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An approximation of mean value analysis is presented for queueing networks containing multiple server stations. The 
approximation is based on the estimation of the conditional marginal probabilities used by the mean residence time formula in mean 
value analysis. A comparison against classical mean value analysis allows us to determine the accuracy of our algorithm. In all 
investigated network models, the approximate results vary from the exact results by less than four percent on the average. This 
approximation method has all the advantages of classical mean value analysis; specifically, it is easy to implement and has a very 
short run time. 

Keywords: Queueing Network, Analytical Method, Mean Value Analysis, Conditional Marginal Probability. 

1. Introduction 

Mean value analysis has enjoyed widespread popularity during recent years as an exact technique for 
providing solutions to product-form queueing networks. The basic concept of mean value analysis is the 
application of an iterative procedure to calculate mean residence time, system throughput, and the mean 
number of jobs. A number of studies about mean value analysis has been published in the last few years 
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[1,3,6,7,10-15,17-21]. The principle advantage to mean value analysis lies in its ability to effectively 
compute the performance measures without computing the normalization constants. However, when 
considering systems with multiple job classes, the storage requirement of mean value analysis increases 
very rapidly. This problem is further magnified when one incorporated multiple server stations into mean 
value analysis. 

Therefore, Reiser and Lavenberg [13], Bard [2], and Schweitzer [15] have introduced an approximation 
for mean value analysis which eliminates the storage complexity problems associated with classical mean 
value analysis, in short form MVA. They approximate the mean number of jobs at each station for the 
network, and then iterate on this approximation, halting when the number of jobs at each of the stations 
stabilizes. However, this approach is limited to single-server models. 

Chandy and Neuse [4] improved the work of Bard and Schweitzer with the Core and Linearizer 

algorithms, but this work was still limited to single-server networks. The method involved estimating the 
fraction of class-r jobs in each station and the fractional change in this value when one job from class s is 
removed from the station. The Chandy and Neuse Core algorithm took as input these estimates for 
fractional changes in the number of jobs at each station with the removal of any one job. This algorithm 
can be shown equivalent to the method proposed by Bard and Schweitzer if one assumes this fractional 
change is zero. The Linearizer algorithm was an improvement over the Core algorithm as it applied to 
Core algorithm to each of the ( K - l r )  populations in order to improve their performance measures 
estimates. These improved performance measures were then used in calculating the necessary values for the 
final population K. 

The first significant technique introduced for the analysis of multiple server stations was done by Neuse 
and Chandy [10] in 1981. SCAT (for Self Correcting Approximation Technique), allowed the analysis of 
queueing network models with multiple job classes and multiple servers. This method involved application 
of the Core algorithm, as introduced in their earlier work with the Linearizer algorithm. The approxima- 
tion was taken back two steps from the final network, in an effort to improve the values used by Core in 
the final approximation. It also provided a simplistic method for approximating the conditional marginal 
probabilities for the multiple-server stations. However, experience has shown that large errors can occur 
using the SCAT method. While SCAT represented the first approximation method for multiple-server 
networks, it was still prone to error. The lack of accuracy of the SCAT method is due primarily to the 
inadequate approximations for the conditional marginal probabilities. 

Heinselman [5], Krzesinski and Greyling [7] as well as Zahorjan and Lazowska [19] have independently 
introduced improved algorithms for computing approximate solutions of queueing networks with multiple 
classes and multiple-server stations. All of these investigations provide tolerance errors on performance 
measures that are under five percent. 

In this work we present a new mean value analysis approximation method for BCMP networks with 
multiple job classes and multiple-server stations. The method contains all the advantages of classical mean 
value analysis while requiring far less storage than the classical approach. 

2. Mean value analysis 

Classical mean value analysis is based on two theorems: The Arrival Instant Distribution theorem of 
Lavenberg and Reiser [8] and Sevcik and Mitrani [16] and Little's Law [9]. The Arrival Instant 
Distribution Theorem states that "a  class-r job, arriving at station i in the system with population K, sees 
the system with population ( K -  l r )  in equilibrium". From the Arrival Instant Distribution Theorem the 
mean residence time of a class-r job in station i, -tir(k), is computed. Using Little's Law, the system 
throughput for each class, ~ r ( k ) ,  and the mean number of jobs, ~:ir(k), are obtained. The general 
algorithm for classical mean value analysis with multiple server stations is given below. 

