

INTERNET OF μTHINGS, NANOTHINGS & BIO-NANOTHINGS

I. F. AKYILDIZ

Ken Byers Chair Professor in Telecommunications Georgia Institute of Technology School of Electrical and Computer Engineering BWN (Broadband Wireless Networking) Lab Atlanta, GA 30332, USA http://bwn.ece.gatech.edu

INTERNET OF THINGS

Kevin Ashton, "The Internet of Things", Procter & Gamble, 1999.

L. Atzori, A. Iera, G. Morabito,"The Internet of Things: A Survey", Computer Networks (Elsevier) Journal, Oct. 2010.

Interconnection of Things or Objects or Machines,

e.g., sensors, actuators, mobile phones, electronic devices, home appliances, any existing items

and interact with each other via Internet

THINGS CONNECTED: COMMUNICATED BETWEEN PHYSICAL WORLD AND INFORMATION WORLD

ROUGH MARKET SIZE

Current Internet

- 700 Million hosts
- 1.4 Billion users

Internet of Things has the potential for a size in Trillions

5G Systems: Billions of People/Trillions of Things

MAJOR CHARACTERISTICS

Very Large Scale

Heterogeneity

Pervasivity

Computing and communication technologies will be embedded in our environments

IFA'2017

IoT APPLICATIONS

Smart Grid	Smart Health	Smart Home			
Smart Cities	Smart Industries	Smart TV			
Smart Watch	George Smart Car	Smart Kegs			
TUNIS					

APPLICATION OF IoT: SHOPPING

When shopping in the market, the goods will introduce themselves.

When entering the doors, scanners will identify the tags on her clothing.

When paying for the goods, the microchip of the credit card will communicate with checkout reader.

When moving the goods, the reader will tell the staff to put a new one.

IFA'2017

a aband

N C

APPLICATION OF IoT: HEALTHCARE

IFA'2017

APPLICATION OF IoT: HEALTHCARE

- National Health Information Network
- Electronic Patient Record
- Home Care: Monitoring and Control
- Operating Room of the Future
- Progress in Bioinformatics
- Tracking for Healthcare (tracking patients)
- Patient and Staff Identification and Authentication
- Medical Data Collection

IFA'2017

APPLICATION OF IoT: SMART ENVIRONMENT DOMAIN

- * Comfortable Homes and Offices (IoT is a green technology!)
- Smart Industrial Plants
- Smart Entertainment Environments (gym)
- Smart Schools

APPLICATION OF IoT: SMART HOME

IUNIS

13

IFA'2017

APPLICATION OF IoT: SMART HOME

Energy Management

 In-house entertainment Control

TUNIS

15

IFA'2017

4 LAYERS MODEL OF IoT

Integrated Application Smart Logistic **Smart Grid Green Building Smart Transport Env. Monitor** Information Processing **Data Center** Search Engine **Smart Decision** Info. Security **Data Mining** Å Network WWAN **WMAN** Construction ((...)) ((e)) Internet ((w)) **WPAN WLAN** Sensing and Identification IFA'2017 **GPS Smart Device** Sensor Sensor

RECENT IoT PRODUCTS

	72			
	NEST Thermostat	Corventis: Wireless Cardiac Monitor	WEMO Remote	Pet Tracker
	*			 _
		Revolve	ThingWorx	Lings
	Ninja Blocks	Home Automation	Application Platform	Cloud Platform
	Thed Development	Xively Remote	Intel Quark	
	Platform	Access API	Processor	Framework
IFA'2017		TUN	IIS	

IoT PLATFORMS ON THE MARKET

GE Predix
Cisco IoT Cloud
IBM Watson IoT
PTC ThingWorx

IFA'2017

IoT TRENDS TO WATCH IN THE FUTURE

■ IT services (business consulting) → Major Driver

IoT drives demand for DATA ANALYTICS: Data must be managed, integrated and analyzed

