
510 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

The Effect of Index Partitioning Schemes on the
Performance of Distributed Query Processing

Jorg Liebeherr, Member, IEEE, Edward R. Omiecinski, and Ian F. Akyildiz, Senior Member, IEEE

Abstract-The benefit of using indexes for processing coqjunc-
tive queries in a database system is well known. The use of
indexes in distributed database systems is equally justified. In a
distributed database environment a relation may be horizontally
partitioned across the nodes of the system and indexes may be
created for the fragment of the relation that resides at each node.
However, as an alternative, one might construct each index on the
entire relation, i.e., global indexes, and then partition each index
between the nodes. An approach is presented for processing such
an index partitioning scheme in response to a coqjunctive range
query. The performance of these schemes is evaluated in terms
of the response time of a query and the utilization of processors,
disk, and communication network while varying the number of
nodes and query mix.

Index rem- Distributed database system, query processing,
indexing scheme, partitioned global index, partial index, coqjunc-
tive queries, simulation, performance evaluation.

I. INTRODUC~ON
ITHIN the past ten years, query processing in dis- W tributed database systems has been a major area of

research [2], [3], [7], [9], [l l] , [13]. Specific interest in
distributed query processing for local area networks has also
been popular [l], [12], [14], [18], [20]. Most of the research
has been oriented to the optimization of multirelation queries,
such as a join of two or more relations [12], [14], [16],
[MI, [19]. However, there are tradeoffs that are involved in
processing single relation queries that have not as yet been
explored. We examine these tradeoffs in the context of a
locally distributed database system.

Intraquery parallelism as well as inter-query parallelism
can provide improvements in response time for individual
transactions [171. For intraquery parallelism, a query optimizer
would produce a query plan that could be executed in parallel
by a number of processors. For interquery parallelism, several
queries would be executed in parallel. In this paper we examine
the tradeoff between intraquery and interquery parallelism for
single relation queries that use secondary indexes.

In this work we consider only one type of query, which is a
single relation conjunctive query. This type of query is one for

which the access plan might use one or more indexes, i.e., if
the selectivity of the attribute(s) is small [8]. A conjunctive
query for a relation R with attributes A I , A2 I - . . ? A N has
the following form: Term1 and Term2 and . . . and TermM
where Termi A i< comparison operator > } valuei, 1 5
j 5 N and valuei E domain(Aj). Range queries and exact
match queries are special cases of conjunctive queries.

Since we are concerned with evaluating different index
partitioning and processing schemes in our distributed database
system, we will limit the access plans for the query to just
those which use the index. In addition we are concerned only
with secondary indexes. The index structure is the well known
B+ tree [8]. We assume that the leaf nodes are linked together
to allow efficient processing of a range query. We assume that
the pages that comprise the index are stored on a secondary
storage device, i.e., a disk, as well as the pages that store
the tuples for the relation. In addition, the pages that store
the indexes are disjoint from the pages that store the data.
Since our intent is to compare different partitioning schemes,
we divorce the query processing from the buffering scheme
in that an access to an index block, other than the root, will
cause a disk access.

There are two basic strategies used for processing con-
junctive queries: the single index method and the intersection
method. For a conjunctive query with M terms, assume that
K of those terms have associated indexes:

1) Single Index Method. For the single index method, one of
the corresponding indexes for the K terms (usually the
one for the attribute with the smallest selectivity) would
be used as the access path to locate the tuples that satisfy
that term. The associated tuples would be read and each
would be examined to see if they satisfy the additional
terms in the query. If they do, then those tuples would
be returned as the query result.

2) Intersection Method. For the intersection method, the
K indexes would be searched to find the addresses of
the tuples that satisfy each of the K terms individ-
ually, call these sets Addressl , . . . , AddressK. Then
the intersection of these sets would be performed, i.e.,
Result = nE, Addressi. Afterwards, the tuples whose
addresses are contained in Result are read. If there

Manuscript received April 18,1990; revised November 5, 1990 and August
8. 1991.

J. Liebeherr was with the Computer Science Division, University of

E. Omiecinski is with the College of Computing, Georgia Institute of

were additional terms in the query that did not have
an associated index, then the tuples in Result would be
examined to see if they satisfy those terms, and only the

California-Berkeley, Berkeley, CA 94720, and he is now with the Computer
Science Department, University of Virginia, Charlottesville, VA 22903.

1 . - -
Technology, Atlanta, GA 30332.

IEEE Log Number 9207785.

qualifying tuples from Result would be returned as the
answer. Otherwise, all the tuples in Result would be
returned as the answer to the query.

I. F. Akyildiz is with the School of Electrical Engineering, Georgia Institute
of Technology, Atlanta, GA 30332.

1041-4347/93$03.00 0 1993 IEEE

I I I I

511 LIEBEHERR ef al.: EFFECT OF INDEX PARTITIONING SCHEMES

SI(* SI(* 81t.
n

Fig. 1. Structure of the distributed database.

The paper is organized as follows. In Section 11, we describe
the use of indexes in a distributed database system. First we
explain the classical partial index scheme. Then, we introduce
a new scheme, called partitioned global index, for storing an
index. In Section 111, we show how a query is processed
under the above mentioned index schemes. We develop a
simulation model of the distributed database system in Section
IV. For each index scheme a separate model is created. In
Section V, we investigate the complexity of each index scheme
analytically. In Section VI, sets of experiments are conducted
where in each set the parameters such as the number of sites,
the transmission capacity of the communication network, and
the degree of complexity of a query are varied. We discuss
the tradeoffs of the classical and the new index schemes. In
Section VII, we discuss the conclusions of the obtained results.

11. STORAGE ORGANIZATION
The distributed database system consists of several sites

interconnected by a communication network as shown in Fig.
1. The sites operate as self-contained computer systems, i.e.,
each site has its own CPU and a disk drive that serves
as secondary storage. The communication network allows
broadcast messages that can be received by all sites. Since
we are concerned only with the comparison of our partitioning
schemes and their associated processing requirements, we limit
our analysis to a single relation database. The single relation
is horizontally partitioned across all sites without replication.
The part of the relation at each site is referred to as a fragment.
We make no assumptions about how the tuples from a relation
may be distributed. For example, a round robin, hashed or
range partitioning approach as discussed in [5], [6] may be
used. Our only assumption is that the number of tuples at
each site is approximately the same. For example, tuples from
the employee relation may be partitioned as follows:
employee tuples where the age < 30 are stored at site 1,
employee tuples where the age 30 and 45 are stored at site 2,
employee tuples where the age > 45 are stored at site 3.