Notation 

K : the total network population; 
K r : the total number of jobs in class r; 
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: the total number of stations in the network; 
: the total number of classes in the network; 
: the mean service rate of a class-r job at station i; 
: the number of servers at station i, 
: a job vector denoted by (k 1, k 2 . . . . .  kR); 
: the job vector k with one job removed from class r; 
: the transition probability of a class-r job at station i to class s at station j ;  
: the mean number of visits a class-r job makes to station i; 
• the relative utilization of station i for class-r jobs; 
: the mean residence time for a class-r job at station i, given population k; 
: the mean number of jobs at station i in class r, given population k; 
: the total throughput of class r, given population k; 
: the marginal probability of j jobs at station i, given population k. 

Ini t ial izat ion 

• I c i r ( O ) = O f o r a l l i = l  . . . . .  N, r = l  . . . . .  R. 
• p , ( j l O ) = O f o r a l l  j = l  . . . . .  ( m ~ - l ) .  
• p , ( 0 1 o )  = 1 .  

Processing 

for  k = 0 to K do 
for all stations i = 1 to N and all classes r = 1 to R do 

• ~ r (k )  = + ~ - k , s ( k -  1~) + ~., (m, - j ) l ~ ( j  - 11 k -  l r )  
Ilirmi s = l  j = l  

kr 
"hr(k) = N 

E eiriir(k) 
i=1 

• -k~r(k ) = e~rXr~r(k ) 

for j = l  t o m ; - 1  do 

" jq ( j  I k )  = 7 x ,~X~(k) l~ ( j  - l l k -  1~) 
r = l  

endfor  

1 ~_, X, r Z r ( k )  + ~_, (m,  - J) l : t(J I k )  • /~ (O Ik )  = 1 - m~. r = l  j = l  

endfor  
endfor .  

We obtain the final performance measures for the population K = ( K 1 ,  g 2 . . . . .  KR), the total number of 
jobs in the network. 

Each iteration of mean value analysis requires that the performance measures for the (k - 1)st iteration 
are known. The iterations are carried out from 0 to the total jobs in the network, g .  This makes classical 
mean value analysis very time consuming. 
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3. Previous approximations 

The Core and Linearizer methods, as proposed by Chandy and Neuse [4], attempted to approximate 
the fractional percentage of jobs in each station and the change in this percentage due to the deletion of a 
particular job from one class. The Core algorithm computes the mean number of jobs as follows: 

k i t ( K -  l r )  = ( K -  l r )  r X ( F i r ( X )  + O i r s ( X ) )  , 

where 
7,.(x) 

Fir (K)  Kr 
represents the fraction of class-r jobs at station i, and 

Dirs( r )  = Fir( K -  ls) - Fir( K )  
represents the change in class-r jobs at station i by removing one class s job. 

The Linearizer algorithm can be viewed as a major advance in approximate mean value analysis. The 
concept of retreating two steps from the final K population in an effort to improve the ( K - l r )  
performance measures greatly increases the accuracy of approximate mean value analysis. 

The SCAT method proposed by Neuse and Chandy [10] takes this idea of regressing two steps and 
applies it to multiple server stations. SCAT uses a modified version of the Core algorithm that computes 
simplistic conditional marginal probabilities. The general algorithm is outlined below. 

procedure SCAT 
• Apply the modified Core algori thm at populat ion K, with D values of zero 
• Apply the modified Core algori thm at each of the ( K -  l r)  populat ions 
• Calculate the F and D values from the above results 
• Apply the modified Core algorithm using the computed F and D values. 

end. {SCAT} 

In general, the SCAT algorithm provides good results. The accuracy of these results seems to be due 
primarily to their improved estimates of the performance measures at the ( K -  lr) populations. However, 
accurate results also depend on the ability to realistically approximate the conditional marginal probabili- 
ties p ~ ( j l K -  lr). The conditional marginal probabilities that SCAT computes in its calls to the Core 
algorithm can not be considered realistic. 

