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Abstract-The benefit of using indexes for processing coqjunc- 
tive queries in a database system is well known. The use of 
indexes in distributed database systems is equally justified. In a 
distributed database environment a relation may be horizontally 
partitioned across the nodes of the system and indexes may be 
created for the fragment of the relation that resides at each node. 
However, as an alternative, one might construct each index on the 
entire relation, i.e., global indexes, and then partition each index 
between the nodes. An approach is presented for processing such 
an index partitioning scheme in response to a coqjunctive range 
query. The performance of these schemes is evaluated in terms 
of the response time of a query and the utilization of processors, 
disk, and communication network while varying the number of 
nodes and query mix. 

Index rem- Distributed database system, query processing, 
indexing scheme, partitioned global index, partial index, coqjunc- 
tive queries, simulation, performance evaluation. 

I. INTRODUC~ON 
ITHIN the past ten years, query processing in dis- W tributed database systems has been a major area of 

research [2], [3], [7], [9], [ l l ] ,  [13]. Specific interest in 
distributed query processing for local area networks has also 
been popular [l], [12], [14], [18], [20]. Most of the research 
has been oriented to the optimization of multirelation queries, 
such as a join of two or more relations [12], [14], [16], 
[MI, [19]. However, there are tradeoffs that are involved in 
processing single relation queries that have not as yet been 
explored. We examine these tradeoffs in the context of a 
locally distributed database system. 

Intraquery parallelism as well as inter-query parallelism 
can provide improvements in response time for individual 
transactions [ 171. For intraquery parallelism, a query optimizer 
would produce a query plan that could be executed in parallel 
by a number of processors. For interquery parallelism, several 
queries would be executed in parallel. In this paper we examine 
the tradeoff between intraquery and interquery parallelism for 
single relation queries that use secondary indexes. 

In this work we consider only one type of query, which is a 
single relation conjunctive query. This type of query is one for 

which the access plan might use one or more indexes, i.e., if 
the selectivity of the attribute(s) is small [8]. A conjunctive 
query for a relation R with attributes A I ,  A2 I - . . ? A N  has 
the following form: Term1 and Term2 and . . . and TermM 
where Termi A i<  comparison operator > } valuei, 1 5 
j 5 N and valuei E domain(Aj).  Range queries and exact 
match queries are special cases of conjunctive queries. 

Since we are concerned with evaluating different index 
partitioning and processing schemes in our distributed database 
system, we will limit the access plans for the query to just 
those which use the index. In addition we are concerned only 
with secondary indexes. The index structure is the well known 
B+ tree [8]. We assume that the leaf nodes are linked together 
to allow efficient processing of a range query. We assume that 
the pages that comprise the index are stored on a secondary 
storage device, i.e., a disk, as well as the pages that store 
the tuples for the relation. In addition, the pages that store 
the indexes are disjoint from the pages that store the data. 
Since our intent is to compare different partitioning schemes, 
we divorce the query processing from the buffering scheme 
in that an access to an index block, other than the root, will 
cause a disk access. 

There are two basic strategies used for processing con- 
junctive queries: the single index method and the intersection 
method. For a conjunctive query with M terms, assume that 
K of those terms have associated indexes: 

1) Single Index Method. For the single index method, one of 
the corresponding indexes for the K terms (usually the 
one for the attribute with the smallest selectivity) would 
be used as the access path to locate the tuples that satisfy 
that term. The associated tuples would be read and each 
would be examined to see if they satisfy the additional 
terms in the query. If they do, then those tuples would 
be returned as the query result. 

2) Intersection Method. For the intersection method, the 
K indexes would be searched to find the addresses of 
the tuples that satisfy each of the K terms individ- 
ually, call these sets Addressl ,  . . . , AddressK. Then 
the intersection of these sets would be performed, i.e., 
Result = nE, Addressi. Afterwards, the tuples whose 
addresses are contained in Result are read. If there 
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Fig. 1. Structure of the distributed database. 

The paper is organized as follows. In Section 11, we describe 
the use of indexes in a distributed database system. First we 
explain the classical partial index scheme. Then, we introduce 
a new scheme, called partitioned global index, for storing an 
index. In Section 111, we show how a query is processed 
under the above mentioned index schemes. We develop a 
simulation model of the distributed database system in Section 
IV. For each index scheme a separate model is created. In 
Section V, we investigate the complexity of each index scheme 
analytically. In Section VI, sets of experiments are conducted 
where in each set the parameters such as the number of sites, 
the transmission capacity of the communication network, and 
the degree of complexity of a query are varied. We discuss 
the tradeoffs of the classical and the new index schemes. In 
Section VII, we discuss the conclusions of the obtained results. 

11. STORAGE ORGANIZATION 
The distributed database system consists of several sites 

interconnected by a communication network as shown in Fig. 
1. The sites operate as self-contained computer systems, i.e., 
each site has its own CPU and a disk drive that serves 
as secondary storage. The communication network allows 
broadcast messages that can be received by all sites. Since 
we are concerned only with the comparison of our partitioning 
schemes and their associated processing requirements, we limit 
our analysis to a single relation database. The single relation 
is horizontally partitioned across all sites without replication. 
The part of the relation at each site is referred to as a fragment. 
We make no assumptions about how the tuples from a relation 
may be distributed. For example, a round robin, hashed or 
range partitioning approach as discussed in [5],  [6] may be 
used. Our only assumption is that the number of tuples at 
each site is approximately the same. For example, tuples from 
the employee relation may be partitioned as follows: 
employee tuples where the age < 30 are stored at site 1, 
employee tuples where the age 30 and 45 are stored at site 2, 
employee tuples where the age > 45 are stored at site 3. 