All data items are accessed indirectly using one or more
indexes. A query can initiate execution at any site. If a
secondary index was needed, the typical approach [6], [17]
would be to construct a . separate physical index for each
fragment. Therefore, the fragment and its associated index
are located at the same site. These indexes are referred to
as partial indexes (PI) [17]. Fig. 2 illustrates the concept of
partial indexes.

snel sm 2

Fig. 2. Partial indexes.

L

Fig. 3. Partitioned global index.

As an alternative to the partial index scheme, one could
conceptually think of building an index for the entire relation,
i.e., a global index, and then partitioning the index across
the sites. Along with a given partition of the index, each site
would have a small master index that indicates the partitions
that are stored at each site. Fig. 3 illustrates the concept of a
partitioned global index (PG1). Intuitively, partial indexes look
attractive from the standpoint of intraquery parallelism. When
using the intersection method, the indexes can be searched and
the intersection performed at each site in parallel. However,
all sites must search their respective indexes to answer the
conjunctive query.

Equally intuitively, PGI looks attractive from the standpoint
of inter-query parallelism. That is, if the conjunctive query
involves a limited set of attribute values, only some of the sites
will need to search their index allowing other sites to process
different queries. However, as one can imagine, additional
messages will be required for processing the tuple addresses
found in the partitioned global indexes.

The index structure of PGI requires additional work for
modifications to the data set. Note that in PI only one site
would be responsible for handling the insertion of the tuple
into its fragment as well as inserting the tuple’s address in
that site’s index. In PGZ, the number of sites that are involved
in an update of a tuple is dependent on the number of PGI
indexes. Since the value of the attribute determines the location
of the index entry, in the worst case, all index entries and the
tuple are stored at different sites. Additionally, updates of an
indexed attribute may cause the transfer of an index entry to
another site if the new value of the attribute is outside the
range of index entries stored at the current site.

512 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

Addresses in a distributed database with PGI have the
structure: < site, local address>. Site refers to the name of
a site and local address denotes a logical local address. At a
site, the physical address is obtained by a lookup into a table
that contains the logical and physical address of a tuple.

The use of indexes in a distributed database has not been
fully explored. Two parallel database system prototypes that
use indexes are GAMMA [6] and BUBBA [4]. In GAMMA,
partial indexes are used. In addition, a global index is used,
if the associated data is also stored at the site where the
partitioned index is stored. This is a restricted case of the
partitioned global index scheme that we propose. In BUBBA
[4], global clustered indexes and local clustered indexes are
used, similar to XPRS [17].

In this work, we quantify the tradeoff between a PI and a
PGI scheme when processing conjunctive queries in a database
with infrequent update operations. In a previous study [lo]
we examined the tradeoffs between the two schemes when
considering only range queries that utilize a single index. We
note that each index adheres to the particular scheme under
evaluation, i.e., all indexes are partial indexes or all indexes
are partitioned global indexes.

111. QUERY PROCESSING
In the last section, we described two different schemes

of storing index and data blocks in the distributed database
system, the classical partial index scheme (PI) and the new
partitioned global index scheme (PGI), respectively. Each
indexing scheme implies a different strategy of answering a
query. The query processing strategies for both schemes are
presented below.

A. Query Processing for Partial Indexes

For our purposes, we can think of a query as requesting
tuples for a set of one or more ordered attribute values. In
PI, the index at each site must be searched, when a query
has requested a set of attribute values. However, attribute
values that are stored in an index at a given site have their
corresponding data records also stored at that site. This means
that once a value has been found in an index block, it is assured
that the tuples with that value are stored at the site where the
index entry has been found. After accessing the data blocks,
the tuples are sent to the site that initiated the query.

B. Query Processing for Partitioned Global Indexes

The index for the entire relation (i.e., global index) is
partitioned across the sites. This is similar to the idea of range
partitioning tuples as in GAMMA [5], [6], however in our
case, the index is range partitioned and the data is partitioned
according to some other method, e.g. round-robin or range
partitioned on some other attribute. Each site is assumed to
know the distribution condition of the index for all sites. We
call this the master index. It requires a small amount of storage
since it contains only one entry per site consisting of site
address and attribute value. This scheme was illustrated in Fig.
3. When a query initiates execution at a site the master index
is consulted and messages are sent to only those sites that have

index entries for the desired set of attribute values. Each site
that has index entries for the query receives a subset of the
attribute values, i.e., exactly those attributes that appear in the
index at that particular site. The site is requested to lookup
the index entries for the attributes in the subset. Note that
index entries and corresponding data entries are not necessarily
stored at the same site. Therefore, once the index entry for an
attribute has been found, possibly all sites have to be accessed
to obtain the tuples with that value. A site that searches its
index for a subset of attribute values obtains a list of addresses.
Note that PGI guarantees that each index search returns at least
one address (as long as the desired attribute value is present
in the database). Once the lists of addresses are obtained they
are sent to the site that initiated the query. After all addresses
have arrived at the query-initiating site, messages are sent to
those sites that store the tuples corresponding to the list of
addresses. On reception of a message with addresses, a site
accesses its data blocks, obtains the tuples and delivers them
to the site that initiated the query,'.

In the following we will give an example of processing
a conjunctive query. We will explain how a query for the
described database system is executed in PI and PGI. We will
consider both strategies for processing conjunctive queries,
i.e., the single index method and the intersection method.

C. Example
A distributed database system may consist of 5 sites

(S I T E 1 , S I T E 2 , . . . , S I T E S) . The relation R E L contains 50
tuples (R E L = T U P 1 , T U P 2 , . . . , TUP50) each tuple having
a set of n attributes (A T T R l , ATTR2, . . + , ATTR,). Let the
database have an index for ATTRl . For this example we
assume that the values for ATTRl are unique, i.e., there
are 50 different values for ATTRl with a range given by
(1,2, . . . ,50) and the value of ATTRl of a tuple is given by
its index (ATTR1 (TUP,.] = j , for j = 1,2,. . . ,50). For
simplicity we assume that the values of the other attributes
take values in the same range, i.e., ATTR, [TUP,.] E
{1,2,...,50}, i = 2,3,...,n,j = 1,2,...,50), without
assuming uniqueness of the values. Let SITE1 initiate the
following query:

SELECT *
FROM RE L
WHERE ATTRl 2 24 AND ATTRl 5 38
A N D ATTR2 2 5 ANDATTR2 5 1 3
AND ATTR3 2 42 AND ATTR3 5 46.

