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Mean Value Analysis for Blocking Queueing 
Networks 

Abstract-Mean value analysis is an exact solution technique for in- 
finite capacity queueing networks and enjoyed widespread popularity 
during recent years. It considers the behavior of the system by stepwise 
increasing the number of jobs in the entire network, thus it is well- 
suited for the analysis of queueing networks with blocking. In this 
work, an approximation is introduced for the mean value analysis of 
queueing networks with transfer blocking. The blocking occurs when 
a job after completing service at a station wants to join a station which 
is full. The job resides in the server of the source station until a place 
becomes available in the destination station. The approximation is 
based on the modification of mean residence times due to the blocking 
events that occur in the network. Several examples are executed in 
order to validate the approximate results. 

Zndex Terms-Blocking, finite station capacities, performance eval- 
uation, performance measures, queueing network models. 

I. INTRODUCTION 
UEUEING networks have increased their importance 
in performance evaluation of computer systems and 

communication networks in the last two decades. When 
analyzing systems with infinite station capacities, several 
methods have been introduced in the last 15 years. In a 
major work, Baskett, Chandy, Muntz, and Palacios [8] 
have shown that queueing networks with particular station 
types (M/M/m,-FCFS, M/G/l-RR-PS, M/G/Infinite 
Servers and M/G/l-LCFS-PR) have a product form so- 
lution. In these solutions, the equilibrium state probabil- 
ity of the network can be expressed as a product of terms 
for each station in the network. The product form solution 
implies each station in the network can be analyzed in- 
dependently. Several different algorithms have been pro- 
posed for product form networks. One of the methods 
which has attracted particular interest is the mean value 
analysis of Reiser and Lavenberg [ 161. Mean value anal- 
ysis is based on three fundamental formulas for comput- 
ing the mean residence time, throughput, and the mean 
number of jobs in the stations. It performs an iterative 
computation of the desired performance measures. The 
principal advantage of mean value analysis is that it is 
very fast and easy to implement. 

In actual computer systems, resources have finite ca- 
pacity. Thus queueing networks with blocking should be 
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used to investigate them analytically. A queueing network 
with blocking can be regarded as a collection of stations 
with Jinite capacities through which jobs proceed in order 
to satisfy their service requirements. Blocking occurs due 
to the finite capacities of the individual stations. 

We consider the transfer blocking type where blocking 
occurs when a job completing service at station 1 cannot 
proceed to stationj because station j is full. In this case 
station i 's server stops processing until station j releases 
a job. 

Since blocking causes interdependencies between sta- 
tions, product form or other approximate methods for in- 
finite capacity networks cannot be applied in their original 
forms. Simulation and/or numerical analysis is generally 
used instead. This introduces major problems, as simu- 
lation is expensive and statistically inaccurate while nu- 
merical methods are restricted to very small networks 
(since the state space grows rapidly with the number of 
stations and jobs). 

In recent years there has been a growing interest in the 
development of computational methods to analyze block- 
ing queueing networks. The interest developed primarily 
from the realization that these models are useful in the 
study of the subsystem behavior in computers and com- 
munication networks. In addition they provide detailed 
descriptions of several computer-related applications. 

Various types of blocking have been reported in the lit- 
erature so far. In the following we discuss those studies 
which investigate the transfer blocking type. 

In [ 11 we show that the state spaces of a closed network 
with two stations and transfer blocking and the same net- 
work without blocking agree exactly if the number of jobs 
in the nonblocking network is adjusted properly. In [2] 
we extend this concept to networks with more than two 
stations. Here the state spaces cannot be made to agree 
exactly. An approximation is found by selecting the num- 
ber of jobs in the nonblocking network so that the number 
of states are the same as in the blocking network. This 
method allows to compute throughputs. The results of ex- 
tensive validations of the method are presented, and they 
indicate very good accuracy. In order to compute the mean 
number of jobs we introduce in [3] the so-called mite nor- 
malization technique where we consider the blocking net- 
work simply as a product form network. In certain states 
the capacity restrictions of some stations will then be vi- 
olated. The jobs that exceed the station capacity are dis- 
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tributed to the stations upstream according to the routing 
probabilities. This method uses a large amount of com- 
putation but it gives good accuracy. 

Onvural and Perros [ 111 show that if the number of jobs 
in the network is one more than the capacity of the station 
with smallest capacity there is an exact product form so- 
lution. Essentially, what happens is that the blocked server 
functions as an additional space in the queue of the station 
that is blocking it. This is true since at most one server 
can be blocked at a time, so all the jobs (except the one 
in the blocked server) are in the blocking station. Viewed 
in this way, the network is nonblocking and can be solved 
by product form network algorithms. 

Suri and Diehl [21] consider the transfer blocking pol- 
icy in cyclic and tandem networks. They present an ap- 
proximate method to compute the throughput of the net- 
work. If the network is a cyclic network, one of the 
stations has to be nonblocking. If the network is tandem, 
the amval process must be Poisson. They approximate 
groups of two stations by a variable capacity station, de- 
fined as a superposition of fixed capacity stations. They 
start with the last two stations and successively reduce the 
network until two stations in tandem remain. The method 
is easy to implement and shows good accuracy but in- 
volves much computation. At each step all conditional 
probabilities have to be found, since they are used to con- 
struct the equivalent variable capacity station. The method 
only gives the throughput of the entire network, it does 
not give statistics for individual stations. 

Brandwajn and Jow [9] consider tandem networks with 
transfer blocking. The idea is to consider pairs of stations, 
where the state of a station is supplemented with a status 
indicator. The status indicator tells if the station is blocked 
or not. For a pair of stations in the network it is then 
possible to write down the transition rates in terms of the 
states of the neighboring stations. The resulting equations 
are solved iteratively. 

Altiok [5] solves tandem networks with transfer block- 
ing approximately. The delays caused by blocking are 
represented by a phase distribution. The job at the front 
of the queue travels through phases that represent block- 
ing delays after leaving the phase that represents its ser- 
vice requirement. The blocking delays are computed by 
starting at the last stations in the network and going up- 
stream, considering each station as an M/G/1 station. 