All data items are accessed indirectly using one or more 
indexes. A query can initiate execution at any site. If a 
secondary index was needed, the typical approach [6], [17] 
would be to construct a .  separate physical index for each 
fragment. Therefore, the fragment and its associated index 
are located at the same site. These indexes are referred to 
as partial indexes (PI) [17]. Fig. 2 illustrates the concept of 
partial indexes. 
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Fig. 2. Partial indexes. 

L 

Fig. 3. Partitioned global index. 

As an alternative to the partial index scheme, one could 
conceptually think of building an index for the entire relation, 
i.e., a global index, and then partitioning the index across 
the sites. Along with a given partition of the index, each site 
would have a small master index that indicates the partitions 
that are stored at each site. Fig. 3 illustrates the concept of a 
partitioned global index (PG1). Intuitively, partial indexes look 
attractive from the standpoint of intraquery parallelism. When 
using the intersection method, the indexes can be searched and 
the intersection performed at each site in parallel. However, 
all sites must search their respective indexes to answer the 
conjunctive query. 

Equally intuitively, PGI looks attractive from the standpoint 
of inter-query parallelism. That is, if the conjunctive query 
involves a limited set of attribute values, only some of the sites 
will need to search their index allowing other sites to process 
different queries. However, as one can imagine, additional 
messages will be required for processing the tuple addresses 
found in the partitioned global indexes. 

The index structure of PGI requires additional work for 
modifications to the data set. Note that in PI only one site 
would be responsible for handling the insertion of the tuple 
into its fragment as well as inserting the tuple’s address in 
that site’s index. In PGZ, the number of sites that are involved 
in an update of a tuple is dependent on the number of PGI 
indexes. Since the value of the attribute determines the location 
of the index entry, in the worst case, all index entries and the 
tuple are stored at different sites. Additionally, updates of an 
indexed attribute may cause the transfer of an index entry to 
another site if the new value of the attribute is outside the 
range of index entries stored at the current site. 
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Addresses in a distributed database with PGI have the 
structure: < site, local address>. Site refers to the name of 
a site and local address denotes a logical local address. At a 
site, the physical address is obtained by a lookup into a table 
that contains the logical and physical address of a tuple. 

The use of indexes in a distributed database has not been 
fully explored. Two parallel database system prototypes that 
use indexes are GAMMA [6] and BUBBA [4]. In GAMMA, 
partial indexes are used. In addition, a global index is used, 
if the associated data is also stored at the site where the 
partitioned index is stored. This is a restricted case of the 
partitioned global index scheme that we propose. In BUBBA 
[4], global clustered indexes and local clustered indexes are 
used, similar to XPRS [17]. 

In this work, we quantify the tradeoff between a PI and a 
PGI scheme when processing conjunctive queries in a database 
with infrequent update operations. In a previous study [lo] 
we examined the tradeoffs between the two schemes when 
considering only range queries that utilize a single index. We 
note that each index adheres to the particular scheme under 
evaluation, i.e., all indexes are partial indexes or all indexes 
are partitioned global indexes. 

111. QUERY PROCESSING 
In the last section, we described two different schemes 

of storing index and data blocks in the distributed database 
system, the classical partial index scheme (PI) and the new 
partitioned global index scheme (PGI), respectively. Each 
indexing scheme implies a different strategy of answering a 
query. The query processing strategies for both schemes are 
presented below. 

A. Query Processing for Partial Indexes 

For our purposes, we can think of a query as requesting 
tuples for a set of one or more ordered attribute values. In 
PI, the index at each site must be searched, when a query 
has requested a set of attribute values. However, attribute 
values that are stored in an index at a given site have their 
corresponding data records also stored at that site. This means 
that once a value has been found in an index block, it is assured 
that the tuples with that value are stored at the site where the 
index entry has been found. After accessing the data blocks, 
the tuples are sent to the site that initiated the query. 

B. Query Processing for Partitioned Global Indexes 

The index for the entire relation (i.e., global index) is 
partitioned across the sites. This is similar to the idea of range 
partitioning tuples as in GAMMA [5], [6], however in our 
case, the index is range partitioned and the data is partitioned 
according to some other method, e.g. round-robin or range 
partitioned on some other attribute. Each site is assumed to 
know the distribution condition of the index for all sites. We 
call this the master index. It requires a small amount of storage 
since it contains only one entry per site consisting of site 
address and attribute value. This scheme was illustrated in Fig. 
3. When a query initiates execution at a site the master index 
is consulted and messages are sent to only those sites that have 

index entries for the desired set of attribute values. Each site 
that has index entries for the query receives a subset of the 
attribute values, i.e., exactly those attributes that appear in the 
index at that particular site. The site is requested to lookup 
the index entries for the attributes in the subset. Note that 
index entries and corresponding data entries are not necessarily 
stored at the same site. Therefore, once the index entry for an 
attribute has been found, possibly all sites have to be accessed 
to obtain the tuples with that value. A site that searches its 
index for a subset of attribute values obtains a list of addresses. 
Note that PGI guarantees that each index search returns at least 
one address (as long as the desired attribute value is present 
in the database). Once the lists of addresses are obtained they 
are sent to the site that initiated the query. After all addresses 
have arrived at the query-initiating site, messages are sent to 
those sites that store the tuples corresponding to the list of 
addresses. On reception of a message with addresses, a site 
accesses its data blocks, obtains the tuples and delivers them 
to the site that initiated the query,'. 