When investigating the intersection method we assume that
the database has indexes for all attributes ATTRl , ATTR2
and ATTR3. Otherwise we assume an index only on ATTRl
and apply the single index method.

1) Partial Indexes (PI)
Single Index Method

' As an alternative query processing strategy for PGI consider the following.
After the index search, a site could determine to which sites the addresses refer
and immediately send requests to these sites (without sending the addressing
back to the site at which the query originated). However, this strategy showed
worse performance than the strategy discussed above due to a large overhead
for communication.

LIEBEHERR et al.: EFFECT OF INDEX PARTITIONING SCHEMES 513

SITE1 sends a broadcast message that contains the
list of attribute values 24,25, . . . ,38 together with the
range conditions for ATTR:, and ATTR3 to all sites.
Since SITE1 itself does not know whether it has the
index entries to some of the requested values, it starts
to search its own index. All other sites start to search
their index once the broadcast message is received from
the communication network. When a site has scanned
its index it holds a set of addresses of data items that
match the attribute values. According to the specification
of PI, these data items are stored at the same sites where
the index entry was found. If all data items at one site
are accessed the tuples are examined if they satisfy
the given conditions for ATTRz and ATTR3, i.e.,
ATTR2 = 5 , 6 , . ' . , 1 3 and ATTR3 = 42,43, . . . ,46.
The remote sites (from the point of view of S I T E l ,
namely, SITE2, SITE3, SITE4, S I T E S) send those
data items that satisfy the conditions to SITE1. SITE1
waits until all data arrive and processes the data items.
Intersection Method
As in the single index method S I T E l , the initiator of the
query, broadcasts a message, this time containing three
lists of attribute values (24,25,. . . ,38), (6 ,7 , . . . , 13),
(42,43, . . . ,46). Each site then searches the index en-
tries for the different indexes and obtains three lists of
addresses. An intersection is done with the lists resulting
in a single list of addresses for tuples that match the
selection conditions of the query. The intersected list
is used to access the data blocks. Once the tuples are
retrieved they are sent back to S I T E l .

Single Index Method
Here we assume that the index at SITE1 contains
entries for attribute values 1,2, .. . , l o , the index at
SITE2 contains entries for 11,12,. . . ,20, etc. Ana-
lyzing the same query as before, SITE1 sends only
messages to SITE3 and S I T E , requesting to lookup
values 24,25, . . . , 29,30 for attribute ATTRl at SITE3
and values 31 ,32 , . . . , 37,38 at SITE4. Only these
sites start to search their index and obtain the ad-
dresses (ADR24, ADR25,. . . , ADRJo) at SITE3 and
(ADR31, ADR32, . . , ADR38) at SITE4, respectively.
We denote with ADR, the address of the tuple with
value ATTR1[TUP,]. Both SITE3 and SITE4 obtain
the addresses and send them back to S I T E l . If SITE1
has received both lists (ADR24, ADR25,. . . , ADR30)
from S I T E 3 and (ADR31, ADR32,. ' . ,ADR38) from
SITE4 it partitions the list of addresses according to
the first component of each address, which is the site
identifier. It then sends requests for data to sites that
are referred to in the addresses. The range conditions
for ATTR2 and ATTR3 are also sent to those sites.
The sites, which receive the data request, access the data
blocks, filter those tuples that do not meet the conditions
for ATTR2 and ATTR3, and send the tuples back to

Intersection Method
Here, all lists of addresses are sent back to the querying

2) Partitioned Global Indexes (PGI)

S I T E l .

t I I I II ' I

t - - - - - 3- - - - J- - - - - t
Fig. 4. Model of the distributed database system.

site. At this time, the intersection of addresses can be
done. The intersection yields the addresses of those
tuples that satisfy all conditions from the query. The
obtained address list is then partitioned according to the
sites that have data items and the sublists are sent to the
remote sites. After this step, the query answering strategy
proceeds as described for the single index method.

In the following section we develop a simulation model
that implements the distributed database systems as described
above. Two models are described, featuring either a PI or a
PGI scheme.

IV. SIMULATION MODEL

The simulation model has been developed using the RESQ2
software package [15]. In the following we describe the
parameters that characterize the simulation model. We did not
include components of a database system in our model that
are not influenced by the selection of a particular indexing
scheme. Concurrency control, recovery mechanisms, buffer
replacement strategies and logging were found not to be
affected, if the strategy for handling conjunctive queries is
changed.

A. Distributed Database System

A global view of the implementation of the distributed
database system is given in Fig. 4. The simulation model
consists of two types of subsystems, a site and the network.
The number of sites is denoted by the parameter SitesQty.
Each site contains an independent working CPU and a disk.
The CPU in the model processes four different classes of
requests. It generates a list of attribute values (c p u q e r y) ,
it processes lists of attribute values before the index blocks
are accessed (cpu-ref), it processes lists of addresses to obtain
data items (cpuadr) and it processes the incoming data before
returning it to the user (cpudata). We assume that each request
to the CPU takes an exponentially distributed amount of time
with mean value Scpu. Considering a processor speed of 4
MIPS, we set Scpu = 5. Incoming requests are served in
a First-Come First-Served manner. However, processing of
attribute or address lists may need more than one access to
the disk. In this case, the list is re-queued at the CPU after
the disk access to process the remaining part of the list. We
assume that one disk access is required for each data item.
For index retrieval, one disk access is assumed to yield up to

514 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5 , NO. 3, JUNE 1993

IndexPerBlock addresses at once. The size of a data record
is given by 128 Bytes , addresses (and attribute values) are
4 Bytes long. Disk accesses necessary to obtain addresses
from the index blocks (diskyef) and data records from the
data blocks (diskadr) need an exponentially distributed time
period with mean value S D I S K . The time that a transaction
waits before a new query is issued (thinkdime) is exponentially
distributed with mean value St&&. The flow of control is
modeled by messages that contain the information needed
for processing and routing in the distributed system, such as:
originating site, destination site, message type and attributes,
addresses, or tuples.