Schweitzer and Altiok [ 181 consider aggregation ap- 
proximations for tandem networks with transfer blocking. 
Aggregate states that represent groups of states of the net- 
work are introduced. The balance equations for each sta- 
tion can then be written down in terms of parameters, like 
the probability that the downstream station is full and the 
state-dependent arrival rates, that depend on the rest of 
the network. 

Note that deadlock is possible in transfer blocking net- 
works. All stations in a directed cycle could be full at one 
time. If in each of the stations of the cycle the blocked 
job is scheduled to go to the next station in the cycle, the 

network is deadlocked. There are two possible solutions 
to the deadlock problem: 

i) Include a strategy to handle deadlocks in the model. 
Perros, Nilsson, and Liu [15] assume that in case of dead- 
lock all jobs involved move simultaneously to their des- 
tinations. This complicates the model, since the deadlock 
handling method influences the balance equations. 

ii) Simply restrict yourself to cases where deadlock is 
impossible. One such case arises whenever the number of 
jobs in the system is less than the capacity of the directed 
cycle with minimal capacity. No directed cycle can ever 
have all its stations full at the same time, and deadlock is 
impossible (Akyildiz and Kundu [4]). 

Several other investigators have published results on 
queueing networks with transfer blocking in recent years 
[6], [lo], [14], [22]. The area is surveyed by Onvural 
[111 .  

11. MODEL ASSUMPTIONS 

We consider closed queueing network models with N 
single server stations and a total of K jobs. The service 
time at each station is exponentially distributed with rates 
pi for i = 1 ,  , N .  Each station capacity is restricted 
to a finite limit Mi for i = 1 ,  - - , N .  Simply stated, Mi 
is the capacity of the ith station where Mi = (queue ca- 
pacity + the number of servers). Blocking between sta- 
tions i a n d j  occurs whenj  contains Mi jobs. In this case, 
station i’s server stops processing until station j releases 
a job (i.e., a job in service at station j finishes). Once 
station i is no longer blocked, it resumes its exponential 
service. 

Further. we assume that 

The total number of jobs in the network may not exceed 
the sum of the individual station capacities in the net- 
work. The service discipline utilized at each station is 
first-come-first-served. 

As mentioned before, this proposed model is the trans- 
fer blocking queueing network studied by several inves- 
tigators in recent years [13]. Some years ago, Hard [7] 
proposed an approximation method based upon mean 
value analysis for queueing networks with blocking. 
However, in the validation studies, we found large inac- 
curacies in his approximation method. 

In this work, we introduce another approximation of 
mean value analysis for blocking queueing networks. In 
the next section the algorithm is described in detail. In 
Section IV we give the summary of the algorithm. Section 
V contains a numerical example which explains the gen- 
eral flow of the algorithm. The last section covers the 
evaluation of the algorithm. The Appendix contains re- 
sults of sample queueing networks with different topolo- 
gies. 
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111. MEAN VALUE ANALYSIS FOR BLOCKING QUEUEING 
NETWORKS (MVABLO) 

MVABLO is based on the classical mean value analy- 
sis, MVA, of Reiser and Lavenberg [16]. MVA was de- 
veloped from two major theorems: Arrival Instant Distri- 
bution Theorem [19] and Little’s Law. From the first 
theorem, Reiser and Lavenberg [ 161 derived a formula for 
the mean residence time (time spent by a job in queue and 
in service) of a job in the ith station: 

1 
Pi 

t i ( k )  = - [ l  + k i ( k  - 

where ki(k - 1)  is the mean number of jobs in the ith 
station assuming that there are ( k  - 1 )  jobs in the entire 
network. The informal interpretation of this formula is 
easy. The mean residence time of a job entering the ith 
station is given by its own mean service time plus the 
mean service time of all jobs which are already in the 
queue or in service at that station. 

From the second theorem, the throughput of the net- 
work can easily be derived: 

c eiti(k) 
i =  1 

where e; is the mean number of visits a job makes to sta- 
tion i and is given by: 

N 

ei = c ejpji for i  = 1 ,  - , N 
j =  I 

where pji is the probability that a job in the jth station 
proceeds to the ith station. 

The mean number of jobs in the ith station can also be 
derived from the second theorem: 

ki(k) = eiA(k) t i ( k ) .  ( 3 )  

ki (0)  = 0 is assumed for the initial value in the itera- 
tions. The iteration terminates when the total or desired 
number of jobs in the network is reached. 

As mentioned before, mean value analysis can be ap- 
plied only to product form networks of the form presented 
above. However, the stepwise behavior of the MVA per- 
mits the algorithmic determination of blocking events in 
networks with finite station capacities. Two basic char- 
acteristics of blocking network models must be consid- 
ered in the algorithm: 

i) A station whose successor station capacity is full is 
blocked. 

ii) A station whose capacity is full cannot accept any 
job. 

MVABLO starts with classical mean value analysis and 
computes the mean residence time from ( l ) ,  throughput 
from (2), and the mean number of jobs in each station 
from (3). After each iteration, we check to guarantee that 
the mean number of jobs in each station is less than or 

Mean Service Time of job in service 

Mean Remaming Service Time 
of the job in service - 

lob in server A m v a l  of new job I ’  
lob service finished 

new Job begins execuuon 
End of service 

Fig 1 

- 
equal to the capacity of that station, (i.e.,  k, 5 M , ) .  If 
this is not the case, we must consider the two additional 
characteristics of blocking networks mentioned above. 

The fact that a job cannot join another station with a 
full capacity has the effect of increasing the mean resi- 
dence time of the source station. The job blocks the source 
station until a place is available in the full destination sta- 
tion. This place will be available after a job has finished 
service at the full station. Accordingly, the mean resi- 
dence time of the jobs in the blocked station increases by 
the mean remaining service time BT, of the deslination 
station: 

1 

Pj 
t j ( k )  = - [ l  + k j ( k  - l ) ]  + BT, 

fori ,  j = 1 ,  2, * - , N and i # j .  (4) 
In order to determine BT, we utilize the following 

known theorem [17]. 
Theorem: The mean remaining service time 87, of the 

destination station is exactly its mean service time 1 / p , .  
Pro08 We consider an M/G/1-FCFS system with 

F,(t) = 1 - exp { - A t }  as the arrival distribution func- 
tion and F, ( t )  = Arbitrary as the service time distribution 
function. 