In the following we will give an example of processing 
a conjunctive query. We will explain how a query for the 
described database system is executed in PI and PGI. We will 
consider both strategies for processing conjunctive queries, 
i.e., the single index method and the intersection method. 

C. Example 
A distributed database system may consist of 5 sites 

( S I T E 1 ,  S I T E 2 , .  . . , S I T E S ) .  The relation R E L  contains 50 
tuples ( R E L  = T U P 1 ,  T U P 2 , .  . . , TUP50) each tuple having 
a set of n attributes ( A T T R l ,  ATTR2, .  . + , ATTR,).  Let the 
database have an index for ATTRl .  For this example we 
assume that the values for ATTRl are unique, i.e., there 
are 50 different values for ATTRl with a range given by 
(1,2, .  . . ,50) and the value of ATTRl of a tuple is given by 
its index (ATTR1 (TUP,.] = j ,  for j = 1,2,. . . ,50). For 
simplicity we assume that the values of the other attributes 
take values in the same range, i.e., ATTR,  [TUP,.] E 
{1,2,...,50}, i = 2,3,...,n,j = 1,2,...,50), without 
assuming uniqueness of the values. Let SITE1 initiate the 
following query: 

SELECT * 
FROM RE L 
WHERE ATTRl 2 24 AND ATTRl 5 38 
A N D  ATTR2 2 5  ANDATTR2 5 1 3  
AND ATTR3 2 42 AND ATTR3 5 46. 

When investigating the intersection method we assume that 
the database has indexes for all attributes ATTRl ,  ATTR2 
and ATTR3. Otherwise we assume an index only on ATTRl 
and apply the single index method. 

1) Partial Indexes (PI) 
Single Index Method 

' As an alternative query processing strategy for PGI consider the following. 
After the index search, a site could determine to which sites the addresses refer 
and immediately send requests to these sites (without sending the addressing 
back to the site at which the query originated). However, this strategy showed 
worse performance than the strategy discussed above due to a large overhead 
for communication. 
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SITE1 sends a broadcast message that contains the 
list of attribute values 24,25, . . . ,38 together with the 
range conditions for ATTR:, and ATTR3 to all sites. 
Since SITE1 itself does not know whether it has the 
index entries to some of the requested values, it starts 
to search its own index. All other sites start to search 
their index once the broadcast message is received from 
the communication network. When a site has scanned 
its index it holds a set of addresses of data items that 
match the attribute values. According to the specification 
of PI, these data items are stored at the same sites where 
the index entry was found. If all data items at one site 
are accessed the tuples are examined if they satisfy 
the given conditions for ATTRz and ATTR3, i.e., 
ATTR2 = 5 , 6 , . ' . , 1 3  and ATTR3 = 42,43, . . . ,46.  
The remote sites (from the point of view of S I T E l ,  
namely, SITE2,  SITE3,  SITE4,  S I T E S )  send those 
data items that satisfy the conditions to SITE1. SITE1 
waits until all data arrive and processes the data items. 
Intersection Method 
As in the single index method S I T E l ,  the initiator of the 
query, broadcasts a message, this time containing three 
lists of attribute values (24,25,. . . ,38), (6 ,7 , .  . . , 13), 
(42,43, . . . ,46). Each site then searches the index en- 
tries for the different indexes and obtains three lists of 
addresses. An intersection is done with the lists resulting 
in a single list of addresses for tuples that match the 
selection conditions of the query. The intersected list 
is used to access the data blocks. Once the tuples are 
retrieved they are sent back to S I T E l .  

Single Index Method 
Here we assume that the index at SITE1 contains 
entries for attribute values 1,2,  .. . , l o ,  the index at 
SITE2 contains entries for 11,12,. . . ,20, etc. Ana- 
lyzing the same query as before, SITE1 sends only 
messages to SITE3 and S I T E ,  requesting to lookup 
values 24,25, . . . , 29,30 for attribute ATTRl at SITE3 
and values 31 ,32 , . . . ,  37,38 at SITE4. Only these 
sites start to search their index and obtain the ad- 
dresses (ADR24, ADR25,. . . , ADRJo)  at SITE3 and 
(ADR31, ADR32, . . , ADR38) at SITE4, respectively. 
We denote with ADR, the address of the tuple with 
value ATTR1[TUP,].  Both SITE3 and SITE4 obtain 
the addresses and send them back to S I T E l .  If SITE1 
has received both lists (ADR24, ADR25,. . . , ADR30) 
from S I T E 3  and (ADR31, ADR32,. ' .  ,ADR38) from 
SITE4 it partitions the list of addresses according to 
the first component of each address, which is the site 
identifier. It then sends requests for data to sites that 
are referred to in the addresses. The range conditions 
for ATTR2  and ATTR3 are also sent to those sites. 
The sites, which receive the data request, access the data 
blocks, filter those tuples that do not meet the conditions 
for ATTR2  and ATTR3, and send the tuples back to 

Intersection Method 
Here, all lists of addresses are sent back to the querying 

2) Partitioned Global Indexes (PGI) 

S I T E l .  

t I I I II ' I  

t - - - - - 3-  - - - J-  - - - - t  
Fig. 4. Model of the distributed database system. 

site. At this time, the intersection of addresses can be 
done. The intersection yields the addresses of those 
tuples that satisfy all conditions from the query. The 
obtained address list is then partitioned according to the 
sites that have data items and the sublists are sent to the 
remote sites. After this step, the query answering strategy 
proceeds as described for the single index method. 