As mentioned before, we assume that the database consists
of only one relation since we are only interested in single
relation queries. Tuples are uniformly distributed over all sites.
The number of distinct attribute values in the index, denoted
by NumAttr, is assumed to be 1% of the total number of tuples
in the relation. Therefore, given NumAttr, the total number of
tuples NumberTuples is obtained by

NumberTuples = NumAttr . 100. (1)

A query requests a uniformly distributed list of attributes with
maximum length value MaxAttr. The number of addresses
that are found for one index entry is denoted by TupPerAttr.
In the simulation model a uniformly distributed number of
addresses with maximum MaxTupPerAttr is stored with an
index entry. Attribute values are uniformly distributed over all
sites. For our purposes, the attribute values are integers with
range [l : NumAttr] . The range of attribute values having
the index entries stored at a site SITEi is computed from

NumAttr NumAttr
SitesQty '1] + l : i . r [(i - ' SitesQty

for i = 1 , 2 , . . . , SitesQty. (2)

If NumAttr is not an integral multiple of SitesQty, then
SITEsztesQty may have fewer index entries. The range of
attribute values requested for a given attribute is computed
with two random variables Xlow and Xsize. Xlow is uniform
[l : NumAttr] distributed and indicates the lowest attribute
value. Xsize gives the number of attributes requested and
follows also a uniform [1 : MazAt tr] distribution. Therefore,
the range of a query with a single attribute is given by

[Xlow : (Xlow + Xsize - 1) mod NumAttr] . (3)

For conjunctive queries, the above computations are performed
separately for each attribute appearing in the query. The
number of attributes occurring in a query is given by the
parameter Nolndex.

B. The Communication Network

The network has a bandwidth of 10 Mbit/s as in Ethernet. A
data packet is assumed to have a maximum size of 1 kByte.
The setup time for a packet, i.e., the time to packetize data
and perform network access functions, is assumed to be
exponentially distributed with mean Snw-setup. A message
may need to be split into several data packets. The number of
tuples (attribute values, addresses) that can be transmitted in

a single packet is denoted by TupPerPacket (AdrPerPacket).
The data record size is assumed to be 128 Byte, yielding
a value of TupPerPacket of 8. Since attribute values and
addresses are assumed to have a length 4 Byte, AdrPerPacket
is set to 256. Note that the last packet corresponding to a
particular message may not be completely filled. The overall
transmission time of a packet with attribute values or addresses
(nw..f, nwlzdrbk, nwadr) and a data packet (nwdata) are
assumed to be exponentially distributed with mean values

head information of a packet is assumed to be constant and
therefore included in the setup time of the packet. The total
transmission delay of a packet consists of a fixed part, the setup
time, and a variable part that accounts for the transmission
delay. Naturally, the transmission delay is dependent on the
amount of data transmitted in a packet. With the given network
bandwidth of 10 Mbit/s the transmission delay for a data record
is given by 0.1 ms, for a single attribute value (or address)
0.003 ms. The total time to transmit a packet containing
attribute values (or addresses) and data is then calculated by

snw-ref , Snw-adr, Snw-adrbk or Snw-data, respectiveb. Over-

Snw-ref = Snw-adrbk = Snw-adr
- - Snw-setup + max(AdrPerPacket,

remaining addresses) .0.003 ms

remaining data records) . 0.1 ms.
Snw-data = Snw-setup + max(TupPerPacket,

(4)

PI
The network model for query processing with PI
transmits messages containing a list of attribute values
(nwyej) and messages containing a list of tuples
(nwdata), as shown in Fig. 5.' Broadcasting of messages
is modeled by generating multiple copies of a message
(at node nw-fork). Note that messages are, if necessary,
split into several packets. Splitting messages into several
packets is done under exclusive possession of the
network channel. For that reason mutual exclusion is
guaranteed by nodes P (m u t e z) and V (m u t e z) .
PGI
Fig. 6 shows the simulation model of the network for
PGI. For PGI we send lists of addresses over the
network. We distinguish two different types of messages
that contain lists of addresses, i.e., addresses sent back to
the site that started the query (nwadrbk) and addresses
that are sent to retrieve data (nwadr). The four types of
messages are stored in separate queues contending for
the network server that simulates the propagation delay
of a message.

C. The Site

Although the major components of the model are similar for
both indexing schemes the different ways a query is handled
lead to a conceptually different flow control. Therefore, we dis-

ZThe symbols used to denote elements of the model are explained in the
Appendix.

LIEBEHERR et al.: EFFECT OF INDEX PARTITIONING SCHEMES 515

I lmm

nw.ro1.

nw.adrM

nw ad!

nw.data.

Fig. 5 . Network model for PI.

I e
L -~

J

Fig. 6. Network model for PGI.

I ref-out

adrbk-out

adr-out

data-out

cuss the models separately for PI and PGI. The description of
the model is simplified compared to the actual implementation.

The model of a site with PI indexes is given in Fig.
7. The major components can be identified in Fig. 7
as dark shaded areas representing the CPU and the
disk. The CPU consists of four waiting queues and one
server. The disk has two queues, one for current index
block accesses (diskrefi, one for data block accesses
(diskadr). Processing of a query is implemented in the
site model as follows. A query starts off from node think
(top of Fig. 7) where a transaction issues a query. The
query enters queue cpuquery and eventually enters the
server of the CPU. Here a list of attribute values for
the range query is determined. At node forkl, the list is
replicated, one copy going to the local cpuyef queue, the
other leaving the site to the network submodel. A node
receives lists of attribute values locally and from remote
sites. If multiple indexes are used, each list is partitioned
into sublists, each referring to a list of attribute values
for a single index. For each index used, one separate
list of attribute values is produced (at forkind). One disk
access is required for IndexPerBlock attributes. This is
represented by a visit of queues cpuref and diskref.
According to the description of PI, all addresses are
forwarded to cpuadr, and data block access starts. For
queries that use multiple indexes the intersection of the
obtained address list is done prior to accessing the data
blocks (at joinind). Each data item requires a separate
data block access, each time consuming CPU and disk
time. Once all data items are accessed, they are sent to
the site that started the query. Local data is sent directly