The SCAT method suggests setting the probability mass very close to the mean number of jobs in the 
station at that iteration. They assign the complete probability mass to the two neighboring values of the 
mean number of jobs T~,r. Computation of the conditional marginal probabilities is outlined below: 

SCAT Marginal Probability Computation 
• compute floor~r and ceiling~r, the two integers sur rounding k ~ r ( K -  lr) 
• compute the marginal probabil i t ies as follows: 

~(floOr~r I K -  lr) = ceil ingir --ki r 
/~(ceiling~r I K -  lr) = 1 - /~( f loor i r  I K -  lr) 

I ~ ( j l K -  l r)  = 0 for all o ther j  

end. {Marginal Probability Computation} 

If, for example, a value for k i t (K)  of 2.4 is obtained, then the marginal probabilities would be assigned as 
follows: 

pi(2 I K -  lr)  =0.6,  

pi(3 I K--  lr) =0.4 ,  

Pi (J  I K - 1 r) = 0 for all other j .  
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This assignment of conditional marginal probabilities is not realistic. An investigation of several networks 
with multiple servers reveals that in many cases the error margin is quite large (exceeding 30%) It should 
also be noted here that as Neuse and Chandy used the following formula for computing deviations, their 
results were not accurately reflected: 

dev = l exact value - computed value I x 100. 
number of jobs 

If the standard formula for relative error is used, then the accidental masking of large errors, as occurred 
in the original SCAT algorithm, is avoided: 

dev = l exact value - computed value I x 100. 
exact value 

The primary reason for this large deviation is the poor approximation of the conditional marginal 
probabilities pi(jlk). Therefore we introduce an improved approximation for the conditional marginal 
probabilities. 

4. Approximation of mean value analysis 

The setting of the probability mass close to the mean number of jobs in the ith station, k i r ( l ( -  l r )  , 

fails to fully reflect the fact that these are only the mean values. We cannot ignore the probability of other 
numbers of jobs existing at that station. Specifically, if 7 t i t ( K - l r ) =  2.6, then you cannot ignore the 
probability of 0, 1, 4, 5 . . . . .  K r jobs in that station. 

We find this especially true if the value for k i t ( K - 1 ~ )  is approximately above m i, the number of 
servers at that station. In this case, all the p~(jl K -  l r )  values for j = 1 . . . . .  (mi - 2) are zero under the 
SCAT algorithm. The computation of -tir(K ) is seriously degraded, as all of the conditional marginal 
probabilities are essentially ignored. 

Therefore, our algorithm seeks a method of scattering the probability mass over a wider range of 
numbers, thus increasing its standard deviation. Specifically, we note that this range should encompass the 
entire range of values 0 . . . . .  ~ : i ( K -  1~) . . . . .  (2[ki~(K)] + 1). This is denoted in Fig. 1. 

In order to accomplish this, we must first identify some weight function which will provide a normal 
distribution of the probability values. This is done using the two formulas shown below. The PR function 
simply scales down the distribution probabilities, while the W[i, j] array represents the calculated 
weighting function for a distribution over pairs of numbers, with j indicating the relative distance of a 
specific pair to the mean. This function will attempt to mimic a normal probability distribution. 

CalculaUon of Conditional Marginal Probabilities 
• ca lculate a scal ing funct ion PR for all n = 1 . . . . .  max(Kr)  

PR[1] = ot 

e R [ n ]  =/3 P R [ n -  1] 

• calculate a weight  funct ion W for all va lues i = 1 . . . . .  max(Kr)  

W[0,  01 = 1 

W [ i -  1, j ]  PR[ i ]  
w [ i ,  j ]  = w [ i -  1,  j ]  - l O O  

i--1 

W [ i ,  i ]  = 1 - ~_, W [ i ,  j ]  
j=o 

for j =  I . . . . .  ( i -  1) 

end. 

(la) 

( lb)  

(2a) 

(2b) 

(2c) 
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[kt, (K-l , )  - 2.6 jobs] 

) 

SCAT method ) 

Fig. 1. 