In the following section we develop a simulation model 
that implements the distributed database systems as described 
above. Two models are described, featuring either a PI or a 
PGI scheme. 

IV. SIMULATION MODEL 

The simulation model has been developed using the RESQ2 
software package [15]. In the following we describe the 
parameters that characterize the simulation model. We did not 
include components of a database system in our model that 
are not influenced by the selection of a particular indexing 
scheme. Concurrency control, recovery mechanisms, buffer 
replacement strategies and logging were found not to be 
affected, if the strategy for handling conjunctive queries is 
changed. 

A. Distributed Database System 

A global view of the implementation of the distributed 
database system is given in Fig. 4. The simulation model 
consists of two types of subsystems, a site and the network. 
The number of sites is denoted by the parameter SitesQty. 
Each site contains an independent working CPU and a disk. 
The CPU in the model processes four different classes of 
requests. It generates a list of attribute values ( c p u q e r y ) ,  
it processes lists of attribute values before the index blocks 
are accessed (cpu-ref), it processes lists of addresses to obtain 
data items (cpuadr) and it processes the incoming data before 
returning it to the user (cpudata). We assume that each request 
to the CPU takes an exponentially distributed amount of time 
with mean value Scpu. Considering a processor speed of 4 
MIPS, we set Scpu = 5. Incoming requests are served in 
a First-Come First-Served manner. However, processing of 
attribute or address lists may need more than one access to 
the disk. In this case, the list is re-queued at the CPU after 
the disk access to process the remaining part of the list. We 
assume that one disk access is required for each data item. 
For index retrieval, one disk access is assumed to yield up to 
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IndexPerBlock addresses at once. The size of a data record 
is given by 128 Bytes ,  addresses (and attribute values) are 
4 Bytes long. Disk accesses necessary to obtain addresses 
from the index blocks (diskyef) and data records from the 
data blocks (diskadr) need an exponentially distributed time 
period with mean value S D I S K .  The time that a transaction 
waits before a new query is issued (thinkdime) is exponentially 
distributed with mean value St&&. The flow of control is 
modeled by messages that contain the information needed 
for processing and routing in the distributed system, such as: 
originating site, destination site, message type and attributes, 
addresses, or tuples. 

As mentioned before, we assume that the database consists 
of only one relation since we are only interested in single 
relation queries. Tuples are uniformly distributed over all sites. 
The number of distinct attribute values in the index, denoted 
by NumAttr, is assumed to be 1% of the total number of tuples 
in the relation. Therefore, given NumAttr, the total number of 
tuples NumberTuples is obtained by 

NumberTuples = NumAttr  . 100. (1) 

A query requests a uniformly distributed list of attributes with 
maximum length value MaxAttr. The number of addresses 
that are found for one index entry is denoted by TupPerAttr. 
In the simulation model a uniformly distributed number of 
addresses with maximum MaxTupPerAttr is stored with an 
index entry. Attribute values are uniformly distributed over all 
sites. For our purposes, the attribute values are integers with 
range [l : NumAttr ] .  The range of attribute values having 
the index entries stored at a site SITEi is computed from 

NumAttr  NumAttr  
SitesQty '1 ] + l : i . r  [ ( i  - ' SitesQty 

for i = 1 , 2 , .  . . , SitesQty. (2) 

If NumAttr is not an integral multiple of SitesQty, then 
SITEsztesQty may have fewer index entries. The range of 
attribute values requested for a given attribute is computed 
with two random variables Xlow and Xsize. Xlow is uniform 
[l : NumAttr]  distributed and indicates the lowest attribute 
value. Xsize gives the number of attributes requested and 
follows also a uniform [ 1 : MazAt tr ]  distribution. Therefore, 
the range of a query with a single attribute is given by 

[Xlow : (Xlow + Xsize - 1) mod NumAttr ] .  (3) 

For conjunctive queries, the above computations are performed 
separately for each attribute appearing in the query. The 
number of attributes occurring in a query is given by the 
parameter Nolndex. 

B. The Communication Network 

The network has a bandwidth of 10 Mbit/s as in Ethernet. A 
data packet is assumed to have a maximum size of 1 kByte. 
The setup time for a packet, i.e., the time to packetize data 
and perform network access functions, is assumed to be 
exponentially distributed with mean Snw-setup. A message 
may need to be split into several data packets. The number of 
tuples (attribute values, addresses) that can be transmitted in 

a single packet is denoted by TupPerPacket (AdrPerPacket). 
The data record size is assumed to be 128 Byte,  yielding 
a value of TupPerPacket of 8. Since attribute values and 
addresses are assumed to have a length 4 Byte,  AdrPerPacket 
is set to 256. Note that the last packet corresponding to a 
particular message may not be completely filled. The overall 
transmission time of a packet with attribute values or addresses 
(nw..f, nwlzdrbk, nwadr) and a data packet (nwdata) are 
assumed to be exponentially distributed with mean values 

head information of a packet is assumed to be constant and 
therefore included in the setup time of the packet. The total 
transmission delay of a packet consists of a fixed part, the setup 
time, and a variable part that accounts for the transmission 
delay. Naturally, the transmission delay is dependent on the 
amount of data transmitted in a packet. With the given network 
bandwidth of 10 Mbit/s the transmission delay for a data record 
is given by 0.1 ms, for a single attribute value (or address) 
0.003 ms. The total time to transmit a packet containing 
attribute values (or addresses) and data is then calculated by 

snw-ref ,  Snw-adr, Snw-adrbk or Snw-data, respectiveb. Over- 

Snw-ref = Snw-adrbk = Snw-adr 
- - Snw-setup + max(AdrPerPacket,  

remaining addresses) .0.003 ms 

remaining data records) . 0.1 ms. 
Snw-data = Snw-setup + max(TupPerPacket, 

(4) 