The waiting time of an arriving job is computed by add- 
ing the mean remaining service time to the product. of the 
queue length and the mean service time. The mean re- 
maining service time is the time that the job in ,service 
still needs to complete at the moment the new job enters 
the system. 

The mean remaining service time for a newly arriving 
job is zero if the server is inactive. In this case, the new 
job is served immediately. In our consideration this case 
is irrelevant, since the capacity of the station is already 
full whenever BT, is to be computed. Therefore, we com- 
pute the mean remaining service time of a job assuming 
the system is active. 

Let b (x )  be the density function of the service time X 
= l / p .  Let b’(x) be the density function of the service 
time intervals where a job enters the system. 

b’(x) - x (5) 
The longer the time interval, the greater is the proba- 

bility that a job arrives in the system. 

b’(x) - b(X) (6 )  
The greater the probability of a time interval x, the 

greater the probability that a job arrives in this interval. 
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Since b'(x) is the density function, from ( 5 )  and (6) it 
follows that 

1 b'(x) dx = n 1 xb(x) dx (7)  
0 0 

1 = nx ( 8 )  
1 n = -  - 
X 

where II is the proportional factor 
Then it follows: 

(9) 

X 
b'(x) = 7 

x b ( x ) '  

The mean length of the service time when a new job 
arrives can easily be computed by 

- 
X 2  

xb'(x) dx = = X 2 b ( X )  dx = T. (11) 
x o  sm X 

The mean remaining service time that a job must wait, 
BT, is given by: 

By substituting the first {X = 1 / p }  and second mo- 
ments {x' = 2 / p 2 }  for the exponential distribution in 
(12), we obtain the following result for the mean remain- 
ing service time: 

Thus the time that a blocked job must wait in the source 
station is exactly the mean service time of the destination 
station. This completes the proof. 

If a source station has many successor stations and one 
of them is full, the mean residence time of the source sta- 
tion increases by the mean service time of the full station 
multiplied by the transition probability by which the job 
would proceed to the full station, weighted by the ratio of 
the mean number of visits of the full station ( e j )  to the 
mean number of visits of the blocked station ( e ; ) .  

1 

cqi 
t j ( k )  = - [ l  + k j ( k  - l ) ]  + BT,Y$] (14) 

The second general characteristic of blocking networks 
is that a full station cannot accept a new job. As a result, 
the mean residence time is computed by the mean service 
times of jobs which are already in the station: 

ti@) = 1 [ k i ( k  - l ) ]  
Pi 

If the capacity of a station is exceeded in an iteration, 
that is, k i ( k )  > M i ,  we repeat the iteration. New mean 
residence times are derived from (14) and (15). Through- 
put is computed using (2). Finally the- mean number of 
iobs is comDuted via (3). In all following iterations. we 

use (14) and (15) for the computation of the mean resi- 
dence times. If an additional blocking event occurs in the 
same station, the mean residence time of the destination 
station remains the same while the mean residence time 
of the blocked station is again increased. 

IV. THE ALGORITHM SUMMARY 
begin 

for all stations i = 1 to N do - 
* k,(O) = 0 
* BT,(O) = 0 

Z j ( 0 )  = 1 
- compute e ; ,  the mean number of visits 

by a job to station i 
end 
for all jobs in the network k = 1 to K do 

begin 
Repeat 

for all stations i = 1 to N do 
1 

Pi 
1. i i(k) = - [z;(k)  + k;(k - l)] + BT,(k) 

end 
k 

c e i i i (k)  
2. X(k) = 

i = l  

for all stations i = 1 to N do 

end 
4. if there exists a ki (k)  > Mi then 

3 .  &(k) = t , (k )  e ih (k )  

. Zi(k) : = 0 

* BT,(k) := BT,(k) + 
Pi 

else 
* z;(k + 1) : = Zi(k) 
* BT,(k + 1) := BT;(k) 

endif 
until ki (k)  < M; 

end {fork = 1 t o K }  
end 

We can also compute other interesting performance 
measures using the MVABLO results. The blocking prob- 
ability of a station is computed from the proportion of the 
mean blocking time to the mean residence time of jobs in 
a station: 

The mean waiting time of a job in the ith station is com- 
puted by subtracting the mean service time and the mean 
blocking time of jobs from the mean residence tiime: 

for i = 1, 2, . , N .  (17) 

The throughput of each station is given by: 



422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 4. APRIL 19x8 

The utilization is defined as: 

The mean queue length in the ith station can be ob- 

Qi(k) = iGi(k) X i ( k )  for i = 1, , N .  (20) 

In the following numerical example, we outline the 

tained by Little’s Law: 
- 

general flow of the MVABLO algorithm. 

V. NUMERICAL EXAMPLE 
Examine a closed queueing network model with N = 3 

stations and K = 27 jobs. The stations have finite capac- 
ities MI = 12, M2 = 10, and M3 = 14. The service time 
distribution is exponential with the mean rates pl = 1, p2 
= 2, and p3 = 3. The stations are serially connected. 

Until the iteration ( k  = 14) the MVABLO behaves ex- 
actly like classical MVA for networks with infinite station 
capacities. The mean number of jobs k, never exceeds the 
capacity limit of the respective stations. For k = 14 we 
obtain the following values for the mean number of jobs 
in each station: 

k l (  14) = 12.507 k2( 14) = 0.9992 

lates the capacity limit, 

k3( 14) = 0.4999. 

Now the mean number of jobs in the first station vio- 

- 
kl(14) = 12.5017 > MI = 12. 

As a result, we have to modify the mean residence 
times. First the modifications in step 4 of the algorithm 
are performed. 

zl( 14) = 0 BTl( 14) = 0 BT2( 14) = 0 BT3( 14) = 1 

We repeat step 1 and obtain the new mean residence times: 

il( 14) = 11.503 t2( 14) = 0.999 t3( 14) = 1.5. 

Step 2 yields 

h( 14) = 0.999. 

Step 3 obtains the new mean number of jobs in each sta- 
tion: 

Pince the first station is again full { kl(27)  = 12.0108 
> MI = 12}, the third station is blocked. Thus we have 

We now repeat steps 1-3 to obtain 

t,(27) = 11.80 X(27) = 0.98 k1(27) = 11.57 

t2(27) = 0.99 

t3(27) = 14.73 

k2(27) = 0.97 

k3(27) = 14.44. 