IoT drives demand for CLOUD COMPUTING

Interoperability Problems

Security

RESEARCH CHALLENGES

- Scalability
- Handle data generated by 50 billion devices
- Move cloud services to edge of the network (Fog Computing)
- Reduce data to be stored (Processing and Storage)
- Standardization
- Interoperability
- Interfaces to CLOUD servers must be standardized
- Power Consumption Problem (Energy Harvesting)
- SDN/NFV Based IoT

SCALING TO CONNECT THE INTERNET OF THINGS

5G IoT: EXPECTED DESIGN TARGETS

LESSON: DARPA NEWS (2014): 4 DARPA PROJECTS BIGGER THAN THE INTERNET

1. ATOMIC GPS

(C-SCAN → Chip-Scale Atomic Navigation QuASAR → Quantum Assisted Sensing)

2. Terahertz Frequency Electronics; Meta-materials; Devices and Communications

3. A Virus Shield for the Internet of Things

(The High Assurance Cyber Military Systems program, or HACMS)

4. Rapid Threat Assessment

IFA'2017

ENABLING TECHNOLOGIES OF IOT

SCIENTIFIC AMERICA: TOP 10 EMERGING TECHNOLOGIES OF 2016

Internet of Things goes NANO

https://www.scientificamerican.com/report/the-top-10emerging-technologies-of-2016

IFA'2017

CURRENT IOT ENABLING TECHNOLOGIES AND THEIR LIMITATIONS

RFID Tags:

- Small size, do not have a battery, but...
- No processing, data storing or sensing capabilities.

Micro-Sensor-Actuator Networks:

- Some processing and data storage capabilities, but...
- Large Sizes; High Energy Limitations; Limited Sensing Capabilities;
- Operation and Maintenance Cumbersome

CAN WE DO BETTER???

NANO-THINGS

Much smaller

Less power hungry + self-powered

Able to do some processing + data storage

More sensitive (enabling more applications)

New nanosensing capabilities

HOW CAN WE CREATE THESE NANO-THINGS???

IFA'2017

NANOTECHNOLOGY

Enables the control of matter at an atomic and molecular scale:

- At this scale, nanomaterials show new properties not observed at the microscopic level
- Objective: Exploit these properties & develop new devices and applications

IFA'2017

a aband

HING LO

N C

NANOMATERIAL: GRAPHENE

A one-atom-thick planar sheet of bonded carbon atoms in a honeycomb crystal lattice:

35

GRAPHENE INVENTORS

2010 Nobel Prize in Physics

- Andre Geim and Konstantin Novoselov
- Distinguished for "groundbreaking experiments regarding the two-dimensional material graphene"

Laureates of the Nobel Prize in Physics (2010)

NANOMATERIALS:

CARBON NANOTUBES & GRAPHENE NANORIBBONS & FULLERENES

- **Graphene Nanoribbons (GNR):** a thin strip of graphene
- **Carbon Nanotubes (CNT):** rolled graphene
- Bucky Balls: a graphene sphere

GRAPHENE

- First 2D crystal ever known (Only 1 atom thick !!!)
- World's thinnest and lightest material
- World's strongest material
 e.g., harder than diamond, 300 times stronger than steel
- Bendable
- Conducts electricity much better than fiber and copper
- Transparent material
- Very good sensing capabilities

→Enable a plethora of new applications for device technology at the nanoscale and also at larger scales:

- e.g., processors, memories, batteries, antennas,tx, sensors, etc

IFA'2017

TUNIS

DESIGN OF NANO-THINGS

I. F. Akyildiz and J. M. Jornet,

"Electromagnetic Wireless Nanosensor Networks,"

Nano Communication Networks (Elsevier) Journal, March 2010.

NANO-POWER GENERATOR (OTHER NANO-MATERIALS?)

