. This results in a tradeoff between cooperation
and scheduling. Moreover, the mobility speed can reduce
the average received signal strength. Thus, the degradation
in sensitivity of energy detection must be compensated
by the spatial–temporal diversity. These results imply that
CR users can reduce the cooperation overhead with the
speed of mobility if the independent observations with the
spatial–temporal diversity can be obtained.

4.5.3. Research challenges
Despite some preliminary studies, there are still many

unanswered questions regarding the impact of mobility on
cooperative sensing. For example, what is the optimal way
to perform cooperative sensing if CR users are moving? If
CR users can be stationary or mobile, how to select the
cooperating CR users?How to perform cooperative sensing
in a stable and reliable manner at mobile or vehicular
speed? We find that the research challenges on mobility
issue in cooperative sensing are

• PU mobility and tracking: Due to the mobility of PUs,
the tracking of PU movement becomes an important
problem in cooperative sensing. The accurate tracking
of PUs relies on an efficient localization method with
location estimation. The development of an effective
location estimation method based on the received
signal strength values of PU signals remains a challenge.
• Impact of mobility parameters: It is a challenge to iden-

tify the mobility parameters that affect the detection
performance, and their relations with cooperative gain
and cooperation overhead. For example, mobility may
increase or decrease the correlation amongCRusers and
thus improving or degrading the detection performance
in cooperative sensing. The possible parametersmay in-
clude the mobility speed, the direction of movement,
the doppler frequency, the density of CR users, or a pro-
file that contains the moving trajectory and locations of
CR users.
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4.6. Security

The cooperation among CR users raises new concerns
for the reliability and the security in cooperative sensing.
This is because, when multiple CR users cooperate
in sensing, a few CR users who report unreliable or
falsified sensing data can easily influence the cooperative
decision. During cooperation, malfunctioning CR users
may unintentionally send unreliable data to the FC. For
example, the report from a malfunctioning user could
deviate from the real value. Moreover, CR users, called
malicious users or Byzantine adversaries in this case, can
intentionally manipulate the sensing data and report the
falsified data for their own benefits. For instance,malicious
users may obtain spectrum access by falsely reporting the
presence of PUs. It is reported in [7] that the cooperative
gain can be severely affected by malfunctioning or
malicious CR users in cooperative sensing.

To address the security and reliability issues, additional
mechanisms are required to identify malicious CR users
and manipulated sensing data, and remove them from
cooperation. Although these countermeasures may incur
overhead in cooperative sensing, they are required to
ensure secure operations of cooperative sensing and obtain
reliable sensing results in hostile environments. Next, we
consider reliability and security issues by mainly focusing
on two areas: data falsification, where the detection
performance is affected by the falsified sensing data, and
security attack, where cooperative sensing is compromised
or even disrupted by adversary attacks such as PU
emulation, control channel jamming, node capture, and
center of failure.

4.6.1. Data falsification
To address the data falsification problem, existing

cooperative sensing schemes aim to detect the anomaly
in the reported sensing data and establish a mechanism
to distinguish the malicious users from the authentic
ones such that malicious users can be excluded from
the cooperation to ensure the integrity of the sensing
decisions.

In [81], the weighted SPRT with a reputation-based
mechanism is proposed as the robust cooperative sensing
scheme to address the data falsification problem. As a
first step, the reputation ratings for cooperating CR users
are calculated depending upon their sensing accuracy.
Whenever the local sensing result matches the final
decision, the reputation is increased. Otherwise, it is
decreased. The reputation values are converted to the
weights to be used in the modified likelihood ratio of a
SPRT for data fusion. In this manner, the impact of the
unreliable CR users can be reduced by putting weights on
the genuine sensing data over the falsified ones.

In [96], a simple outlier detection is proposed for the
pre-filtering of the extreme values in sensing data. The
trust factor that measures the CR user’s reliability is then
evaluated as the weights in calculating the mean value of
received sensing data. In that way, cooperative sensing can
be more reliable by building trust toward CR users that
report a sensing value close to the mean of all collected
results at the FC. The method is extended in [97] to
detect malicious users by the outlier factors, which are
calculated based on the weighted sample mean and the
standard deviation of the energy detector outputs. The
outlier factors can be adjusted according to the dynamic
PU activity and the observations from closest neighbors
in a neighborhood to further improve the detection of
malicious users.