8 jobs = K, 
7 jobs 
6jobs 
5jobs < I 
4 jobs < II 
3 jobs < I 
2jobs < ]l 
1 job < I 

O jobs < ] 
Improved Approximation 

Table I lists the values for the above weight function for a distribution over five pairs of numbers. Our 
study has shown that the algorithm operates optimally using an a value of 45 and a fl value of 0.7. 

When assigning conditional marginal probabilities, we first define three values, floor, ceiling, and 
maxval. Floor and ceding are simply the two integers surrounding k , r ( K -  lr), while maxval is the width 
of the probability mass distribution function: 

floor, r =  l k i r ( K -  1,)1, 
ceiling/, = floor/, + 1, 

maxvali, = min{2 floor/, + 1 ; m i }. 

(3a) 

(3b) 

(3c) 

We then partition the probability mass into (floor,, + 1) pairs of numbers. The sum of each of these 
pairs will have the combined probability mass of W[i, j], as shown in Fig. 2. The conditional marginal 
probability of j jobs in station i is computed as: 

p , ( j  jobs I g - 1,) = (weight function) × (relative proximity of ~:,,(K - 1,)).  

Mathematically, this is represented by: 

pt(floor,, - j l  K - 1,) = W[floori, ,  /_dist] (upperval - k , , ( K  - 1,)) (4a) 
upperval - lowerval 

for all numbers of jobs j -- 0 . . . . .  floor/,, where 

l dist represents the distance from j to floor/,, 

upperval represents the value defined by (ceiling,r + 1 dist), 

lowerval represents the value defined by (floor,, - I dist). 

Table 1 

n W[n, 0] W[n, 1] Win, 2] Win, 31 Win, 4] IV[n, 5] 

0 1.0 
1 0.55 0.45 
2 0.377 0.308 0.315 
3 0.294 0.240 0.245 0.221 
4 0.248 0.203 0.208 0.187 
5 0.222 0.181 0.185 0.166 

0.154 
0.138 0.108 
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k.~,(K-1,) . . . . . . . . . .  

maxval jobs < 

maxval- 1 jobs < 

ceiling+l jobs < 

ceiling jobs < 

floor jobs < 

floor. 1 jobs < 

1 job < 

0 jobs < 

W[tloor, 01 I 

W[[loor, 1] 
@ 

@ 

W~qoor, floor-l] 

W[floor floor] 

Fig. 2. 

The conditional marginal probability for all jobs j = ceiling i . . . . . .  maxvalir is computed by 

P i ( j I K -  lr)  = W[floorir, u_dist] --p,(floOrir- u_dist I K -  l r) ,  (4b) 

where u_dist represents the value of ( j -  ceiling~r). Finally, set 

p~(jlK- L) = 0 for j > maxval,r. (4c) 

This approximation makes the assumption tha t  - k i r ( K -  l r )  is always less than half of Kr, as shown in 
Fig. 3(a). If the value for -kir(K- 1~) exceeds { (K~-  1)/2}, as shown in Fig. 3(b), then the value for 
upperval in the above equations can exceed the allowable range of 0 . . . . .  ( K ~ -  1). 

In order to prevent assigning values outside the legal range, the value computed for upperval is checked 
to ensure that its range never exceeds the maximum allowed by ( K ~ -  1). Furthermore, the algorithm will 
assign all probabilities for values exceeding (K r - 1) to the point ( K r -  1). This maintains the integrity of 
the probability mass function, and does not harm the performance measures. This noninterference is due 
to the fact that the number of servers in station i will realistically never approach K~ in situations where 
approximate mean value analysis is being used. 

8 jobs ffi K, 

7 jobs 
6jobs 

5 jobs k'w (k) 
4 jobs 
3 jobs 

~ k'w (k) 2jobs 

l job 
O jobs 

< 

< 

Ca) (b) 

Fig. 3. 
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Finally, when a distance of 25 or greater is reached form k i r ( K  - l r )  to the current j value, the weight 
function W[25, 25] has a value of less than 0.0001. Thus computing the weight function or conditional 
marginal probabilities for values whose distance from the mean number of jobs I c i r ( K -  lr) exceeds 25 is 
unnecessary. 