1) PI

Fig. 7. Site Model for PI.

to node joinl where messages that left node fork in an
earlier phase of the process wait on each other before any
processing can proceed. Data items from remote sites
wait on each other at join2. Remote and local data items
are collected at joinl. The complete set of data items is
then queued at cpudatu and finally, transferred back to
think.
PGI
The model of a site implementing a PGI scheme is
given in Fig. 8. We will limit our discussion of the PGI
model to differences to the model with a PI scheme.
Node forkind generates a separate list of attribute values
for each attribute occurring in the conjunctive query.
Since the location of index blocks to attribute values
is known, the list of attribute values is now partitioned
into sublists, one sublist for each site that has an index
block to at least one attribute value in the list. For each
sublist a separate message is generated at node forkl.
Note that the number of created messages is dependent
on the values of the random variables XI,, and Xsize.
Sublists referring to remote sites are transmitted over the
network. A sublist referring to the local site is directly
forwarded to queue cpuref.

The process of retrieving addresses from an attribute
value is exactly as described for PI. Different from
PI, the addresses are sent back to the site that started
the query. There, the lists of addresses to a query
wait on each other at nodes joinl and joinind. If all
corresponding lists have arrived, the complete list of
addresses to data items found for a particular index of
one query is available. The site now partitions the list
according to the sites that are referred to in the list (at
fork2). Each created sublist now proceeds to the site that
has the data items corresponding to its list of addresses.
Data access is as described for PI. Having retrieved all
data the list of data items is sent to the querying site.
Eventually, all data items arrive at join2 and proceed to
cpudata.

516 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

TABLE I

Parameter Descnntion Distribution
SifesQty Number of sites -
NumAttr Total number of attribute values in database -
XSiX unzform(1 : MasAttr]
X I O W Lowest attribute value of a query uniform(1 : MazAttr]

TupPerAftr

Number of attribute values for a query

IndexPerBlock Maximum number of index entries per disk block -

TupPerF'ucket Maximum number of tuples fitting in a data packet
Number of tuples found for one attribute value uniform(1 : MasTupPerAttr]

-

. - >

f

I
U)
think

Fig. 8. Site Model for PGI.

v. ANALYSIS OF I/o AND COMMUNICATION OVERHEAD

The description of the index access schemes and their
respective query processing strategies in the previous sections
indicate a tradeoff between disk processing overhead for PI
and communication overhead for PGI. In this section we will
quantify the overhead of the presented schemes. The notation
of the parameters used in this section and their distribution is
summarized in Table I.

To simplify the analysis we substitute the uniformly dis-
tributed parameters Xsize and TupPerAffr by constants Xisize
and TupPerAttr':

Xtsize const
TupPerAttr' = const.

Furthermore, we assume that address lists always fit into a
single packet.

A. Disk Processing Overhead
The main advantage of the new PGI over PI is the selected

search of index entries. PI has to perform index accesses for
all attribute values generated by a query at each site of the
distributed system. If the number of sites is large compared to

¶It* I ¶11* 2 111*(1-1) Ilt.1 ¶It. 111. NI*
lI.11 ISlteLPty-ll I l l e w l y

Fig. 9. Distribution of index entries (partitioned global index).

the number of attribute values, then most index block accesses
are not necessary. Denoting the number of index accesses by
a p ~ and CXPGI for the number of required index block accesses
for a range query in PI and PGI, respectively, we obtain

1 . SitesQty (5)
X'size

apl = ' IndexPerBlock

1 . (6)
A ' size ' N m A t t r l S i t e s Q t y

The second term of the sum in (6) accounts for the access
of index blocks that are not completely filled with index
entries. Note that this term does not exceed SitesQty. The
equations consider only accesses to the leaf nodes of the B+
tree where the index entries are kept. Since the leaf nodes are
assumed to be linked together in order to process a range query
efficiently (see section 1) the number of neglected accesses to
inner nodes of the B+ tree is small. Fig. 9 illustrates the
derivation of (6). Each site except the last site (szteS;tesQty)
keeps [{NumAttr /S i tesQty}1 index blocks. Thus, the last
index block of each site may not be filled completely. Note
that the number of index blocks that have to be accessed is
dependent on the value of Xlow, i.e., the starting point of
the range of desired attributes. The number of disk accesses
required to retrieve the data tuples is the same for either
indexing scheme.

B. Communication Overhead

Communication between the sites takes place at different
stages of the processing of a query. To separate the commu-
nication demand of each stage, we distinguish the following
phases during which communication takes place:
Phase I: Transfer of list of attribute values to sites for index

retrieval.

I. I I

LIEBEHERR et al.: EFFECT OF INDEX PARmIONING SCHEMES 517

Phase 2: Transfer of address lists back to querying site.
Phase 3: Transfer of address lists to sites that hold the data

items.
Phase 4: Transfer of data items to querying site.
We now discuss the communication demand of each indexing
scheme during the various phases of processing a query.

PI
During Phase I only one message is transmitted, since
we assume broadcasting capabilities of the communica-
tion network. Phase 2 does not apply to a PI scheme.
No communication is required during Phase 3, since the
index and data tuples are always stored at the same site.
During Phase 4 all data items are sent to the site that
started the query. The total number of tuples for a query
is given by

Xrsize . TupPerAttr '

Assuming that data items are distributed evenly over
the sites, the number of sites that have index and data
entries for a query is given by

min{ SitesQty, Xiize}.