PI 
The network model for query processing with PI 
transmits messages containing a list of attribute values 
(nwyej) and messages containing a list of tuples 
(nwdata), as shown in Fig. 5.' Broadcasting of messages 
is modeled by generating multiple copies of a message 
(at node nw-fork). Note that messages are, if necessary, 
split into several packets. Splitting messages into several 
packets is done under exclusive possession of the 
network channel. For that reason mutual exclusion is 
guaranteed by nodes P ( m u t e z )  and V ( m u t e z ) .  
PGI 
Fig. 6 shows the simulation model of the network for 
PGI. For PGI we send lists of addresses over the 
network. We distinguish two different types of messages 
that contain lists of addresses, i.e., addresses sent back to 
the site that started the query (nwadrbk) and addresses 
that are sent to retrieve data (nwadr). The four types of 
messages are stored in separate queues contending for 
the network server that simulates the propagation delay 
of a message. 

C. The Site 

Although the major components of the model are similar for 
both indexing schemes the different ways a query is handled 
lead to a conceptually different flow control. Therefore, we dis- 

ZThe symbols used to denote elements of the model are explained in the 
Appendix. 
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Fig. 5 .  Network model for PI. 
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Fig. 6. Network model for PGI. 
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cuss the models separately for PI and PGI. The description of 
the model is simplified compared to the actual implementation. 

The model of a site with PI indexes is given in Fig. 
7. The major components can be identified in Fig. 7 
as dark shaded areas representing the CPU and the 
disk. The CPU consists of four waiting queues and one 
server. The disk has two queues, one for current index 
block accesses (diskrefi, one for data block accesses 
(diskadr). Processing of a query is implemented in the 
site model as follows. A query starts off from node think 
(top of Fig. 7) where a transaction issues a query. The 
query enters queue cpuquery and eventually enters the 
server of the CPU. Here a list of attribute values for 
the range query is determined. At node forkl, the list is 
replicated, one copy going to the local cpuyef queue, the 
other leaving the site to the network submodel. A node 
receives lists of attribute values locally and from remote 
sites. If multiple indexes are used, each list is partitioned 
into sublists, each referring to a list of attribute values 
for a single index. For each index used, one separate 
list of attribute values is produced (at forkind). One disk 
access is required for IndexPerBlock attributes. This is 
represented by a visit of queues cpuref and diskref. 
According to the description of PI, all addresses are 
forwarded to cpuadr, and data block access starts. For 
queries that use multiple indexes the intersection of the 
obtained address list is done prior to accessing the data 
blocks (at joinind). Each data item requires a separate 
data block access, each time consuming CPU and disk 
time. Once all data items are accessed, they are sent to 
the site that started the query. Local data is sent directly 

1) PI 

Fig. 7. Site Model for PI. 

to node joinl where messages that left node fork in an 
earlier phase of the process wait on each other before any 
processing can proceed. Data items from remote sites 
wait on each other at join2. Remote and local data items 
are collected at joinl. The complete set of data items is 
then queued at cpudatu and finally, transferred back to 
think. 
PGI 
The model of a site implementing a PGI scheme is 
given in Fig. 8. We will limit our discussion of the PGI 
model to differences to the model with a PI scheme. 
Node forkind generates a separate list of attribute values 
for each attribute occurring in the conjunctive query. 
Since the location of index blocks to attribute values 
is known, the list of attribute values is now partitioned 
into sublists, one sublist for each site that has an index 
block to at least one attribute value in the list. For each 
sublist a separate message is generated at node forkl. 
Note that the number of created messages is dependent 
on the values of the random variables XI,, and Xsize. 
Sublists referring to remote sites are transmitted over the 
network. A sublist referring to the local site is directly 
forwarded to queue cpuref. 

The process of retrieving addresses from an attribute 
value is exactly as described for PI. Different from 
PI, the addresses are sent back to the site that started 
the query. There, the lists of addresses to a query 
wait on each other at nodes joinl and joinind. If all 
corresponding lists have arrived, the complete list of 
addresses to data items found for a particular index of 
one query is available. The site now partitions the list 
according to the sites that are referred to in the list (at 
fork2). Each created sublist now proceeds to the site that 
has the data items corresponding to its list of addresses. 
Data access is as described for PI. Having retrieved all 
data the list of data items is sent to the querying site. 
Eventually, all data items arrive at join2 and proceed to 
cpudata. 
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TABLE I 

Parameter Descnntion Distribution 
SifesQty Number of sites - 
NumAttr Total number of attribute values in database - 
XSiX unzform(1 : MasAttr]  
X I O W  Lowest attribute value of a query uniform(1 : MazAttr]  

TupPerAftr 

Number of attribute values for a query 

IndexPerBlock Maximum number of index entries per disk block - 

TupPerF'ucket Maximum number of tuples fitting in a data packet 
Number of tuples found for one attribute value uniform(1 : MasTupPerAttr] 

- 

. -  > 

f 

I 
U) 
think 

Fig. 8. Site Model for PGI. 

v. ANALYSIS OF I/o AND COMMUNICATION OVERHEAD 

The description of the index access schemes and their 
respective query processing strategies in the previous sections 
indicate a tradeoff between disk processing overhead for PI 
and communication overhead for PGI. In this section we will 
quantify the overhead of the presented schemes. The notation 
of the parameters used in this section and their distribution is 
summarized in Table I. 

