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1. F. AKYILDIZ works with classical blocking.

Abstract-This work investigates closed queueing networks with
blocking composed of two stations with multiple seryers. Blocking occurs II. PRODUCT FORM SOLUTION
when a job wanting to enter a full station is forced to remain in its source We will consider closed queueing networks with N 2 stations
station, thus blocking the source station until room is available at the and K single-class jobs. Each station consists of a single queue served
destination station. This type of blocking is known as classical blocking. by (mi 2 1), servers each with exponentially distributed service time
We show that, for a two-station closed queueing network with blocking, with mean value l/,it (for i = 1, 2). The service discipline in each
there exists an equivalent nonblocking network with the same state space station is first-come, first-served. Each station has a fixed finite
structure. Utilizing this concept, we demonstrate that two-station closed capacity Mi where M' = (queue capacity + mi), (for i = 1, 2).
queueing networks with blocking have product form solutions. Cases in which the stations can have infinite capacity are also

allowed. Any station whose capacity exceeds the total number ofjobs
Index Terms-Blocking, equilibrium state probabilities, normalization in the network can be considered to have infinite capacity. It is

constant, performance analysis, performance measures, queueing net- obvious that the total number of jobs K must be smaller than the sum
works, state space transformations. of the station capacities, that is,

I. INTRODUCTION 2

The basic results of product form networks are given in Baskett, K< E Mi.
Chandy, Muntz and Palacios [4]. They show that queueing networks i=l
with different classes of jobs, exponential and nonexponential service
time distributions, and different queueing disciplines (FCFS RR-PS with probability pi, (for i, j = 1, 2), if the jth station is not full. That
or LCFS-PR) have product form solution. This was a remarkable J'is if the number ofjobs in the jth station kj is less or equal to Mj for
result for the queueing network theory. The term "product form" = 1, 2. Otherwise, the job is blocked in the ith station until a job
means that the equilibrium state probabilities can be expressed as a
product of terms for each queue in the network. The product form in the jth station has completed its servicing and a place becomes

available. Note that the case i = jis allowed. A station can have a
networks, also known as BCMP or separable networks, are based on transition b t i w. . ', ~~~transition back to itself, which will be shown by an example in
the assumption that all stations have infinite capacities. If the stations S.. . . ...... , , ,. S~~~~ection IV. The queueing network with the above assumptions is
have finite capacity, blocking can occur in the network. Since
blocking causes interdependencies between stations, blocking queue- inest thinwork.
ing networks cannot be analyzed 'by existing product form al- inetgt nti ok

gingntwoks. cannot be analyzed by existing product form al- As is generally known, the following binomial coefficient formula
gorithms. is valid for closed queueing networks without station capacity limits.

Formally we distinguish between three types of blocking: classi- It indicates the number of possible ways that Kjobs can be distributed
cal, rejection, and service blocking. into N stations.

In the first case, blocking occurs when a job completing service at
station i cannot proceed to station j because station j is full. The job is N+K-I
forced to wait in the station i's server until it is allowed to enter the
destination station j. The station i's server stops processing until
station j releases a job [1], [2], [11], [13], [15], [20]. In the second where Z is the total number of states in a closed queueing network.
case, blocking occurs when a job completing service at station i For queueing networks with two stations (1) is simplified to
attempts to join destination station]j. If station]j is full at that moment,
the job is refused. The rejected job goes with a certain probability Z=K+ 1. (2)
(called rejection probability) back to the station i 's server and
receives a new service. This is repeated until some job completes a Structure for the state space of the two-station network is
service at station]j and a place becomes available [3], [9], [16], [22]. illustrated in Fig. 1.

The state (k, n) denotes that kjobs are in the first station and n jobs
are in the second station. The transition rates from one state to
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has a limited capacity, it is clear that all states in Fig. 1 cannot be P2 212 m2i'2 m21'2 m211 m2 2
feasible. The feasible states for blocking networks are obtained by

..

.=O
realizing that the number ki of jobs in the ith station may not exceed _ 21
the station capacity M,, (ki . Al) ini' ji 11 1 1M
We define si as the number of servers that can be blocked at the ith Fig. 1.

station in a given state.

fmiif K>Mj+±mi S2 2 (12I1)21* 212 1212 m2p2
Si- M if K M+m1 for i=1, 2. (3) Q . 3

mii l 211 ml121ip mlp
Note that the first case of (3) states that all the servers of the ith
station can be blocked while the second case states that some servers 2P2 2 2 m222 m2 2 12 2
of the ith station can be empty. The si neighbors of a feasible state M I M

represent the blocking states in the network, i.e., whenever a m 2M2 - ,M2 ...
transition occurs from one state to another state where the capacity
limit of a station would be violated, we assume that the transition Fig. 2.
causes a blocking in the network and that the state is a blocking state,
i.e., the job resides in the source station.