The maximum number of tuples fitting into one data
packet is given by TupPerPacket. Additionally, the last
packet transmitted by each site may not be filled com-
pletely. Hence, the number of data packets sent during
Phase 4, denoted by &!, is computed by

(4) -r Xiize . TupPerAttr ' 1 - TupPerPacket min{SitesQty, Xiize}
. min{S'itesQty, Xtize} + Fac t (7)

where Fac t normalizes the number of packets since no
site sends packets to itself. Fac t is obtained by

SitesQty - 1
Fac t =

SitesQty '

PGI
During Phase I, a packet with attribute values has to be
transmitted only to those sites holding index entries for
the attribute values. Let @$AI denote the mean number
of ackets to be transmitted during Phase I. Note that

value is determined by
PPGI (17 is dependent on the value of X1, (see Fig. 9). Its

,X:,,, . SitesQty
NumAtt r

1 . F a c t 5 &AI

The number of packets transmitted during Phase 2 is
given by the number of sites that received the list with
attribute values during Phase I:

In Phase 3, each site with index entries sends a packet
with an address list to those sites that are referenced
in the addresses. The number of sites that receive an

NuntAttr 4Ooo
X : i r e 60
TupPerAttr' 5
IndaPerBlock 32
TupPerPacket 8

address list is limited by the number of remote sites. We
obtain:

(3) PPGI
= min{SitesQty, total number of addresses found}

= min{SitesQty, X:ize ' TupPerAttr '} Fact .
. Fac t

(11)

Each site that receives an address list during Phase 3
finds

(12)
Xiize . TupPerAttr ' . Fact

(3) PPGI
tuples. The number of packets in Phase 4 is therefore
calculated as

(4) - XLize . TupPerAttr ' . Fact
P P G I - r 1 .P%I (13) &AI. TupPerPacket

The equations derived in this section are simplified since
they do not account for the distribution of parameters Xsize and
TupPerAttr. Additionally, the uniform distribution of the tuples
over the sites was simplified by just distributing the tuples
evenly over all sites. However, the expressions provide some
insight into the degree of complexity of both disk processing
and communication overhead. We now present an example
that applies the above results.

Example: Let the parameters of a distributed database sys-
tem be given as in Table 11.

The value of SitesQty is varied from 10 to 100. Table I11
shows the overhead of disk processing. The total number of
data packets required for one query is shown in Fig. 10. Note
that PGI has a significant communication overhead compared
to PI.

VI. EXPERIMENTS
In this section we discuss the experiments conducted with

the simulation model that was developed according to the
specification in Section 111. In each experiment we varied a
parameter of the model and compared the performance for
the different index schemes and query processing strategies.
The following parameters are varied in different sets of ex-
periments:

I) Number of sites (SifesQty).
11) Number of indexes in a query (NoIndex).
111) Transmission capacity of the communication network

IV) Number of disks per site.
(Snw-se tup , s n w - r e f 3 Snw-adrbk, Snw-adr , S n w d a t a) .

518 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

TABLE 111
DISK PROCESSING OVERHEAD

SitesQty 10 20 30 40 50 60 70 80 90 100
Q P I 20 40 60 80 100 120 140 160 180 200

a0 '

f a 20 30 40 SO 60 70 60 SO 100

SIt.sQty

Fig. 10. Total communication overhead

The basic parameters for the simulation model are specified
in Table IV. These parameters remain unchanged throughout
all experiments, if they do not denote the parameter that
is varied for a particular experiment. We assume that the
distributed database is homogeneous, i.e., the parameters of
the components for all sites are the same.

Note that the number of tuples in the database is dependent
on the number of sites (SitesQty). Thus, if we add new sites
to the distributed system, we simultaneously increase the size
of the global database. By this, we avoid obtaining a lightly
loaded system when sites are added to the distributed system.
We present the following performance measures:

Mean Response Time, which is the average time a mes-
sage carrying the information for a particular query needs
from leaving node think to entering it again. The mean
response time is also referred in the literature as cycle
time, turnaround time, residence time, sojourn time, etc.
Utilization, which is the fraction of time that a particular
device is busy.

In the following sections we describe our simulation results
and observations. The run time of the simulation was chosen
such that the 95% confidence interval are less than 1% of the
mean values for utilization and less than 5% for the mean
response time. We will use the following abbreviations for the
different query processing strategies:

PI-SI : Partial index with single index method.
PI-IM : Partial index with intersection method.
PGI-SI: Partitioned global index with single index method.
PGI-IM Partitioned global index with intersection method.

TABLE IV
BASIC PARAMETERS

SitesQv

Nolndex
Noeuery

S t h z n k

SCPV

S D I S K
Snw-setup

s n w - r e f > S n w - a d r b k . S n w - a d r

S n w - d a t a

N u d t t r
M d t t r
MaxTupPerA ttr
TupPerPacket
AdrPerPacket

16
3 per site

3
3 s

5 ms
30 ms

5 ms
see (4)
see (4)

25 .SitesQty
20 per query

10 per index entry
8

128

A. Experiment I

In this experiment we study the performance of the query
processing strategies if the number of sites SitesQty is varied
between 2-16. The mean response time of a query for the
different strategies is depicted in Fig. 11. PGI shows superior
performance compared to PI for both the single index method
and the intersection method. Note the performance difference
between the two indexing schemes if the single index method
is used. Fig. 12-14 depict the utilization of the resources, i.e,
CPU, communication network and disk. As can be seen in
Fig. 12, the CPU is not a critical resource of the system. CPU
utilization is low for all strategies. In Fig. 13 we see that
the utilization of the communication network increases faster
with the number of sites for PGI than for PI. Note that the
network utilization for PGI-IM reaches saturation at SitesQty
= 12. Fig. 14 shows a high utilization of the disk for all query
processing strategies. The decrease of disk and CPU utilization
for PGI-IM at SitesQty = 16 is explained by the fact that the
system's bottleneck has migrated from the disk of each site to
the communication network.

B. Experiment II
In this experiment we investigate the sensitivity of query

processing to the variation of the complexity of a query.3
We achieve this by varying the parameter Nolndex between
1 and 5, with NoIndex = I being a nonconjunctive query.
Recall that the single index method (SI) uses only one index
for data retrieval. The mean response time for all query
processing strategies is given in Fig. 15. PI-SI shows very
poor performance for higher values of Nolndex. PGI-IM

3The simulations for Experiment II were run with parameter NumQuery - - .a.

.I I

LIEBEHERR et aL: EFFECr OF INDEX PARTITIONING SCHEMES 519

Y

8 2 0
h _r

o ! . , . , . , . ,
0 4 8 12 18

S l t o s Q t y

Fig. 11. Mean response time.

- PGI-SI - PGI-IM "'"1 \
- I - , . , .

0 8 12 16

Slt..Qty

Fig. 12. CPU utilization.