Zinc Oxide nanowires can be used for vibrational energy harvesting systems in nano-devices

High density array of nanowires used in piezoelectric nano-generators

IFA'2017

TUNIS

NANO-PROCESSOR

- 32 nm or 20 nm transistor technology existing already ! (e.g., IBM, Qualcomm, Samsung)...
 - World's smallest transistor (2008) is based on a graphene nanoribbon just 1 atom x 10 atoms (1 nm transistor)
 - Operating frequency close to 1 THz
 - (compare to few GHz in current silicon transistors)

NANO-MEMORY

- Single atom memories: Store a bit in a single atom
 - -Richard Feynman defined them back in 1959!
 - In his example, 5x5x5 atoms were used to store a bit and to avoid inter-atom interference
 Silicon

 - 125 atoms per bit
 - DNA uses 32 atoms per bit
 - Example:
 - Gold nano-memories

TERANETS (FORMERLY GRANET; 2009-2013): graphene based nano scale communication networks in thz band NSF; 2013-2016; 2016-2019

Objectives:

* To prove the feasibility of graphene-enabled EM communication* To establish the theoretical foundations for EM nanonetworks

TERAHERTZ BAND PLASMONIC FRONT-END

J. M. Jornet and I. F. Akyildiz,

"Graphene-based Plasmonic Nano-antennas for THz Band Communication in Nanonetworks," IEEE JSAC, Dec. 2013. Patent, March 2013 applied; March 2017 granted.

TUNIS

I. F. Akyildiz and J. M. Jornet,

"Graphene-based Plasmonic Nano-transceiver for Wireless Communication in the THz Band," Patent, Dec. 2013 applied; July 2016 granted

First fully-integrated THz Band front-end

Most compact transceiver + antenna existing to date!!!

- Prototype currently being developed at SUNY Buffalo

EM Wave

Nano-transceiver

IFA'2017

SPP Wave

45

INTEGRATION OF NANO-COMPONENTS

Research Challenge!!! → **DNA Scaffolding**

IFA'2017

TUNIS

IFA'2017

INTERNET OF NANOTHINGS

I. F. Akyildiz and J. M. Jornet, "The Internet of Nano-Things," IEEE Wireless Communications Magazine, 2010.

APPLICATION: WIRELESS ON-CHIP COMMUNICATION

S. Abadal, E. Alarcon, A. Cabellos-Aparicio, M. C. Lemme, M. Nemirovsky, "Graphene-Enabled Wireless Communication for Massive Multicore Architectures", IEEE Communications Magazine, 2013

Wireless on-chip networks by using planar nano-antennas to create ultra-high-speed links

APPLICATION: CHEMICAL/BIOLOGICAL ATTACK PREVENTION

Nanosensors

APPLICATION: WIRELESS ULTRA HIGH SPEED INDOOR NETWORKS

APPLICATION: WIRELESS HIGH-VOLUME STORAGE TRANSFERS

TUNIS

 Instantaneous transfer of high-volume storage data between consumer devices

Multimedia kiosks

IFA'2017

52

TERANETS (FORMERLY GRANET; 2009-2013): graphene based nano scale communication networks in thz band NSF; 2013-2016; 2016-2019

Objectives:

* To prove the feasibility of graphene-enabled EM communication* To establish the theoretical foundations for EM nanonetworks

TERAHERTZ CHANNEL

J.M. Jornet and I.F. Akyildiz, "Channel Modeling and Capacity Analysis of EM Wireless Nanonetworks in the THz Band", IEEE Trans. on Wireless Communications, Oct. 2011. Shorter version in Proc. of IEEE ICC, Cape Town, South Africa, May 2010.

Developed path loss and noise models for EM communications in the (0.1-10 THz) band by means of radiative transfer theory

Proposed different power allocation schemes and computed the channel capacity as a function of distance and channel composition

WHAT DID WE LEARN?

Terahertz channel has a strong dependence on

- Transmission distance
- Medium molecular composition

Main factor affecting the performance

Presence of water vapor molecules

Incredibly huge BWs for short ranges (< 1m): - 100 Tbps rates are feasible

NEW MODULATION TECHNIQUE & CAPACITY ANALYSIS

J.M. Jornet and I.F. Akyildiz, "Femtosecond-long Pulse-based Modulation for THz Band Communication in Nanonetworks" IEEE Tr. on Communications, May 2014. Shorter form in Proc.of IEEE SECON, June 2011.