Now the mean number of jobs in the third station vio- 
lates the capacity limit, since 

k3(27) = 14.4475 > M3 = 14. 

Therefore we modify 

~ ~ ( 2 7 )  = 0 BT1(27) = 0 

BT2(27) = 0.333 BT3(27) = 10. 

The mean residence times are obtained by repeating steps 

t1(27) = 11.80 X(27) = 0.9806 k1(27) = 11.57 

t2(27) = 1.33 

t3(27) = 14.40 

Since the third station is still full { k3(27) > M3 := 14) ;  

1-31 

- 
k2(27) = 1.30 

k3(27) = 14.12. 
- 

it follows that the second station is again blocked: 

BT2(27) = BTz(27) + 
P3 

We repeat the iteration fork = 27 for the third time by 

t1(27) = 11.80 X(27) = 0.968 k1(27) = 11.43 

t2(27) = 1.66 

i3(27) = 14.4 

Since no capacity limitations are viol: ted and the total 

returning to step 1 and obtain 

- 
k2(27) = 1.61 

k3(27) = 13.95. 
- 

number of jobs in ;he network ( K  = 27) is reached, the 
last values shown above are the final results for perfor- = 11’502 E2(14) = 0’999 = 1.49’ 

Obviously no capacity limitation is violated so that we 
can increase the iteration step. Continuing through the it- 
erations, for k = 26 we have 

mance measures. In Table I we list the MVABLO results 
and the exact results for this model which were obtained 
by numerical analysis [20]. 

VI. EVALUATION 
About 150 queueing network mode’s with blocking 

k3(26) = 13.20 z3(26) = 0 BT3(26) = 9. were investigated for the validation of the method. The 
number of jobs was varied from 5 to 100 and the number 
of stations varied from 2 to 6. The malytical results were 
compared with simulation results obtained by the RESQ 
programming package [ 171 and with numerical analysis 
results [20]. 

The major advantage of the MVABLO is its extremely 

For k = 27 we compute 

tl(27) = 11.80 X(27) = 1.017 k1(27) = 12.01 

t2(27) = 0.99 

t3(27) = 13.73 

k2(27) = 1.02 

k3(27) = 13.97. 
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fast execc ion 

TABLE I 

3.3 
0.5 
2.9 
3.1 

time. MVABLO also has very low storage 
requirement, on the order of 0 [ N (  K + 1 ) 1. 

Our validation study has shown that on the average 
MVABLO results differ by 10 percent from the simulation 
or exact numerical results. One reason for larger devia- 
tions is the checking of the station capacity violation. 
After each iteration we check whether or not the mean 
number of jobs is less than the capacity of the station. If 
this value is minimally less than the capacity of that sta- 
tion, we continue the iterations. But if the station capacity 
is minimally exceeded, then we modify the mean r a i -  
dence times. However, modifying mean residence times 
can introduce large deviations into a situation that origi- 
nally had a minimum deviation. In such a case, the orig- 
inal mean residewe times could be a better estimate than 
the modified results. Furthermore, the checking of station 
capacity violations does not always detect the blocking. 
Blocking might occur in reality even though the mean 
number of jobs does nqt exceed the capacity of the station 
in the iteration of MVABLO. In such a situation no mod- 
ifications are performed on the mean residence times. 
MVABLO behaves exactly like the classical MVA in such 
cases. This can be observed in the examples given in the 
Appendix: 6 with 10 jobs, 7 with 15 jobs, and 8 with 10 
jobs where MVABLO results agree with the classical 
MVA results. 

Another cause of the large deviations results from the 
mean number of jobs in a station ki ( k )  exceeding the ca- 
pacity M, ,  due to the increase in its blocking time. If the 
capacity is exceeded, we must lower the throughput so 
that the mean number of jobs in the full station wi!l be 
less than the capacity. We will explore this in detail by 
considering the numerical example presented in Section 
V. 

We have seen that the mean number of jobs in the third 
station k3(27) exceeds the capacity M3 for the first time 
during the iteration 27. The capacity is also violated after 
the first correction to the 27th iteration. This second vio- 
lation occurs because of the increasing blocking time of 
the third station and not because of new arrivals. We ob- 
tained the mean number of jobs in the third station k,( 27) 
= 14.4475 and the mean residence time t3( 27 ) = 14.733. 
Since the capacity of the third station is only M3 = 14, 
we must lower the k3( 27) value. 

First we set the counter ~ ~ ( 2 7 )  to zero. By setting the 
counter ~ ~ ( 2 7 )  to zero we can partly lower the k3(27) 
value. The third station’s mean service time ( I  / p 3 )  = 
0.333 is smaller than the mean service time of the first 

station’s mean service time ( 1 / p ,  ) = 1. This is added to 
the mean residence time of the third station if the first 
station is full. So we obtain the mean residence time 
t3(27) = 14.4. As a result, the throughput value must be 
lowered at least to X(27) = 0.9722 so that the k3(27) 
value will be less than the capacity M3 = 14. By com- 
paring this throughput value A (  27) = 0.9722 to the exact 
value we establish a deviation of 2.7 percent. This con- 
tinves through the next iterations. 

We have concluded that if the mean service times of the 
stations are very different from each other, considerable 
capacity exceeding may occur in the model. These ex- 
ceedings cannot be sufficiently lowered by merely setting 
the counter value z j ( k )  = 0. This decreasing of the 
throughput value also leads to frequent blocking events at 
the station and thus to a large increase of the mean resi- 
dence time of the predecessor stations. Hence deviations 
can occur as shown in the following tables. The tables 
illustrate that the increase of the blocking time is the sec- 
ond station causes the jobs to be removed from the first 
to the second station. The mean residence time of the first 
station will be decreased accordingly. 
For K = 28: mi 

13.556 14.650 8.1 
0.999 0.953 4.1 

For K = 29: 
I Exact I MVABLO I Deviation 

7, I 11.849 I 10.894 I 8.1 1 $ I 3.611 I 5.075 1 4::; I 
13.568 14.652 
0.998 0.941 5.2 

For K = 30: 

13.59 14.625 
0.991 0.952 4.6 

For K = 32: 

In most of the examples MVABLO exhibited behavior 
similar to the example shown above. In some iferations 
the results for performance measures were very close to 
the exact values. In some iterations the approximation 
could not capture the blocking events. However, the im- 
portant fact to realize is that the MVABLO results are 
inherently correct. 