1 .o
-c PIS1

0.8 -

0.6 -

0.4 -

0 2 -

0.0 T

e PI-IM

--oC PGlSl - PGI-IM

0 4 8 12 16

Slt..Qty

Fig. 13. Network utilization.

appears to be the best strategy for complex conjunctive queries.
The disadvantage in PI-IM of accessing the index blocks
for all attribute values at each site becomes obvious when
we investigate the composition of the disk's utilization. The

0.9 -
- n -

0.8 -
C - -

0.7- - - -
5

0.6 - --t- PI-IM \ - PGlSl - PGI-IM
\

0.5 ! . , . , . , . ,
0 4 8 12 16

SltorOty

Fig. 14. Disk utilization.

o ! . , . 1 . , . , . , .
0 1 2 3 4 5

Nolndox

Fig. 15. Mean response time.

workload of the disk consists of index accesses to retrieve
index blocks and data access for retrieval of data blocks. Figs.
16 and 17 decompose the utilization of the disk into index and
data accesses. We see that as the number of indexes increases,
the disk for PI-IM spends most of the time accessing index
blocks. For Nolndex = 5, although the disk is busy almost
all the time, it uses only about 1/3 of its activation for data
retrieval. Here, the disadvantage of doing index searches at
each site, as required for PI, becomes obvious. On the contrary,
Fig. 17 reveals that although the total utilization of the disk
decreases with increasing values of Nolndex, due to congestion
of the network, the absolute amount of time spent for data
retrieval in PGI-IM is more than in PI-IM.

C. Experiment I11

In the previous experiments we saw that the performance
differences of query processing of PGI and PI are dependent
on the transmission speed of the communication network and
the speed of the disk. Since improvements in communication
technology will provide faster networks in the near future (up
to 150 Mbith with optical fiber technology), it is of high inter-
est to study our query processing schemes for networks with

520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5, NO. 3, JUNE 1993

1 .o

0.8
c

0.6 - -
:E

0.4
::

?a DamAsWrs U 1n-x-s

0 2

0.0
1 2 3 4 5

Nolndex

Fig. 16. Disk utilization (Pf, intersection method).

1 2 3 4 5
Nolnder

Fig. 17. Disk utilization (PCI, intersection method).

a higher transmission capacity. In this series of experiments,
we increase the transmission speed and the setup time of the
network gradually by increasing the parameter nwspeed. The
transmission of a packet is then computed from (4) by

S'i = nw-speed . S,.
i E {nul-ref, nw-adrbk, nm-adr, nu-data}. (14)

The results for the mean response time of a query are shown
in Fig. 18. Fig. 19 depicts the decrease of network utilization
for increased transmission capacity of the network. In Fig. 18
we see that only PGI-IM is able to take advantage of a faster
communication network. For all other strategies, we observe
that the mean response time is not affected by increasing the
transmission capacity of the network. The performance of the
system is then limited by the disk, and increasing the network
speed does not improve the response time of a query.

D. Experiment IV

In this section we investigate the performance of the PI-IM
if disk drives are added to each site. We present results for 1,
2, 3 and 5 disk drives. As in Experiment III the parameter that
is varied in this experiment is nwspeed. Thus, we are able to
answer the question if and how much an index scheme with
the PI-IM-strategy can benefit from a faster communication
network if the I/O-capabilities are improved. Fig. 20 plots
the results for the mean response time. For comparison, we
included the results from PGI-IM in Experiment III (dashed
line). We see that a site with multiple disks benefits from
an upgraded communication network only to a certain extent.
Fig. 20 shows that for a network with nw-speed > 2 PGI-IM
provides a better mean response time than PI-IM, even if the
latter system has 2 disks available at each site.

I PIS1

PI-IM - Wlsl

POI-IM

0 2 4 6 8 10 12

nw-rpood

Fig. 18. Mean response time.

-L PIS1

PI-IM

.-.r PGW - WClY

0 2 4 6 8 10 1 2

nw-speed

Fig. 19. Network utilization.

14 7 I

c

1 ? L.-..--.-"'C-"-.-"-----------r . , , ~ , , , 1 --C Pi-IM(4dWrr)

PGI-IM (1 dish)

9 0 -t PI-IM (5*)
.... *

0
0 2 4 6 8 1 0 1 2

nr-apnd

Fig. 20. Mean response time.

VII. CONCLUSION

We introduced a new indexing scheme called partitioned
global indexes (PGI) for a locally distributed database system.
The new scheme builds a global index for the entire relation
and partitions the index across the sites. We also presented a
strategy for processing such an index. In order to evaluate the

I I I I

LIEBEHERR et a[,: EFFECT OF INDEX PARTITIONING SCHEMES 52 1

Symbol --
delay server -6.1
mutual exclusion (stan)

mutual exclusion (end)

fork node (generates m u l w
copies of a p b)

I I join node (merges pbs)

I I intertace node between subsystems

I I

Fig. 21.

performance of the new scheme, we developed a simulation
model. The simulation results were compared to the classical
scheme, called partial indexes (PI), in which corresponding in-
dex and data entries are stored at the same site. We investigated
analytically the advantages and disadvantages of the indexing
schemes when processing conjunctive queries. Analysis and
simulation experiments showed the tradeoffs between the new
and the classical scheme.

We demonstrated that PGI provides significant performance
advantages for query processing in a distributed environment.
Even if only one index is used for processing conjunctive
queries (single index method), the more efficient index re-
trieval technique makes PGI superior to PI by reducing the
workload on the disk. This allows the disk to spend more time
for data access. We showed that the performance difference
between PI and PGI increases with the complexity of a query.
However, it showed that the performance of PGZ that applies
the intersection method is limited by an increased overhead
for communication. If a communication network with more
transmission capabilities is used, the processing time of a
query can be reduced significantly under PGI-IM. Since new
communication technologies with a high bandwidth (> 50
Mbit/s) were introduced in the late 1980’s and will find their
way into the market in the 1990’s the superiority of using high
speed networks makes PGI attractive for future use.

We should reiterate that our work assumes a uniform
distribution of data values to sites and that updates have not
been included. To increase the applicability of our work, these
assumptions should be relaxed in any further study.

APPENDIX
GRAPHICAL SYMBOLS

Fig. 21 shows the graphical symbols that are used to
describe the simulation models in Section IV.

REFERENCES

[l] P: Agrawal, D. Bitton, K. Guh, C. Liu, and C. Yu, “A case study for
distributed query processing,” Proc. Int. Symp. Databases in Parallel &
Distributed Syst., 1988, pp. 124-130.