To simplify the analysis we substitute the uniformly dis- 
tributed parameters Xsize and TupPerAffr by constants Xisize 
and TupPerAttr': 

Xtsize const 
TupPerAttr' = const. 

Furthermore, we assume that address lists always fit into a 
single packet. 

A. Disk Processing Overhead 
The main advantage of the new PGI over PI is the selected 

search of index entries. PI has to perform index accesses for 
all attribute values generated by a query at each site of the 
distributed system. If the number of sites is large compared to 

¶It* I ¶11* 2 111*(1-1) Ilt.1 ¶It. 111. NI* 
lI.11 ISlteLPty-ll I l l e w l y  

Fig. 9. Distribution of index entries (partitioned global index). 

the number of attribute values, then most index block accesses 
are not necessary. Denoting the number of index accesses by 
a p ~  and CXPGI for the number of required index block accesses 
for a range query in PI and PGI, respectively, we obtain 

1 . SitesQty ( 5 )  
X'size 

apl = ' IndexPerBlock 

1 .  (6) 
A ' size ' N m A t t r l S i t e s Q t y  

The second term of the sum in (6) accounts for the access 
of index blocks that are not completely filled with index 
entries. Note that this term does not exceed SitesQty.  The 
equations consider only accesses to the leaf nodes of the B+ 
tree where the index entries are kept. Since the leaf nodes are 
assumed to be linked together in order to process a range query 
efficiently (see section 1) the number of neglected accesses to 
inner nodes of the B+ tree is small. Fig. 9 illustrates the 
derivation of (6). Each site except the last site (szteS;tesQty) 
keeps [ {NumAttr /S i tesQty}1  index blocks. Thus, the last 
index block of each site may not be filled completely. Note 
that the number of index blocks that have to be accessed is 
dependent on the value of Xlow, i.e., the starting point of 
the range of desired attributes. The number of disk accesses 
required to retrieve the data tuples is the same for either 
indexing scheme. 

B. Communication Overhead 

Communication between the sites takes place at different 
stages of the processing of a query. To separate the commu- 
nication demand of each stage, we distinguish the following 
phases during which communication takes place: 
Phase I: Transfer of list of attribute values to sites for index 

retrieval. 
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Phase 2: Transfer of address lists back to querying site. 
Phase 3: Transfer of address lists to sites that hold the data 

items. 
Phase 4: Transfer of data items to querying site. 
We now discuss the communication demand of each indexing 
scheme during the various phases of processing a query. 

PI 
During Phase I only one message is transmitted, since 
we assume broadcasting capabilities of the communica- 
tion network. Phase 2 does not apply to a PI scheme. 
No communication is required during Phase 3, since the 
index and data tuples are always stored at the same site. 
During Phase 4 all data items are sent to the site that 
started the query. The total number of tuples for a query 
is given by 

Xrsize . TupPerAttr '  

Assuming that data items are distributed evenly over 
the sites, the number of sites that have index and data 
entries for a query is given by 

min{ SitesQty, Xiize}. 

The maximum number of tuples fitting into one data 
packet is given by TupPerPacket. Additionally, the last 
packet transmitted by each site may not be filled com- 
pletely. Hence, the number of data packets sent during 
Phase 4,  denoted by &!, is computed by 

(4) -r Xiize . TupPerAttr '  1 - TupPerPacket min{SitesQty, Xiize} 
. min{S'itesQty, Xtize} + Fac t  (7) 

where Fac t  normalizes the number of packets since no 
site sends packets to itself. Fac t  is obtained by 

SitesQty - 1 
Fac t  = 

SitesQty ' 

PGI 
During Phase I, a packet with attribute values has to be 
transmitted only to those sites holding index entries for 
the attribute values. Let @$AI denote the mean number 
of ackets to be transmitted during Phase I. Note that 

value is determined by 
PPGI  (17 is dependent on the value of X1, (see Fig. 9). Its 

,X:,,, . SitesQty 
NumAtt r  

1 . F a c t  5 &AI 

The number of packets transmitted during Phase 2 is 
given by the number of sites that received the list with 
attribute values during Phase I: 

In Phase 3, each site with index entries sends a packet 
with an address list to those sites that are referenced 
in the addresses. The number of sites that receive an 

NuntAttr 4Ooo 
X : i r e  60 
TupPerAttr' 5 
IndaPerBlock 32 
TupPerPacket 8 

address list is limited by the number of remote sites. We 
obtain: 

(3) PPGI 
= min{SitesQty, total number of addresses found} 

= min{SitesQty, X:ize ' TupPerAttr '} Fact .  
. Fac t  

(11) 

Each site that receives an address list during Phase 3 
finds 

(12) 
Xiize . TupPerAttr '  . Fact  

(3) PPGI 
tuples. The number of packets in Phase 4 is therefore 
calculated as 

(4) - XLize . TupPerAttr '  . Fact  
P P G I  - r 1 .P%I (13) &AI.  TupPerPacket 

The equations derived in this section are simplified since 
they do not account for the distribution of parameters Xsize and 
TupPerAttr. Additionally, the uniform distribution of the tuples 
over the sites was simplified by just distributing the tuples 
evenly over all sites. However, the expressions provide some 
insight into the degree of complexity of both disk processing 
and communication overhead. We now present an example 
that applies the above results. 