MVABLO does not handle the deadlock prodem. 
Whenever a deadlock occurs in a network MVABLO ter- 
minates after looping on one iteration for a predetermined 
number of repetitions, issuing a message to the effect that 
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4.9 
1.1 
0.2 
4.9 
1.1 
1.1 

the system is deadlocked. In our implementation the 
repetition limit was set to 100. 

For further investigation MVABLO could be improved 
in an attempt to remove the above mentioned problems. 
It could also be extended to networks with multiple server 
stations. 

3.4 
20.1 
3.9 
2.3 
18.7 
1 

i) K = 15 jobs: 

1.4 
2.4 
0.5 
1 4 
2.4 

I 1.4 

I MVABLO I Simulation I Std.Dev. I &(%) I NOCAP I &(%) 
5; I 11.501 I 11.85 1 0.2 I 3.0 I 13.501 I 13.9 

0.999 
0.499 
13 SO0 
0.999 
0.499 
0.999 

fi 1 
78.6 

11.25 11.71 
0.977 0.95 
2.770 2.33 
0.9783 0.988 APPENDIX 

We give results for 15 blocking queueing networks with 
various number of jobs. We have a total of 33 test cases 
with different system input parameters. The deviations 6 
are computed using the following relative formula: 

1 Simulation Value - MVABLO Value 1 
Simulation Value 

6 =  * loo. 

The first 5 models are two-station-networks where the 
input parameters are: 

ii) K = 20jobs: 
- 
&(%) 
54.5 
2.7 
93 
56.2 
1.6 
93 
1 

NOCAP 
18.501 
0.999 
0.499 
18.500 
0.999 
0.499 
0.999 

11.970 

7.224 0.16 
11.840 1.20 
1.016 0.49 
7.144 
0.989 0.6 

11.985 
1.010 
7.332 
0.984 

Example 1 K I M I  I M, I Upl 1 llc~, 
1 1 2 0 1  181 101 2 I 3.33 iii) K = 33 jobs: 

I: I MVABLO I Simulation I std.~ev.  I til(%) I NOCAP 
TI I 13.254 1 13.05 I 0.02 I 1.5 I 31.5 141.3 

14.49 1 1 8.56 
11.621 11.93 
13.%5 13.25 

k3 7.413 1.83 
0.8683 0.986 

93 
94 
164 
92.4 
93.6 
1.4 

The MVABLO results are shown in the following table: 
0.04 

Example 2 
N = 3 stations (serially switched); M I  = 4, M2 = 5 ,  

i) K = IOjobs: 
I 4 3  = 5 ;  l / p j  = 1.5 ,  1 / p 2  = 2.0, 1/p3 = 1.0. 

I MVABLO I Simulation I StdDev. I 6,(%) I NOCAP &(%) - 7.854 I 0.6 I 11.4 I 4.888 & 
t ,  I 6.925 I 

8.061 
4.185 
3.683 
4.204 
2.183 
0.468 

8.206 
5.277 
3.612 
3.848 
2.47 
0.5 

1.7 
20.6 
1.9 
9.2 
11.6 
11.3 

In the following tables we list results of arbitrary cho- 
sen numerical examples with 3, 4, and 5 stations. Each 
table contains three computations for various number of 
jobs. These are a) MVABLO, b) simulation, and c) NO- 
CAP results. NOCAP implies that the network is ana- 
lyzed by ignoring the blocking, i.e., setting the station 
capacities Mi = 03, and using the standard product form 
solution. 

The third column in each section contains the standard 
deviation of simulation results. 61 shows the relative de- 
viations between MVABLO and the simulation. 62 shows 
the deviations between NOCAP and simulation. This col- 
umn demonstrates the effects of finite station capacity on 
the performance of the network. 

Example I 

6.674 

0.488 

ii) K = 12 jobs: 
61(%) 

8.2 

8.7 
0.8 
1 
0.3 
7.8 

10 

MVABLO 
7.967 
9.019 
8.01 1 
3.825 
4.330 
3.846 
0.48 

3.792 

3.831 
0.436 

Example 3 
N = 3 stations (Central Server Model); M I  = 8,  M2 = 

7, M3 = 6 ;  l/pl = 0.2, 1/p* = 1.2, 1/p3 = 1.4.; plj = 
0 . 5 ; ~ ~ ~  = 1 f o r j  = 2, 3.  

N = 3 stations, (serially switched); MI = 12, MZ = 14, 
M3 = 8,  l /p l  = 1.0, 1/p2 = 0 . 5 ,  l /p3 = 0.333 
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i) K = IOjobs: i) K = 8 jobs: 1 
34.8 

- 
&(%) - 
23.3 
53.7 
58.6 
23 
53.8 
58.8 
0 

I MVABLO I Simulation 
1.371 

NOCAP 
0.2740 
5.0070 
9.0397 
0.3755 
3.4308 
6.1936 
1.370 

2.8 
2.7 
0.2 
1.3 
1.1 
2.6 

3.7 
10.9 
13.1 
12.5 
3.9 
6.5 

5.007 
7.639 
2.093 
3.130 
4.776 
1.25 

5.199 
6.885 
1.850 
3.580 
4.593 
1.338 

1.9 

1.5 

ii) K = 12 jobs: 
K = 10jobs: 
MVABLO Simulation 

14.2597 14.60780 
9.3476 9.16352 
4.1795 4.39325 
5.6778 5.75745 
3.5175 3.40713 

0.3982 0.39412 

- 
61(%1 - 

2.3 
2.0 
4.8 
1.3 
3.2 
3.6 
1 - 

Std. Dev. 
7 
1.7 

16.7 
0.8 
4.2 

11.5 
6.2 

NOCAP 
22.3375 
2.1905 
1.2395 
8.9325 
0.8278 
0.2396 
0.3998 

y 71.3 

7.265 
3.262 10.9 
3.867 
4.870 

1.474 1.339 

Example 4 
N = 3 stations; M I  = 6, M2 = 8, M3 = 6; l /p l  = 2.5, 

1/p2 = 1.2, l / p 3  = 1.0; p12 = 0.5; p21 = 0.7;  p31 = 
0.7; pi3 = 0.5; p23 = 0.3; p32 = 0.3.  