(21 P. Bernstein, N. Goodman, E. Wong, C. Reeve, and J. Rothnie, “Query
processing in a system for distributed databases SDD-1,” ACM TODS,
vol. 6, no. 4, pp. 602425, 1981.

[3] S. Ceri and G. Pelagatti, Distributed Databases: Principles and Systems.
New York: McGraw Hill, 1984.

[4] G. Copeland and J. Keller, “A comparison of high-availability media
recovery techniques,” Proc. ACM SIGMOD, 1989, 89-109.

[SI D. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar, and M. Mura-
likrishna, “Gamma-A high performance dataflow database machine,”
Proc. VLDB Conf, 1986, pp. 228-237.

[6] D. DeWitt, S. Ghandeharizadeh, and D. Schneider, “A performance
analysis of the gamma database machine,” Proc. ACM SIGMOD Conf,
1988, pp. 350-360.

[7] R. Epstein, M. Stonebraker, and E. Wong, “Distributed query processing
in relational database systems,” Proc. ACM SIGMOD Conf., 1978, pp.
169-1 80.

[S) G. Gardarin and P. Valduriez, Relational Databases and Knowledge
Bases.

[9] S. Lafortune and E. Wong, “A state transition model for distributed
query processing,”ACM TODS, vol. 11, no. 3, pp. 294-322, 1986.

[IO] J. Liebeherr, I. F. Akyildiz, and E. Omiecinski, “Performance compar-
ison of index partitioning schemes for distributed query processing,”
24th Hawaii In/. CO$ Syst. Sci., Koloa, HI, Jan. 1991, pp. 317-323.

[111 G. Lohman, C. Mohan, L. Haas, B. Lindsay, P. Selinger, P. Wilms, and
D. Daniels, “Query processing in R*,” Query Processing in Database
Systems, W. Kim, D. Batory, and D. Reiner, Eds. New York Springer
Verlag, 1985, pp. 3 1 4 7 .

[12] H. Lu and M. Carey, “Some experimental results on distributed join
algorithms in a local network,” Proc. VLDB Conf., 1985, pp. 292-304.

[13] L. Mackert and G. Lohman, “R’ Optimizer validation and perfor-
mance evaluation for distributed queries,” Proc. VLDB Conf, 1986, pp.

Reading, MA: Addison Wesley, 1989.

149-159.
[I41 W. Perrizo, J. Lin, and W. Hoffman, “Algorithms for distributed query

processing in broadcast local area networks,” IEEE Trans. Knowledge
Data Eng., vol. 1, pp. 215-225, 1989.

[151 C. H. Sauer, E. A. MacNair, J. F. Kurose, “The Research Queueing
Package Version 2,” IBM Research Division, Yorktown Heights, NY,
1982.

[16] A. Segev, “Optimization of join operations in horizontally partitioned
database systems,” ACM TODS, vol. 11, no. 1, pp. 48-80, 1986.

[17] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout, “The design
of XPRS,” Proc. VLDB C o d , pp. 318-330, 1988.

[18] X. Wang and W. Luk, “Parallel join algorithms on a network of
workstations,” Proc. Int. Symp. Databases in Parallel & Distributed

1191 H. Yo0 and S. Lafortune, “An intelligent search method for query
optimization by semijoins,” IEEE Trans. Knowledge Data Eng., vol.
1, pp. 226-237, 1989.

I201 C. Yu, K. Guh, W. Zhang, M. Templeton, D. Brill, and A. Chen,
“Algorithms to process distributed queries in fast local networks,” IEEE
Trans. Comput., vol. C-36, pp. 1153-1164, 1987 .

Syst., 1988, pp. 87-95.

Jorg Liebeherr (S’8&M’92) was born in Cologne,
Federal Republic of Germany in 1961. He received
the Diplom-Informatiker degree in 1988 from the
University of Erlangen-Niirnberg, Niirnberg, Ger-
many, and the Ph.D. degree in computer science
in 1991 from the Georgia Institute of Technology,
Atlanta, GA. He was a Postdoctoral fellow in the
Department of Electrical Engineering and Computer
Science at the University of California-Berkeley,

He is an Assistant Professor in the Computer
Science Department of the University of Virginia,

Charlottesville. His research interests are computer networks, and distributed
multimedia systems.

He is a member of ACM (SIGCOMM and SIGMETRICS).

522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 5 , NO. 3, JUNE 1993

Edward R Omiecinki received the B.S. and
M.E. degrees in electrical engineering, in 1973
and 1974, respectively. from the University of
Florida, Gainesville. He received the Ph.D. degree
in computer science in 1984 from Northwestern
University, Evanston, IL.

He worked for General Dynamics and Texas
Instruments from 1975 to 1977. He joined the
Computer Science Department at North Dakota
State University in 1983 as an Assistant Professor.
In 1986, he joined the School of Information and

Computer Science (which is now the College of Computing) at Georgia
Institute of Technology, where he is currently an Assistant Professor. His
research interests include database systems and parallel algorithms.

Dr. Omiecinski is a member of the ACM.

Ian F. Akyildiz (M’86-SM’89) received the B.S.,
M.S., and Doctor of Engineering degrees in Com-
puter Engineering from the University of Erlangen-
Niirnberg, Germany, in 1978, 1981, and 1984, re-
spectively.

Currently, he is an Associate Professor in the
College of Computing, Georgia Institute of Tech-
nology. He is the co-author of the textbookAna1ysi.s
of Computer Systems (Teubner Verlag 1992) and
has published more than 75 technical papers in
refereed journals and conference proceedigs. He is

an Associate Editor for the IEEE TRANSAC~IONS ON COMPUTERS, AN Associate
Editor for Computer Networks and ISDN Systems Journal. He guest edited
special issues on “Performance of Parallel and Distributed Simulation” for the
ACM Transactions on Modeling and Simulation; “Teletraffic Issues in ATM
Networks” for Computer Networks and ISDN Systems Journal as well as the
special issue on “Networks in Metropolitan Area” for the IEEE JOURNAL
FOR SELECTED ARMS I N COMMUNCATIONS. His current research interests are
in telecommunications systems, computer networks, performance evaluation,
parallel simulation, and computer security.

Dr. Akyildiz is a National Lecturer for the ACM and a member of ACM
(SIGMETRICS, SIGOPS, and SIGCOMM).