A new modulation scheme based on the exchange of femtosecond-long pulses spread in time:

TS-OOK (Time Spread On/Off Keying Mechanism)

TIME SPREAD ON-OFF KEYING

WHAT DID WE LEARN?

Capacity is maximized when "more 0s than 1s" are transmitted:

- By being silent, absorption noise and interference are reduced
- New coding schemes that exploit this result should be developed!

Emulation platform to validate the proposed solutions:

a alband

ULTRA MASSIVE MIMO ENABLED BY PLASMONIC ANTENNA ARRAYS

I. F. Akyildiz and J. M. Jornet, "Realizing Ultra-Massive MIMO (1024 by 1024) Communication in the Terahertz Band (0.06-10 THz)," Nano Communication Networks (Elsevier) Journal, March 2016. Patent applied in March 2016.

Combatting the transmission distance problem:

Very large antenna arrays with thousands of elements (1024) in a very small foot print (a few millimeters)!!!

- Metamaterials for 0.05-1 THz
- Graphene for 1-10 THz (and above)

FURTHER RESEARCH CHALLENGES

Addressing Problem Multihop MAC Protocol Synchronization **Equalization** New routing metrics Reliable transport protocol (end-to-end QoS requirements) Network Association and Service Discovery Security Authentication **Data Integrity** IFA'2017 **TUNIS**

63

STANDARDIZATON

-THz band is still not regulated IEEE 802.15 (WPAN) Terahertz Interest Group (IG-thz) (300 GHz to 3THz) http://www.ieee802.org/15/pub/IGthz.html

- A New IEEE Standardization Group created for 100Gbps in 2014.

Internet of Bio-NanoThings

I.F. AKYILDIZ, M. PIEROBON, S. BALASUBRAMANIAM, Y. KOUCHERYAVY, "THE INTERNET OF BIO-NANOTHINGS",

IEEE COMMUNICATIONS MAGAZINE, MARCH 2015.

IFA'2017

INTERNET OF BIO-NANOTHINGS

TUNIS

Cells are nanoscale-precise biological machines

Eukaryotic Cell

Prokaryotic Cell

They communicate and interact/cooperate

Eukaryotic Cell Tissue

Bacteria Population

IFA'2017

CELLS AS BIOLOGICAL NANOMACHINES

TUNIS

Gap Junctions = Molecular Transmitters

IFA'2017

Nucleus and Ribosomes = Biological Memory and Processor

Mitochondria = Biological Battery

Chemical receptors = Biological Sensors/ Molecular Rx

67

BIOLOGICAL NANOMACHINES: BIOLOGICAL BATTERY

Mitochondria obtain energy by combining:

- Glucose
- Amino Acids
- Fatty Acids
- Oxygen

and synthesizing:

Adenosine TriPhosphate or ATP

IFA'2017

TUNIS

BACTERIA-BASED NANOMACHINES

BIOLOGICAL NANOMACHINES

Can we create man-made biological nanomachines (Bio-NanoThings)?

→ YES!!!

Cells can be "reprogrammed" via DNA manipulation (genetic engineering)

IFA'2017

BIO-NANOTHINGS APPLICATIONS: ADVANCED HEALTH SYSTEMS

IFA'2017

TUNIS

TARGETED DRUG DELIVERY

Y. Chahibi, M. Pierobon, S. O. Song, and I. F. Akyildiz "Molecular Communication Modeling of a Particulate Drug Delivery System" IEEE Tr. on Biomedical Engineering, 2013.

BIO-NANOTHINGS: LONG-TERM APPLICATION

Bacteria-based Sensor Network in the Gastrointestinal Tract

74

NOBEL PRIZE IN CHEMISTRY 2016

Jean-Pierre Sauvage University of Strasbourg France

Sir J. Fraser Stoddart Northwestern University USA

Bernard L. Feringa University of Groningen The Netherlands

"for the design and synthesis of molecular motors"

IFA'2017

TUNIS

MEDIUM RANGE MOLECULAR COMMUNICATION THROUGH BACTERIAL CHEMOTAXIS

M. Gregori and I. F. Akyildiz,

"A New NanoNetwork Architecture using Flagellated Bacteria and Catalytic Nanomotors", IEEE JSAC (Journal of Selected Areas in Communications), May 2010.