5. Algorithm summary 

The following is a summary of the algorithm used to compute the marginal probabilities. 

procedure FindMarginalProbs 
begin 

• compute  the we igh t  func t ion  W us ing (1) and (2) 
• compute  floOrjr, cei l ingjr ,  and maxval~r us ing (3a), (3b), and (3c) 
forj = 0 to maxvalir do 

If j ~< floorjr then 
• compu te  I dist, upperva l ,  and Iowerval  as per  (48) 
if upperva l  > ( K r -  1) then upperva l  = ( K r - 1 ) 
if I_d is t  > 25 then ( too far from kir } 

• p ( j l K -  l r )  = 0 0  
else 

• compu te  p ( j l  K -  l r )  us ing (4a) 
endlf 

else 
• compute  u_d is t  as per (4b) 
if u_d is t  > 25 then ( too  far from/(~r } 

• P ( j l  K -  l r )  = 0 0  
e lse i f  j > ( K  r -  1) and  u_d is t  < 25 then {exceed  range, add to ( K ~ -  1)} 

"P (K r  - I l K -  l r )  = p (K ,  - 11 K -  l r )  
+ (W[f loor ,  u_d is t ]  - p ( f l oo r  - u_d is t  I K -  l r )  ) 

else 
• compute  p ( j  [ K -  1~) us ing (4b) 

endlf 
endif 

endfor 
end. 

6. Sample algorithm execution 

Consider the following network. There are N = 4 stations and R = 2 classes in the network. Class one 
contains K] = 20 jobs and class two contains K 2 = 20 jobs. The number of servers and service disciplines 
for each station are outlined in Table 2. 

Table 2 

Station 1 2 3 4 
Number of servers 5 4 5 6 
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Table 3 

Station Class Mean service rate Transit ion probabili t ies 

1 1 /~la = 1.0 s -1 P12 = 0.5; P13 = 0.25; P14 = 0.25 
1 2 /~12 = 2.0 S - 1  PU = 0.25 for all j 

2 1 /x21 = 0.66667 s -1 P2~ = 1.0 

2 2 //,22 = 1.0 s 1 P2j = 0.25 for all j 

3 1 /-~31 = 0.8 s 1 P31 = 1.0 
3 2 bt32 = 0.8 s -1 P3j = 0.25 for all j 

4 1 /~41 = 0.66667 s -1 P41 = 1.0 

4 2 #42 = 1.25 s -1 P4j = 0.25 for all j 

The mean service times and transition probabilities are listed in Table 3. 
In Tables 4 and 5 the exact results obtained by classical mean value analysis are given, as well as the 

relative errors for both our approximation and the SCAT method. 
As can easily be seen from Tables 4 and 5, our approximation provides superior results to that of the 

SCAT algorithm. The average deviation for our approximation was 1.28%, while SCAT showed an average 
deviation for 11.52%. Table 6 compares the actual conditional marginal probabilities for the two ( K -  lr)  
populations with those obtained by both SCAT and our approach. The results are shown for (0 . . . . .  (m~ - 2)) 
jobs in each station, as those are the values used in future iterations. 

Table 4 
Mean number of jobs k i , ( K )  

Station Class Classical MVA Our method Deviation SCAT Deviation 

1 1 3.4683 3.5247 1.63% 2.7069 21.95% 

1 2 1.3109 1.3300 1.46% 0.9844 24.91% 

2 1 14.5049 14.4940 0.08% 15.4321 6.39% 

2 2 14.1935 14.2255 0.23% 14.9798 5.54% 

3 1 1.0000 0.9740 2.60% 0.8459 15.41% 

3 2 2.8871 2.8589 0.98% 2.4609 14.76% 

4 1 1.0267 1.0073 1.89% 1.0151 1.13% 

4 2 1.6084 1.5856 1.42% 1.5750 2.08 

Table 5 

Mean residence time -tir(K ) 