i) K = 8jobs: 

iii) K = I1 jobs. 

std.Dev. &(%) 

0.8 2.9 
2.6 
7.5 
5.6 7.9 

MVABLO 

5.9809 
4.1343 

.8848 
0.4213 

Simulation 
14.8849 
11.6514 
4.6866 
5.8099 
4.3046 
0.8854 
0.3913 

- 
%(%) 
22.4 
56.9 
61.4 
22.8 
56.7 
61.2 
0.2 - 

~ 

%(%) 
55.3 
77.3 
78.4 
55.3 
77.3 
78.4 
0 

Simulation Std.Dev. 6,(%) 

3.6230 
5.7657 0.6 2.4 
1.2026 
1.0316 6.2 
0.3988 2.6 11.7 

MVABLO 

5.905 

0.9667 
0.4456 

NOCAP 
17.708 
1.821 
1.398 
7.081 
0.520 
0.399 
0.399 

NOCAP 
22.6976 

1.8254 
1.3997 
9.0785 
0.5215 
0.3990 
0.399 

Example 6 
= 4; 

M3 = 4 ;  M4 = 4 ;  l / p l  = 1.8, 1 / p 2  = 2.6, l / p 3  = 2.8, 
l /p4  = 2 . 4 .  

N = 4 Stations, (serially switched); M I  = 4 ,  

i) K = IO jobs: 

ii) K = 10jobs: 

8.0578 

5.978 5.8440 
2.113 8.3 
1.900 2.8 

6.6 5.2 

-- 
M%: -- 
25 
12 
9 

25 
16 
3 

22 
13 
3.3 -- 

I MVABLO I Simulation I Std.Dev. 1 6,(%) I NOCAP 
T, I 3.792 I 5.087 I 2.1 I 25 I 3.792 

1.9 
1.6 
3.7 
1.3 
1.7 
2.4 
2.1 
2.1 - 

12 
9 

25 
16 
3 

22 
13 
3.3 - 

9.339 
11.784 
7.426 
1.172 
2.886 
3.644 
2.296 
0.309 

9.339 
11.784 
7.426 
1.172 
2.886 
3.644 
2.296 
0.309 

10.660 
10.840 
9.530 
1.404 
2.952 
3.003 
2.641 
0.276 

iii) K = 11 jobs: 

0 1.8258 81.7 
14.8 1.3990 82.4 
2 10.0780 71.7 
3.9 0.5216 81.7 

10.2 0.3999 82.4 
3.9 0.3999 0 

ii) K = 12 jobs: 
- e 
62 
13 
41 

3 
58 
2.9 

57.1 
8.1 

11.5 

NOCAP 
4.016 

10.873 
14.266 
8.379 
1.284 
3.476 

4,.561 
2.678 
0.3 19 

MVABLO 
8.0907 

11.236 
8.997 
8.379 
2.645 
3.673 
2.941 
2.739 
0.326 

Simulation 
10.600 
12.490 
10.12 
8.643 
3.039 
3.583 
2.902 
2.477 
0.286 

Std. Dev. 
1.3 
0.5 
1.4 
1.7 
1.3 
0.5 
1.4 
1.7 
1.3 

4.1 23.6 
10 
11 
3 

12.9 
2.5 
1.3 

10.5 
13.9 

Example 5 
N = 3 stations; M I  = 6, M2 = 6 ,  M3 = 6 ;  1 /pl  = 2 . 5 ,  

1/p2 = 1.2, 1/p~g = 1; p12 = 0.8; p z I  = 0.7; p31 = 0.7;  
pi3 = 0.2; p23 = 0.3;  p32 = 0.3 
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Std.Dev. 61(%) NOCAP 
2.9 32.9 1.6853 
1.4 7.2 7.9283 
2.1 22.7 3.6759 
1.5 21.8 5.8070 
1.5 28.7 4.2781 
2.9 27 0.7210 
1.4 16.5 3.3918 
2.1 16 1.5726 
1.5 14.9 2.4843 
1.6 40 1.8302 
2.9 8.8 0.427 
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%(%) 
32.9 
7.2 

22.7 
21.8 
28.7 
27 
16.5 
16 
14.9 
40 

8.8 

iii) K = 14 jobs: i )  K = IOjobs: 
__ 
%(a) 
69 
14 
29 
26.4 
61.1 
7.9 

62 
7.7 

25.7 

MVABLO 

13.976 

3.542 
3.969 

&3 2.651 
k4 3.837 

0.274 

MVABLO 
1.6853 
7.9283 
3.6759 
5.8070 
4.2781 
0.7210 
3.3918 
1.5726 
2.4843 
1.8302 
0.427 

Simulation 
13.57 
14.42 
13.11 
12.59 
3.538 
3.76 
3.418 
3.285 
0.26 

Simulation 
2.512 
7.395 
4.761 
7.430 
3.323 
0.988 
2.910 
1.873 
2.921 
1.307 
0.393 

9.261 

1.1 

1.1 

Example 7 
N = 4 Stations, (serially switched); MI = 3; M2 = 6; 

M3 = 7; M4 = 5 ;  1/p1 = 1.8, 1/p2 = 2.6, 1/p3 = 2.8,  
1/p4 = 2.4; 

i) K = 15jobs: 

ii) K = 12 jobs: 
- 
%(%: - 
49.3 
0 

27.4 
27.7 
23.4 
40 
18 
14.1 
14.5 
46 
18.6 - 

61(%) NOCAP 

20.7 9.6793 
27.4 4.0303 
10.5 6.7349 
17.9 4.7670 
28.2 0.7798 
6.3 4.3076 

14.1 1.7936 
5.4 2,9972 

18.6 0.445 

MVABLO 
3.7523 
7.6793 
4.0303 
8.3349 
3.1672 
1.6699 
3.4176 
1.7936 
3.7093 
1.4095 
0.445 

std. Dev. 
1.3 
3.6 
2.1 
3.5 
1.4 
1.3 
3.6 
2.1 
3.5 
1.4 
3.8 

Simulation 
3.460 
9.696 
5.556 
9.320 
3.862 
1.302 
3.649 
2.090 
3.507 
1.452 
0.375 