Example: Let the parameters of a distributed database sys- 
tem be given as in Table 11. 

The value of SitesQty is varied from 10 to 100. Table I11 
shows the overhead of disk processing. The total number of 
data packets required for one query is shown in Fig. 10. Note 
that PGI has a significant communication overhead compared 
to PI. 

VI. EXPERIMENTS 
In this section we discuss the experiments conducted with 

the simulation model that was developed according to the 
specification in Section 111. In each experiment we varied a 
parameter of the model and compared the performance for 
the different index schemes and query processing strategies. 
The following parameters are varied in different sets of ex- 
periments: 

I) Number of sites (SifesQty). 
11) Number of indexes in a query (NoIndex). 
111) Transmission capacity of the communication network 

IV) Number of disks per site. 
(Snw-se tup ,  s n w - r e  f 3 Snw-adrbk,  Snw-adr ,  S n w d a t a ) .  
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TABLE 111 
DISK PROCESSING OVERHEAD 

SitesQty 10 20 30 40 50 60 70 80 90 100 
Q P I  20 40 60 80 100 120 140 160 180 200 

a0 ' 

f a  20 30 40 SO 60 70 60 SO 100 

SIt.sQty 

Fig. 10. Total communication overhead 

The basic parameters for the simulation model are specified 
in Table IV. These parameters remain unchanged throughout 
all experiments, if they do not denote the parameter that 
is varied for a particular experiment. We assume that the 
distributed database is homogeneous, i.e., the parameters of 
the components for all sites are the same. 

Note that the number of tuples in the database is dependent 
on the number of sites (SitesQty). Thus, if we add new sites 
to the distributed system, we simultaneously increase the size 
of the global database. By this, we avoid obtaining a lightly 
loaded system when sites are added to the distributed system. 
We present the following performance measures: 

Mean Response Time, which is the average time a mes- 
sage carrying the information for a particular query needs 
from leaving node think to entering it again. The mean 
response time is also referred in the literature as cycle 
time, turnaround time, residence time, sojourn time, etc. 
Utilization, which is the fraction of time that a particular 
device is busy. 

In the following sections we describe our simulation results 
and observations. The run time of the simulation was chosen 
such that the 95% confidence interval are less than 1% of the 
mean values for utilization and less than 5% for the mean 
response time. We will use the following abbreviations for the 
different query processing strategies: 

PI-SI : Partial index with single index method. 
PI-IM : Partial index with intersection method. 
PGI-SI: Partitioned global index with single index method. 
PGI-IM Partitioned global index with intersection method. 

TABLE IV 
BASIC PARAMETERS 

SitesQv 

Nolndex 
Noeuery 

S t h z n k  

SCPV 

S D I S K  
Snw-setup 

s n w - r e f  > S n w - a d r b k .  S n w - a d r  

S n w - d a t a  

N u d t t r  
M d t t r  
MaxTupPerA ttr 
TupPerPacket 
AdrPerPacket 

16 
3 per site 

3 
3 s  

5 ms 
30 ms 

5 ms 
see (4) 
see (4) 

25 .SitesQty 
20 per query 

10 per index entry 
8 

128 

A. Experiment I 

In this experiment we study the performance of the query 
processing strategies if the number of sites SitesQty is varied 
between 2-16. The mean response time of a query for the 
different strategies is depicted in Fig. 11. PGI shows superior 
performance compared to PI for both the single index method 
and the intersection method. Note the performance difference 
between the two indexing schemes if the single index method 
is used. Fig. 12-14 depict the utilization of the resources, i.e, 
CPU, communication network and disk. As can be seen in 
Fig. 12, the CPU is not a critical resource of the system. CPU 
utilization is low for all strategies. In Fig. 13 we see that 
the utilization of the communication network increases faster 
with the number of sites for PGI than for PI. Note that the 
network utilization for PGI-IM reaches saturation at SitesQty 
= 12. Fig. 14 shows a high utilization of the disk for all query 
processing strategies. The decrease of disk and CPU utilization 
for PGI-IM at SitesQty = 16 is explained by the fact that the 
system's bottleneck has migrated from the disk of each site to 
the communication network. 

B. Experiment II 
In this experiment we investigate the sensitivity of query 

processing to the variation of the complexity of a query.3 
We achieve this by varying the parameter Nolndex between 
1 and 5, with NoIndex = I being a nonconjunctive query. 
Recall that the single index method (SI) uses only one index 
for data retrieval. The mean response time for all query 
processing strategies is given in Fig. 15. PI-SI shows very 
poor performance for higher values of Nolndex. PGI-IM 

3The simulations for Experiment II  were run with parameter NumQuery - - .a. 
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S l t o s Q t y  

Fig. 11. Mean response time. 

- PGI-SI - PGI-IM "'"1 \ 
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Fig. 12. CPU utilization. 