Station Class Classical MVA Our method Deviation SCAT Deviation 

1 1 1.2876 1.3122 1.91% 1.0000 22.34% 

1 2 0.6622 0.6711 1.34% 0.5000 24.49% 

2 1 10.7700 10.7915 0.20% 11.4020 5.87% 
2 2 7.1697 7.1774 0.11% 7.6090 6.13% 

3 1 1.4850 1.4503 2.34% 1.2500 15.82% 
3 2 1.4584 1.4424 1.10% 1.2500 14.29% 

4 1 1.5247 1.5000 1.62% 1.5000 1.62% 
4 2 0.8125 0.8000 1.54% 0.8000 1.54% 
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Table 6 
Conditional marginal probabilities 

K = (19, 20) K = (20, 19) 

Station Number of jobs Classical MVA SCAT Our method Classical MVA SCAT Our method 

1 0 0.0206 0.0000 0.0732 0.0185 0.0000 0.0695 
1 1 0.0771 0.0000 0.0870 0.0707 0.0000 0.0813 
1 2 0.1433 0.0000 0.0941 0.1343 0.0000 0.0853 
1 3 0.1765 0.2687 0.0858 0.1693 0.2687 0.0714 

2 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

3 0 0.0297 0.0000 0.0981 0.0327 0.0000 0.1018 
3 1 0.1021 0.0000 0.1039 0.1099 0.0000 0.1096 
3 2 0.1746 0.0000 0.0893 0.1833 0.0000 0.0986 
3 3 0.1979 0.6540 0.0339 0.2025 0.7394 0.0679 

4 0 0.0728 0.0000 0.1509 0.0750 0.0000 0.1528 
4 1 0.1905 0.0000 0.1433 0.1941 0.0000 0.1464 
4 2 0.2490 0.3970 0.1487 0.2508 0.4278 0.1600 
4 3 0.2167 0.6030 0.2281 0.2158 0.5722 0.2167 
4 4 0.1422 0.0000 0.1649 0.1391 0.0000 0.1619 

7 .  E v a l u a t i o n  

We have der ived an  improved  a lgor i thm for a p p r o x i m a t e  m e a n  value  analysis  of  mul t ip le-c lass  
mul t ip le-server  queueing networks.  I t  p rov ides  a re l iable  me thod  for  de t e rmin ing  pe r fo rmance  measures  in 
systems were classical  mean  value analysis  canno t  be  uti l ized.  O u r  m e t h o d  incorpora tes  the improved  
accuracy of  the S C A T  a lgor i thm by  incorpora t ing  S C A T ' s  a p p r o x i m a t i o n  for  the  pe r fo rmance  measures  at  
the ( K -  l r )  popula t ions .  I t  then refines this accuracy  b y  p rov id ing  a more  real is t ic  c o m p u t a t i o n  of  the 
cond i t iona l  marg ina l  p robabi l i t i es  than  S C A T  provides .  

The  a lgor i thm has  been  imp lemen ted  and  analysis  was conduc ted  for  over  75 d i f ferent  sample  networks.  
The  number  of  classes for these ne tworks  ranged  f rom one to five. The  to ta l  n u m b e r  of  j o b s  in the sys tem 
var ied  f rom five to 200. The  n u m b e r  of  s ta t ions  ranged  be tween  two and  ten. Mul t ip le -se rver  s ta t ions  were 
tested with up to eight  servers at  one specific s ta t ion.  N u m e r o u s  stress tests were appl ied ,  and  in no 
ins tance  d id  our  enhancement  demons t r a t e  any  majo r  d rop  in accuracy.  In  all  cases, our  enhancement  
showed devia t ions  that  d id  not  exceed twelve percent .  Tab le  7 out l ines  the min imum,  max imum,  and  
average devia t ions  for our  enhancement  as well  as the S C A T  results  for  all test  cases. 