In this fashion the complete state space for the blocking network is network has the same structure as the given blocking network. In
obtained (Fig. 2). other words the equivalent nonblocking network has the same number

Obviously, Fig. 2 is a subgraph of Fig. 1. Except for the blocking of stations N = N = 2; the same exponentially distributed mean
states denoted in Fig. 2 by a "*,' all the other states violating the service time with rate y =1; the same number of servers =
station capacities are nonfeasible and are cancelled. From the reduced the same transition probabilities j3 = Py; and, accordingly, the same
state space, Fig. 2, we obtain the number of states Z' of the blocking mean number of visits a job makes to the ith station ei = ei, (6). The
queueing network, which is the sum of the number of feasible states only difference is that the station capacities are unlimited, hence no
and blocking states. Formally, blocking occurs and the total number of jobs in both systems is not

equal, i.e., K . K.
Z'=min {K, Ml +m2} +min {K, M2+ ml }-K+ 1. (4) Since the nonblocking nelwork satisfies local-balance, it has the

product form solution
We can now state the following theorem.
Theorem: For a two-station closed queueing network with 1 2 ^ki

classical blocking there exists an equivalent two-station closed p(kl, k2)== ^ 1 x7i
queueing network without blocking (i.e., without station capacity G(K); (k)
limits) with the same structure. The equilibrium state probabilities
p(k,, k2) for the blocking network can be obtained from the By considering the above equalities of both networks we get
equilibrium state probabilities of the equivalent nonblocking network.

xki +Mjsj p(k1, k2)ms0K 8

p(kl, k2)=G K M for i, j=l, 2; i jG(K) Oi3(ki K 9i i
The goal is to find the total number of jobs K in this equivalent

(5) nonblocking network.

where the number of jobs ki is defined in the following range. As shown in Fig. 2, the number of states Z is reduced to Z', (4),
by considering the station capacities. From both (2) and (4) we arrive

K- Mj - si } . k, { Mi + mj }. at the total number of jobs K in the equivalent two-station closed
queueing network without blocking

For the ki values outside of this range, the equilibrium state
probabilities p(ki, k2) are zero. K=min {M1+m2, K}+min {M2+ml, K}-K. (9)
The other quantities in (5) are defined as follows:

The state space for the nonblocking network with K jobs is given in
2 Fig. 3.

K=E ki represents the total number of jobs in the blocking It is immediately seen that the state space for the equivalent
2=1 network nonblocking network with K jobs (Fig. 3) has exactly the same
2 structure as the state space of the blocking network shown in Fig. 2.

K k, represents the total number of jobs in the equivalent The number of states and the transitions between the states are
nonblocking network identical. The Markov processes describing the evolution of the

G(K) is the normalization constant so that all probabilities networks over time have the same structure up to an isomorphism of
sum up to unity the state spaces. This isomorphism is compatible with the transition

=(ej/) is the relative utilizationoftheithstation(fori= 1, rates. This implies that the equilibrium state probability of the
2) where ei is the expected number of visits a job blocking network is equlvalenit to the equilibrium state probability of
makes to the ith station (for i = 1, 2): the nonblocking network

2
o =,2 6 p(ki, k2)=p(k1, k2).

ji= It is easily seen that the number of jobs /ci in the ith station of the

As there are (N - 1) linear independent equations in the system it is equivalent nonblocking network in Fig. 3 corresponds to the (k1 - K
assumed that e1 1l. The function (3(k1) is defined as ± A/i + sj) value in Fig. 2. In (8) we replace ki by (k1 -K + Mj +

C k,1! if k.m, s1) and obtain (5). This coml)letes the proof.
t3(k)=1i k III. PERFORMANCE MEASURES

'~~~ k> in' We have shown that the equilibrium state probabilities for two

Proof: As we stated in the theorem, the equivalent nonblocking station blocking networks have a product form solution, (see (5)).
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p2 221 2p22 mP2 IV. EXAMPLE
A< _ 7> TThIn Section II we assumed that a station may have a transition back

to itself. However, we did not explicitly cover this case as it would
m111 m1iA 2 ]A have complicated the presentation. In this example we examine this

Fig. 3. case and demonstrate that the state space is still one-dimensional.
This implies that our theorem holds.