In [98], a consensus-based cooperative sensing scheme
is proposed to address the data falsification problem
in CRAHNs. As discussed in Section 3.6, each CR user
iteratively selects neighbors for cooperation and sensing
data exchange such that the consensus (cooperative
decision) is gradually reached in a distributed manner.
When selecting cooperating neighbors, each authentic CR
user checks the received sensing data by comparing it
with the local mean value. The neighbor reporting the
result with maximum deviation from the local mean
will be rejected for cooperation. With this scheme, the
reliability of cooperative sensing can be improved by
isolating malicious users in the neighborhood.

4.6.2. Security attacks
In addition to data falsification problem, cooperative

sensing is vulnerable to a variety of security attacks in
hostile environments such as PU emulation attack, control
channel jamming attack, and node capture attack.

In PU emulation attack,malicious users transmit signals
similar to those of the PUs. Since these malicious users
are mistaken as PUs, legitimate CR users will vacate the
frequency band and the attackers will have the wrongful
privilege to access the spectrum. To address this problem,
a transmitter verification scheme based on localization is
proposed in [99] to counter the attack. In this method,
an RSS-based localization is utilized by collecting the RSS
values from cooperating CR users to estimate the PU’s
transmitter location. The PU’s identity can be verified by
comparing the estimates with known PU’s characteristics.

In a control channel jamming attack, a strong interfer-
ence signal injected to the control channel disables the
reception of valid control messages at CR users. In this
case, CR users are unable to exchange control messages on
control channels for cooperative sensing and higher-layer
network functions. This resulting in the denial-of-service
(DoS). In general, the spread spectrum techniques canmit-
igate the jamming attack by introducing the pseudo ran-
dom channel access unknown to malicious users.

In [100], a dynamic control channel allocation scheme
based on hopping sequences is proposed to mitigate the
control channel jamming attacks in cluster-based ad hoc
networks. In this method, the clusterhead of each cluster
determines the hopping sequence and the operating
control channel within the cluster. During the jamming
attack, the affected area is reduced due to the clustering
of the network. Based on the defined hopping sequence,
cooperating CR users can resume the communications on
the new control channel after the old one is jammed.
Moreover, the hopping sequences are encrypted by the
public key of each cooperating CR user to provide the
protection from the intruders. Thus, this method can
provide a scheme to temporarily restore the control
channel until the jammer is removed.



I.F. Akyildiz et al. / Physical Communication 4 (2011) 40–62 59
When the hopping sequences are known to malicious
users (compromised users) through node capture attack,
the anti-jamming techniques such as [100] may be
ineffective. In [101], a control channel access scheme
with random key assignment is proposed to address
the jamming problem under node capture attacks. By
increasing the diversity of keys (control channel identifier)
assigned to users, authorized users increase the probability
of holding keys unknown to compromised users. Thus,
this control channel access scheme is more robust to
jamming by compromised users. However, this method
also increases the communication and storage overhead
due to the increase of the number of keys.

4.6.3. Research challenges
The security in cooperative sensing cannot be assured

by only detecting falsified data because the security
attacks come in various forms aiming at attacking different
network components and functions. The open research
challenges on security in cooperative sensing include the
following:

• Physical layer security: The techniques of physical layer
security can be applied to cooperative sensing to
improve the cooperative sensing security without the
implementation complexity of cryptographic functions.
For example, the cooperative scheme in [102] utilizes
relays to cooperatively nullify the interfering and
jamming signals of eavesdroppers. However, it is a
challenge to analyze the tradeoff between the gain from
physical layer security and the overhead.
• Large-scale node capture attacks: Existing cooperative

sensing solutions to data falsification problem may be
effective in detecting a fewmalfunctioning ormalicious
users. When a large number of CR users are captured
and reporting false data, the detection of a malicious
user cannot be guaranteed solely by data analysis. A
novel scheme is required to counter the large-scale
node capture attacks.
• Security of fusion center: An absolutely secure FC is

usually assumed in centralized cooperative sensing
schemes. However, the FCmay be susceptible to attacks
even if it is relatively more secure than cooperating
users. If the security of the FC cannot be guaranteed, it
is a challenge for cooperating CR users to identify the
vulnerability and the failure of the FC.