The  run t ime and  s torage u t i l iza t ion  for our  a lgor i thm have the same b o u n d s  as that  of  SCAT.  The  run 
t ime for one i te ra t ion  of  our  a lgor i thm depends  only  on  the n u m b e r  of  classes R,  the n u m b e r  of  s ta t ions 
N, the number  of  mul t ip le  server s ta t ions  Z,  and  the m a x i m u m  n u m b e r  of  servers in any s ta t ion 
(max(mi) ) .  The  s torage requi rements  d e p e n d  only  on the n u m b e r  of  classes R,  the  n u m b e r  of  s ta t ions  N, 
and  the extent  of  the weight funct ion W, which is b o u n d e d  by  (max(mi ) ) .  The  run  t ime and  s torage 
requi rements  for our  approx ima t ion ,  SCAT,  and  classical  mean  value  analys is  are  de ta i led  in Tables  8 
and  9. 

Table 7 

Method Minimum deviation Maximum deviation Average deviation 

Our method 0.01% 11.73% 1.887% 
SCAT 0.21% 26.90% 7.703% 



LF. Akyildiz, G. Bolch / Mean value analysis for multiple server queueing networks 

Table 8 
Algorithmic time complexity 
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Our approximation SCAT MVA 

O(NR2+ZR max(ml)) O(NR 2) 0 miR ( K r + l )  

Table 9 
Algorithmic space complexity 

Our approximation SCAT MVA 

O(NR2 +max(m,) 2) O(NR 2) 0 N (K, .+ 1) 

While our method provides more accurate results when dealing with multiple-server stations, it should 
be pointed out that in cases where only single-server stations are used, the result do not differ from those 
obtained by SCAT. SCAT and the Linearizer algorithm are both known to provide excellent results in the 
case of single-server stations. This is simply due to the fact that the calculations do not incorporate 
marginal probabilities for any values other than (0 . . . . .  (m i - 2)). In other words, the marginal probabili-  
ties are ignored in the case of single-server stations. 

Appendix A. Sample test cases 

A.1. Example. The following system, consisting of R = 5 job classes and 100 jobs, is examined. Each class 
contains twenty jobs. The number  of servers in each stations is outlined in Table A.1. 

The average deviation from the exact results is 1.44% for our approximation,  9.48% for SCAT. For 
results, see Tables A.2-A.4.  

A.2. Example. A system with R = 2 classes and N = 3 stations is examined. There are 75 jobs in class one 
and 50 in class two. 

The average deviation is 1.58% for our method and 8.95% for SCAT. For  results see Tables A.6 and A.7. 

A.3. Example. A system with R = 2 classes and N = 2 stations is analyzed. There are 100 jobs in class one 
and 100 in class two. 

The average deviation is 0.43% for our method and 13.85% for SCAT. For  results see Tables A.9 and 
A.10. 

Table A.1 

Station 1 2 3 4 
Number of servers 5 4 5 3 
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Tab le  A.2 
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Stat ion Class M e a n  service rate  Probabil i t ies  

1 1 #1~ = 2.0 s -1  Plj = 0.25 for  all j 

1 2 #12 = 1.0 s -1  P12 = 0 . 5 ;  P 1 3  = P 1 4  = 0.25 

1 3 #13 = 1,0 s -  1 P12 = P13 = P14 = 0.33333 

1 4 #14 = 1.3333 s -  1 P12 = P13 = P14 = 0.33333 

1 5 #15 = 1.25 s -  1 P12 = P13 = P14 = 0.33333 

2 1 #21 = 1,0 s -1 P2j = 0.25 for  all j 

2 2 #22 = 0.8 s - z  P21 = 1 . 0  

2 3 #23 = 0.66667 s -1  P21 = P23 = P24 = 0.33333 

2 4 #24 = 1,0 S- 1 P21 = 1.0 

2 5 #25 = 0 . 8  S - 1  P21 = P24 = 0.5 

3 1 #31 = 1 . 0  s -~ P3j = 0.25 for  all j 

3 2 ~1,32 = 1 , 0  s -1 P31 = 1 . 0  

3 3 #33 = 1 . 0  s -1 P31 = P32 = P34 = 0.33333 

3 4 #34 = 1,0 s - 1 P31 = 1.0 

3 5 #35 = 1.0 s -  1 P31 = P32 = P34 = 0.33333 

4 1 #41 = 0.5 s -  a P4j = 0.25 for all j 

4 2 #42 = 0.66667 s -  1 P4a = 1.0 

4 3 #43 = 0.8 s -1  /°41 = P42 = -043 = 0.33333 

4 4 #44 = 0.66667 s -1  P41 = 1.0 

4 5 #45 = 0.5 s -1  P41 = 1,0 

Tab le  A.3 

M e a n  residence t ime t i t ( K )  