- 
6,(%) 
20 
16 
4 

11 
10 
5 
7 
0 

12.6 

NOCM &(%) 

1.411 
4.344 
6.049 
3.195 
0.33 12.6 

std. Dev. 
3.2 
1.8 
0.7 
1.3 
2.4 
1.2 
3.1 
0.7 
3.2 

MVABLO 
4.273 

13.150 
18.310 
9.671 
1.411 
4.344 
6.049 
3.195 
0.33 

Simulation 
5.393 

15.640 
19.130 
10.890 
1.582 
4.595 
5.625 
3.197 
0.293 

iii) K = 14 jobs: 
- 

%(%) 
66.6 
2 

46.2 
33.7 
0 

54.1 
34.7 
25.9 

8.8 
36.6 
37.6 __ 

MVABLO Simulation 
5.271 5.413 

10.018 11.830 
7.286 

3.677 3.935 
2.674 2.682 
3.712 3.839 

1.744 
0.367 0.332 

0.16 
0.59 
0.29 
0.82 
0.77 
0.16 
0.61 
0.32 
0.81 
0.9 

K = I8  jobs: 

7.857 8.484 

12.612 
2.5369 
5.812 5.629 
5.579 
4.072 
0.322 0.276 

i i) 
- 
62(96) 
47.4 
24.3 

2.8 
22.8 
36 
7.9 

25 
10.3 
22 

NOCAP 
4.457 

15.360 
22.709 
10.812 

1 S04 
5.183 
7.663 
3.648 
0.337 

5.210 
0.825 
5.303 

1.1 7.7 
0.3 
0.5 
0.8 4.4 

Example 9 
N = 3 Stations, (serially switched); M ,  = 35; M2 = 

i )  K = 50jobs: 
30; M3 = 40; l/pI = 10, l/pz = 100, 1/p3 = 50. 

19.17 18.75 2.2 99.4 
29.82 

1.01 

ii) K = 75 jobs: 

zii) K = 18 jobs: 
I MVABLO I Simulation I Std.Dev. I Zi1(%) I NOCAP I %(%) 

7; 1 12.933 1 11.67 I 1.3 I 10.8 1 4.552 1 61 

2.795 2.762 
5.965 5.869 

6.715 
4.516 4.657 
0.216 0.236 

5.721 

3.915 
0.34 

2.1 
2.2 8.4 

I MVABLO I Simulation I Std.Dev. I 6,(%) I NOCAP 
T, I 3.549.64 I 3198.00 I 2.4 I 10.9 I 11.11 

2601.73 
1460.92 
34.97 
25.63 
14.39 
0.01 

162 
90 
99.6 

146 
91 
0 

7.7 7388.88 

2.1 0.11 
29.99 I 7.5 33.6 73.88 
10.77 3.4 33.6 1 
0.01 0.01 0 0.01 

Exumple 8 
N = 5 Stations; (serially switched); M I  = 2; M2 = 4; 

M3 = 3; M4 = 4; M5 = 2; 1/p1 = 1 ;  1/p2 = 2; 1/p3 
= 1.5; l /p4 = 1.8; l /p5  = 1.6. 
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r 
i2 
i3 

kJ1 

Ti 

5 
5 
1 3  
k4 
h 

iii) K = 100 jobs.  

MVABLO Simulation Std. Dev. 
405.68 389.90 0.5 
705.54 612.40 0.1 
931.45 824.70 0.1 
312.50 239.60 0.8 

17.22 18.85 0.5 
29.95 29.63 0.1 
39.55 39.94 0.5 
13.26 11.58 0.8 
0.04 0.05 0.5 

4078.130 3328.0’) 
34.769 34.50 0.25 
25.261 29s 0.1 
39.969 35.52 0.2 
0.009 0.01 0.2 

6i(%) NOCAP M%) 

0.11 
15.7 230 
12.5 

0.01 

Example 10 
N = 4 Stations; (serially switched); M I  = 20; M2 = 

30; M3 = 40; M4 = 15; l / p l  = 10; 1/p2 = 5; l / p 3  = 
20; l /p4 = 15; 

i) K = 50jobs:  

MVABLO 
20.035 

131.570 
793.460 
60.136 
0.996 
6.544 

39.467 
2.991 
0.049 

ii) K = 75” 

20.13 
125.90 
785.80 
56.85 

1.01 7.2 
6.38 

39.75 
2.86 9.6 
0.05 0.1 

bs: 

I MVABLO I Simulation 
72.28 

609.69 
787.36 
59.45 
3.54 

29.91 

2.92 
0.05 

38.62 

66.50 
569.40 
789.40 

56.85 
3.36 

28.85 
39.93 

0.05 
2.86 

ski. Dev. 
3.8 
0.6 
0 
9.6 

0.6 
0 
9.6 
0.7 

3.8 

- 
6,(%) 
0 
4.5 
0 
5.7 
1.7 
2.5 
0 
4 A 
1.3 - 

7.1 
0.2 
4.5 
5.5 
3.6 
3.2 
1.8 
0 - 

61(%) 
4.0 

15.2 
12.9 
30.4 
8.6 
1.1 
0.9 

14.5 
12.0 

NOCAP 
19.990 
6.667 

913.334 
59.990 
0.999 
0.333 

45.660 
2.999 
0.050 

NOCAP 
20.00 
6.66 

1413.33 
59.99 

1 .00 
0.33 

70.66 
3.00 
0.05 

NOCAP 
20.00 
6.67 

1913.33 
60.00 

1 .oo 
0.33 

95.66 
3.00 
0.05 

__ 
M96) 

0 
94.7 
16.2 
5.5 
1 A 

94.7 
14.8 
4.7 
0.7 

- 

70 
99 
79 
6 

70 
99 
17 

5 
0 

M%) 
95 
99 

132 
75 
95 
99 

139 
74 

3 - 

REFERENCES 
[ I ]  I. F .  Akyildiz, “Exact product form solution for queueing networks 

with blocking,” IEEE Trans. Compur., vol. C-36, pp. 122-125, Jan. 
1987. 

[2] -, “On the exact and approximate throughput analysis of closed 
queueing networks with blocking,” IEEE Trans. Software Eng., vol. 
14, pp. 62-71, Jan. 1988. 