4.7. Wideband sensing

Conventional cooperative sensing exploits the spatial
diversity of cooperating CR users and focuses on the
sensing of one frequency band during each round of
cooperation. To determine the availability of the spectrum
in multiple channels or bands, CR users need to be
synchronized to switch to another band and perform
cooperative sensing separately in each band. This process
can incur significant switching delay and synchronization
overhead. Alternatively, CR users can cooperatively sense
multiple channels or frequency bands to reduce the total
sensing time for all users. In this subsection, we discuss
multi-band cooperative sensing [34,103] and wideband
cooperative sensing [44,42].
4.7.1. Multi-band cooperative sensing
In multi-band cooperative sensing, CR users cooperate

to sense multiple narrow bands instead of focusing on one
band at a time. In [34], a spatio-spectral joint detection
(SSJD) scheme is proposed for combining the statistics
of sensing K bands from M spatially distributed CR
users. The FC calculates the test statistic and make a
cooperative decision in each band. The weight coefficients
and detection thresholds of all bands are obtained by
jointly maximizing the aggregate CR throughput in each
band subject to miss detection and false alarm probability
constraints. To enable the multi-band sensing at each
CR user, an energy detector is required for each band
of interest. As a result, the method may incur higher
hardware cost when the number of bands for cooperative
sensing is large.

In [103], a parallel cooperative sensing scheme is
proposed to enable themulti-channel sensing by optimally
selected cooperating CR users. Unlike the multi-band
sensing scheme in [34], each of cooperating CR users
senses a different channel. By this method, multiple
channels can be cooperatively sensed in each sensing
period. The objective is to maximize the CR throughput
whileminimizing the sensing overhead such as the sensing
time and the number of required CR users for cooperation.

4.7.2. Wideband cooperative sensing
As discussed in Section 3.2, compressed sensing tech-

niques facilitate wideband sensing with the sampling at
sub-Nyquist rate. Based on the assumption that the wide-
band spectrum is sparsely occupied by PUs, the spectrum
of the wideband signal can be reconstructed for PU detec-
tion. Thus, we focus on the wideband cooperative sensing
schemes utilizing compressed sensing [44,48,42].

In [44], a distributed cooperative sensing scheme
is proposed for wideband sensing in CRAHNs. In this
scheme, each CR user performs compressed sensing
locally, determines the local spectral estimates, and sends
the spectrum state vectors to one-hop neighbors. By using
the distributed average consensus method, each CR user
iteratively updates its spectrum state vectors with the
weighted sumof the difference values between the CR user
and its neighbors. As a result, the spectrum state vectors
converge to the average statistic at each CR user for PU
detection. Similarly, the spectral estimates can be obtained
cooperatively by the consensus averaging.

In [48], the work in [44] is extended to consider
the spectrum occupied by CR users, called spectral
innovation, in addition to PUs in wideband sensing. The
accuracy of spectrum estimation is improved by utilizing
the spectral orthogonality between PUs and CR users.
Based on the work in [44,48], a distributed consensus
optimization scheme is proposed in [42] for wideband
sensing in CRAHNs. After compressed sensing, each CRuser
finds spectrum estimates by performing the consensus
optimization for global optimality and broadcasts it to
one-hop neighbors. This process is repeated until the
convergence is reached. The average consensus technique
incorporated in the constraints ensures a fast convergence.
In addition, this method is also considered in the presence
of spectral innovation.



60 I.F. Akyildiz et al. / Physical Communication 4 (2011) 40–62
4.7.3. Research challenges
Wideband cooperative sensing has recently gained

much attention in the literature. However, it raises many
open research problems in cooperative sensing. Twomajor
challenges are given as follows.
• Narrowband–wideband tradeoff: Using multi-band and

wideband sensing can reduce the sensing time and
channel switching overhead of narrowband sensing.
However, additional hardware cost or overhead is re-
quired to facilitate simultaneous detection in multi-
ple bands. The tradeoff between narrowband sensing
and wideband sensing needs to be investigated for de-
tection performance, sensing delay, complexity, and
throughput.
• Signal classification in wideband sensing: The sparsity of

the spectrum utilization is the main assumption in the
compressed sensing approach. However, this assump-
tion may not hold if many CR users share the wideband
spectrumwith PUs.Moreover, the assumption of the or-
thogonality of PU and CR user bands in [42] may not
be realistic. Thus, signal classification techniques must
be combined with compressed sensing to distinguish
PUs from CR users and address the coexistence issue in
wideband sensing.

5. Conclusions

Cooperative sensing is an effective technique to im-
prove detection performance by exploring spatial diver-
sity at the expense of cooperation overhead. In this paper,
we dissect the cooperative sensing problem into its fun-
damental elements and investigate in detail how each
element plays an important role in cooperative sensing.
Moreover, we define a myriad of cooperation overheads
that can limit the achievable cooperative gain. We further
identify the research challenges and unresolved issues in
cooperative sensing that may be used as the starting point
for future research.
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