Consider a closed queueing network with N = 2 stations and K =
The normalization constant G(K), which occurs in the solution can 10 jobs. The stations have exponentially distributed service times
be determined by any product form network algorithm, e.g., with mean values (I/I,) = 2 and (l/102) = 0.9, respectively, and
convolution algorithm [6], [7] or LBANC technique [18] where the FCFS service disciplines. The first station has a single server (ml =
total number of jobs K in the equivalent nonblocking network is 1) and constant capacity Ml = 7. The second station has m2 = 2
computed by (9). servers and the constant capacity M2 = 5 jobs. The transition

Performance measures, such as throughput X and utilization p, that probabilities are given as PI = 0. 3; P12 = 0.7; P21 = 1.
are dependent on the equilibrium state probabilities and the service Using (2) we obtain the number of states for this network without
rates of each station can be computed directly from the transformed considering the capacities: Z = K + 1 = 11. The state space for this
state space of Fig. 3. The throughput XNB(K) of the equivalent network without capacity limits is shown in Fig. 4.
nonblocking network is exactly equal to the throughput XB(K) of the By considering the station capacities the substate space in Fig. 5 is
blocking network, i.e., obtained, containing the feasible states and the blocking states

(denoted by *; obtained by (3)) for the blocking network.
XB(K)= XNB(k) (I0) Note that the following situation which could occur in a classical

blocking network demands an explanation. Assume that the firstwhere XNB(K) can either be determined by station is full, its server is busy serving and the second station is
G(K- 1) blocked. Upon service completion at the first station, the departing

XNB(K) = (1 1) job chooses to go back to the end of the first queue (with probability
G(K) Pl, = 0.3), the station it just left. The question that arises is which of

or by mean value analysis [17]. the two jobs will enter the queue, the job which is blocked in the
The throughput of each station can be obtained by using XB(K ) in second station or the job just serviced by the first station which wants
the throukighpnetof each station can be obtained by using B(K)in to go back to the queue? As can easily be seen in Fig. 4 the job thatthe blocking network

just left the first station is allowed to enter it again.

Xi(Kf)= ei XB(K) for i= 1, 2. (12)
From the theorem, it follows that an equivalent closed network

(K) = e~ ) for = 1, . (12) without blocking can be developed, which has K = 5 total jobs. The
The mean number of jobs in the ith station is given by the state space, Fig. 6, for K = 5 for the equivalent closed network

following well-known formula: without blocking has an identical structure to Fig. 5.
The throughput value XNB (5) for the equivalent nonblocking

K network is obtained by mean value analysis and is exactly equal to the
ki(K)= S np1(n) (13) throughput value XB(lO) of the blocking network, (10)

n = I

where p,(n) is the marginal probability that there are n jobs in the ith XB(lO) = XINB(5) = 0.496
station. In two-station closed networks the following values are legal. The mean number of jobs in the ith station of the blocking

pi (n) =p(n, K- n) =P2(K- n) for n = 1, *. K. (14) network is determined by (15)

By using the equivalence of nonblocking and blocking networks k1= 6.875 k2= 3.124.
(13) is modified to The blocking probabilities are computed from (16)

M1(ff>= rtpi(n)+# M,ipi(M,+n) PBI =0.-007 PB2=0.687.

nk!K=K-M1 n=i Other performance measures can be computed by according
formulae.

mni
+ E (K-Mj)pi(K-Mj-n) for i, j= 1, 2; i.j. (15) V. CONCLUSION
n= I We have treated the classical blocking closed two-station queueing

networks with multiple servers. The concept is based on the
An informal interpretation ofthisformula isthat the right-hand transformation of the state space of blocking network into a state

side of the firstterm includesthe feasiblestates while the second and. space for a nonblocking network. The equilibrium state probability
third terms show the blocking states (see Fig. 2). ......... distribution for the blocking network is then computed from the

Other performance measures: the mean residence time (time spent ....nonblocking network which has a product form solution.
by ajob in queue, in service, and in the blocking phase) (t,); the mean ......Sinceour solution is not restricted solely to stations of finite
queue length (Qi);the mean waiting time (if); and the utilization (Pi) ......capacity or to serially switched stations, it extends to networks in
can be computed by the well-known product form network formullae ......which the capacity of one or two stations is infinite and one or two
[18]. Another performance measure thatis important for blocking ......stations possess a transition probability back to itself. Since the state
networks is the blocking probability of the ith station . .....spaceof two-station closed queueing networks is one-dimensional in

all these cases, our theorem holds.rn......Queueing networks with N> 2 stations have (N- 1)-dimensional
PB = S pt (K-M- n) (16) state spaces and the results are no more exact because the state spaces

n=~I of both networks do not agree exactly, i.e., they cannot be
transformed bijectively into each other as is the case of two-station

for i,]j = 1, 2; i .j. networks.
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