[3] -, “Product form approximations for queueing networks with mul- 
tiple servers and blocking,” IEEE Trans. Compur., to be published. 

[4] I. F. Akyildiz and S .  Kundu, “Buffer allocation in deadlock free 
blocking queueing networks,” Dep. Comput. Sci., Louisiana State 
Univ., Tech. Rep. TR-86-013, Apr. 1986. 

427 

[5] T. Altiok, “Approximate analysis of exponential tandem queues with 
blocking,” European J. Oper. Res. ,  vol. 11, pp. 390-398, Oct. 1982. 

161 T. Altiok and H. G. Perros, “Approximate analysis of arbitrary con- 
figurations of open queueing networks with blocking,” AIIE Trans., 
Mar. 1986. 

[7] Y. Bard, “Some extension to multiclass queueing network analysis,” 
in Fourth Int. Conf. Modeling and Performance Evaluation of Com- 
puter Systems, vol. 1, Vienna, Austria, Feb. 1979. 

[8] F. Baskett, K. M. Chandy, R. R. Muntz, and G. Palacios, “Open, 
closed and mixed network of queues with different classes of cus- 
tomers,” J. ACM, vol. 22, no. 2, pp. 248-260, Apr. 1975. 

[9] A. Brandwajn and Y. L. Jow, “Tandem exponential queues with fi- 
nite buffers,” in Proc. Computer Networking and Performance 
Evaluation, T. Hasegawa, H. Takagi, and Y. Takahashi, 
Eds. Amsterdam, The Netherlands: North-Holland, 1985, pp. 245- 
258. 

[ IO]  L. Gun and A. Mckowski, “Matrix-geometric solution for finite ca- 
pacity queues with phase-type distributions,” in Proc. Performance 
87 Conf., P. J. Courtois and G. Latouche, Eds. Amsterdam, The 
Netherlands: North-Holland, 1988, pp. 269-282. 

1111 R. 0. Onvural and H. G. Perros, “Some exact results on closed 
queueing networks with blocking,” Dep. Comput. Sci., NCSU, Tech. 
Rep., 1987. 

[12] R. 0. Onvural, “A survey of closed queueing networks with finite 
buffers,” Dep. Comput. Sci., NCSU, Tech. Rep., 1987. 

[13] H. G. Perros, “Queueing networks with blocking: A bibliography,” 
ACM Sigmetrics Perform. Eval. Rev.,  Aug. 1984. 

[ 141 H. G. Perros and T. Altiok, “Approximate analysis of open networks 
of queues with blocking: tandem configurations,” IEEE Trans. So&- 
ware Eng., vol. SE-12, pp. 450-462, Mar. 1986. 

[15] H. G. Perros, A. Nilsson, and Y. Liu, “Approximate analysis of 
product form type queueing networks with blocking and deadlock,” 
Perform. Eval. ,  to be published. 

[16] M. Reiser and S .  S. Lavenberg, “Mean value analysis of c..osed mul- 
tichain queueing networks,” J. ACM, vol. 27, no. 2, pp. 313-322, 
Apr. 1980. 

[I71 C. H.  Sauer and K. M. Chandy, Computer Systems Performance 
Modeling. Englewood Cliffs, NJ: Prentice-Hall, 1981. 

[I81 P. J. Schweitzer and T.  Altiok, “Aggregate modeling of tandem 
queues with blocking,” in Proc. Second Inr. Workshop Applied Math. 
and Performance/Reliability Models of Compurer/Comnlunication 
Systems, Univ. Rome, Italy, May 1987. 

[19] K. C. Sevcik and I. Mitrani, “The distribution of queueing network 
states at input and output instants,’’ J .  ACM, vol. 28, no. 2,  pp. 358- 
371, Apr. 1981. 

[20] W. Stewart, “A comparison of numerical techniques in Markov mod- 
eling,” Comrnun. ACM, vol. 21, no. 2, pp. 144-152, Feb. 1978. 

[21] R. Suri and G. W. Diehl, “A variable buffer-size model end its use 
in analyzing closed queueing networks with blocking,” Mmagemenr 
Sei., vol. 3 2 ,  pp. 206-225, Feb. 1986. 

[22] Y.  Takahashi, H. Miyahara, and T .  Hasegawa, “An approximation 
method for open restricted queueing networks,” Oper. Res . ,  vol. 28, 
no. 3, pp. 594-602, May-June 1980. 

Ian F. Akyildiz (M’86) received the Lliplom In- 
formatiker and Doctor of Engineering degrees in 
computer science from the University of Erlan- 
gen-Nuernberg, West Germany, in 1981 and 
1984, respectively. 

From 1981 through 1985 he served as an As- 
sistant Professor (Wissenschaftlicher 4ngestell- 
ter) in the Department of Operating Systems (In- 
formatik IV) at the University of Erlangen- 
Nuernberg During that time he coauthored a text- 
book entitled Analysis of Computer S:istetns (in 

German) published by Teubner-Verlag in the Fall of 1982 He also served 
a5 a consultant and lecturer for the University of Maryland European Di- 



428 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 4. APRIL 1988 

vision and Grundig Academy in West Germany from 1983 through 1985. 
In January of 1985 he joined the faculty of the Department of Computer 
Science at Louisiana State University, Baton Rouge, as an Assistad Pro- 
fessor. He was also a Visiting Professor in the Department of Computer 
Science at the University of Florida in the Summer of 1985 and in the 
Department of Computer Science Department of the Universidad Tecnica 
de Federico Santa Maria in Valparaiso, Chile, in the Summer of 1986. In 
the Fall of 1987 he joined the faculty of the School of Information and 
Computer Science at Georgia Institute of Technology as an Assistant Pro- 

fessor. He is preparing a textbook entitled Computer Systems Performance 
Analysis published by Wiley, Chichester, England. His research interests 
are performance evaluation, operating systems, distributed systems, and 
computer networks. 

Dr. Akyildiz is a member o f  the Association for Computing hlachinery 
(Sigops and Sigmetrics), Gesellschaft fuer Informatik (GI), and the Ger- 
man Interest Group in Measurement, Modeling, and Evaluation of Com- 
puter Systems (MMB). 