- Bacteria are microorganisms composed only by one prokaryotic cell
- Flagellum allows them to convert chemical energy into motion
- 4 and 10 flagella (moved by rotary motors, fuelled by chemical compounds)
- Approximately 2 μm long and 1 μm in diameter.

IFA'2017

TUNIS

MEDIUM RANGE MOLECULAR COMMUNICATION THROUGH BACTERIAL CHEMOTAXIS

NSF MONACO PROJECT

I. F. Akyildiz, F. Fekri, C. R. Forest, B. K. Hammer, and R. Sivakumar, "MONACO: Fundamentals of Molecular Nano-Communication Networks," IEEE Wireless Communications Magazine, October 2012.

This material is based upon work supported by the National Science Foundation under Grant No. 1110947

NSF Funding:

- \$3M in 4 years (2012-2016)
- 5 PIs in wireless communication and networks, biology and microfluidic engineering

Project webpage:

http://www.ece.gatech.edu/research/labs/bwn/monaco/index.html

IFA'2017

MONACO TEAM (2012 AND 2016)

IFA'2017

TUNIS

NOISE MODELS

* M. Pierobon, and I. F. Akyildiz,

"Diffusion-based Noise Analysis for Molecular Communication in Nanonetworks,"

IEEE Tr. on Signal Processing, June 2011.

* M. Pierobon, and I. F. Akyildiz,

"Noise Analysis in Ligand-binding Reception for Molecular Communication in Nanonetworks,"

IEEE Tr. on Signal Processing, Sept. 2011.

INFORMATION CAPACITY

M. Pierobon and I. F. Akyildiz,

"Capacity of a Diffusion-based Molecular Communication System with Channel Memory and Molecular Noise,"

IEEE Tr. on Information Theory, Feb. 2013.

(Shorter version appeared in Proc. of IEEE INFOCOM 2011).

Found analytical closed-form expression of the theoretical maximum achievable rate (capacity) in [bits/sec]

Focus on the Diffusion Process propagation

INFORMATION CAPACITY

Theoretical upper bound of the communication performance of a diffusion-based molecular communication

INTERNET OF BIO-NANOTHINGS: I.F. AKYILDIZ, M. PIEROBON, S. BALASUBRAMANIAM, Y. KOUCHERYAVY, "THE INTERNET OF BIO-NANOTHINGS",

IEEE COMMUNICATIONS MAGAZINE, MARCH 2015

To interconnect the heterogeneous Bio-Nano Thing Networks to the Internet

HETEROGENEOUS BIO-NANOTHINGS NETWORK

TUNIS

Challenge

Translating information between the different Bio-NanoThings networks.

Approach

IFA'2017

Design Artificial cells for translating between different molecule types.

BIO-CYBER INTERFACE:

EM NANOMACHINE GATEWAYS WITH GRAPHENE

- Graphene-based sensors for biological detection of MC signals
- Graphene-based transistors for information processing
- Graphene–based plasmonic nano-antenna

BIO-CYBER INTERFACE: ELECTRONIC TATTOO

Integrated circuit with wireless interface tattooed on the skin

Senses bio-chemical information from cells on the epidermis, sweat glands, or nervous terminations.

Security

FURTHER CHALLENGES

Emergence of new forms of terrorism: Bio-cyber terrorism that utilize IoBNT

– Interacts and hacks the biological environment

- Steal personal health information

- Create new disease to disrupt legitimate Bio-NanoThing networks

FURTHER CHALLENGES

Localization and Tracking

Design of Bio-NanoThings to cooperatively:

Monitor disease locations
(e.g., follow biomarkers from cancer cells)

- Identification of toxic agents within the environment

FURTHER CHALLENGES

Interconnecting IoBNT to IoNT to µIoT

* Interconnection will:

- Escalate "Big Data" to a new level.

 Require new services to semantically map data from IoBNT and IoNT to IoT.

 Require new service discovery required to search deep into the biological environment to collect information.