1 .o 
-c PIS1 

0.8 - 

0.6 - 
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Fig. 13. Network utilization. 

appears to be the best strategy for complex conjunctive queries. 
The disadvantage in PI-IM of accessing the index blocks 
for all attribute values at each site becomes obvious when 
we investigate the composition of the disk's utilization. The 

0.9 - 
- n - 

0.8 - 
C - - 

0.7- - - - 
5 

0.6 - --t- PI-IM \ - PGlSl - PGI-IM 
\ 

0.5 ! . , . , . , . , 
0 4 8 12 16 

SltorOty 

Fig. 14. Disk utilization. 

o !  . , . 1 . , . , . , . 
0 1 2 3 4 5  

Nolndox 

Fig. 15. Mean response time. 

workload of the disk consists of index accesses to retrieve 
index blocks and data access for retrieval of data blocks. Figs. 
16 and 17 decompose the utilization of the disk into index and 
data accesses. We see that as the number of indexes increases, 
the disk for PI-IM spends most of the time accessing index 
blocks. For Nolndex = 5, although the disk is busy almost 
all the time, it uses only about 1/3 of its activation for data 
retrieval. Here, the disadvantage of doing index searches at 
each site, as required for PI, becomes obvious. On the contrary, 
Fig. 17 reveals that although the total utilization of the disk 
decreases with increasing values of Nolndex, due to congestion 
of the network, the absolute amount of time spent for data 
retrieval in PGI-IM is more than in PI-IM. 

C. Experiment I11 

In the previous experiments we saw that the performance 
differences of query processing of PGI and PI are dependent 
on the transmission speed of the communication network and 
the speed of the disk. Since improvements in communication 
technology will provide faster networks in the near future (up 
to 150 Mbith with optical fiber technology), it is of high inter- 
est to study our query processing schemes for networks with 
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Fig. 16. Disk utilization (Pf, intersection method). 

1 2 3 4 5  
Nolnder 

Fig. 17. Disk utilization (PCI, intersection method). 

a higher transmission capacity. In this series of experiments, 
we increase the transmission speed and the setup time of the 
network gradually by increasing the parameter nwspeed. The 
transmission of a packet is then computed from (4) by 

S'i = nw-speed . S,. 
i E {nul-ref, nw-adrbk, nm-adr, nu-data}. (14) 

The results for the mean response time of a query are shown 
in Fig. 18. Fig. 19 depicts the decrease of network utilization 
for increased transmission capacity of the network. In Fig. 18 
we see that only PGI-IM is able to take advantage of a faster 
communication network. For all other strategies, we observe 
that the mean response time is not affected by increasing the 
transmission capacity of the network. The performance of the 
system is then limited by the disk, and increasing the network 
speed does not improve the response time of a query. 

D. Experiment IV 

In this section we investigate the performance of the PI-IM 
if disk drives are added to each site. We present results for 1, 
2, 3 and 5 disk drives. As in Experiment III the parameter that 
is varied in this experiment is nwspeed. Thus, we are able to 
answer the question if and how much an index scheme with 
the PI-IM-strategy can benefit from a faster communication 
network if the I/O-capabilities are improved. Fig. 20 plots 
the results for the mean response time. For comparison, we 
included the results from PGI-IM in Experiment III (dashed 
line). We see that a site with multiple disks benefits from 
an upgraded communication network only to a certain extent. 
Fig. 20 shows that for a network with nw-speed > 2 PGI-IM 
provides a better mean response time than PI-IM, even if the 
latter system has 2 disks available at each site. 

I PIS1 

PI-IM - Wlsl 

POI-IM 

0 2 4 6 8 10  12  

nw-rpood 

Fig. 18. Mean response time. 
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.-.r PGW - WClY 
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Fig. 19. Network utilization. 

14 7 I 

c 

1 ? L.-..--.-"'C-"-.-"-----------r . , , ~ , , , 1 --C Pi-IM(4dWrr) 

PGI-IM (1 dish) 

9 0 -t PI-IM (5*) 
.... * .... 

0 
0 2 4 6 8 1 0 1 2  

nr-apnd 

Fig. 20. Mean response time. 

VII. CONCLUSION 

We introduced a new indexing scheme called partitioned 
global indexes (PGI) for a locally distributed database system. 
The new scheme builds a global index for the entire relation 
and partitions the index across the sites. We also presented a 
strategy for processing such an index. In order to evaluate the 
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Fig. 21. 

performance of the new scheme, we developed a simulation 
model. The simulation results were compared to the classical 
scheme, called partial indexes (PI), in which corresponding in- 
dex and data entries are stored at the same site. We investigated 
analytically the advantages and disadvantages of the indexing 
schemes when processing conjunctive queries. Analysis and 
simulation experiments showed the tradeoffs between the new 
and the classical scheme. 

We demonstrated that PGI provides significant performance 
advantages for query processing in a distributed environment. 
Even if only one index is used for processing conjunctive 
queries (single index method), the more efficient index re- 
trieval technique makes PGI superior to PI by reducing the 
workload on the disk. This allows the disk to spend more time 
for data access. We showed that the performance difference 
between PI and PGI increases with the complexity of a query. 
However, it showed that the performance of PGZ that applies 
the intersection method is limited by an increased overhead 
for communication. If a communication network with more 
transmission capabilities is used, the processing time of a 
query can be reduced significantly under PGI-IM. Since new 
communication technologies with a high bandwidth (> 50 
Mbit/s) were introduced in the late 1980’s and will find their 
way into the market in the 1990’s the superiority of using high 
speed networks makes PGI attractive for future use. 

We should reiterate that our work assumes a uniform 
distribution of data values to sites and that updates have not 
been included. To increase the applicability of our work, these 
assumptions should be relaxed in any further study. 

APPENDIX 
GRAPHICAL SYMBOLS 

Fig. 21 shows the graphical symbols that are used to 
describe the simulation models in Section IV. 
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