Stat ion Class Classical M V A  Ou r  m e t h o d  Dev ia t ion  S C A T  Devia t ion  

1 1 0.6071 0.6066 0.08% 0.5000 17.64% 

1 2 1.1179 1.1586 1.64% 1.0000 15.10% 

1 3 1.1901 1.1658 2.04% 1.0000 15.97% 

1 4 0.8970 0.8705 2.95% 0.7500 16.39% 

1 5 0.9599 0.9677 0.81% 0.8000 16.66% 

2 1 1.2417 1.2641 1.80% 1.0000 19.47% 

2 2 1.5563 1.5731 1.08% 1.2500 19.68% 

2 3 1.8675 1.8824 0.80% 1.5000 19.68% 

2 4 1.2456 1.2643 1.50% 1.0000 19.72% 

2 5 1.5502 1.5816 2.03: 1.2500 19.37% 

3 1 1.0098 0.9800 2.95% 1.0000 0.97% 

3 2 1.0081 0.9800 2.79% 1.0000 0.80% 

3 3 1.0102 0.9800 2.99% 1.0000 1.01% 

3 4 1.0158 0.9800 3.52% 1.0000 1.56% 

3 5 0.9950 0.9800 1.51% 1.0000 0.50% 

4 1 60.3182 60.6568 0.56% 61.4954 1.95% 

4 2 45.4091 45.5952 0.41% 46.1764 1.69% 

4 3 37.9099 37.9521 0.11% 38.4549 1.44% 

4 4 45.4564 45.5611 0.23% 46.1461 1.52% 

4 5 60.7932 60.6643 0.21% 61.4957 1.16% 
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Table A.4 

Mean number of jobs kit(K) 
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Station Class Classical MVA Our method Deviation SCAT Deviation 

1 1 0.1964 0.1910 2.75% 0.1563 20.42% 

1 2 1,7213 1.7053 0.93% 1.4904 13.41% 

1 3 0.5643 0.5554 1.58% 0.4767 15.52% 

1 4 1.0661 1.0360 2.82% 0.8928 16.25% 

1 5 0.4509 0.4560 1.13% 0.3748 16.88% 

2 1 0.3979 0.3981 0.05% 0.3125 21.46% 

2 2 1.1337 1.1576 2.11% 0.9315 17.84% 

2 3 0.8923 0.8968 0.50% 0.7150 19.87% 

2 4 0.4947 0.5016 1.39% 0.3968 19.79% 

2 5 0.3258 0.3313 1.69% 0.2603 20.10% 

3 1 0.3221 0.3086 4.16% 0.3125 2.98% 

3 2 0.3662 0.3606 1.53% 0.3726 1.75% 

3 3 0.4819 0.4669 3.11% 0.4767 1.08% 

3 4 0.4007 0.3888 2.97% 0.3968 0.97% 

3 5 0.1533 0.1539 0.39% 0.1562 1.89% 

4 1 19.0865 19.1022 0.08% 19.2187 0.69% 
4 2 16.7788 16.7765 0.01% 17.2055 2.54% 

4 3 18.0615 18.0809 0.11% 18.3316 1.50% 

4 4 18.0385 18.0737 0.20% 18.3134 1.52% 
4 5 19.0700 19.0588 0.06% 19.2087 0.73% 

Table A.5 

Station Servers Class Mean service rate Probabilities 

1 1 1 / . t l l= 2.0 s -1 P12 = P13 = 0.5 
1 1 2 /~12 = 0.66667 s 1 Pl2 = 0.7; P13 = 0.3 

2 2 1 ~21 = 0.25 s -1 P21 = 1.0 

2 2 2 /t22 =1.25 s -1 P21 = 0.8; P23 = 0.2 

3 3 1 ~31 = 0.2 s -1 P31 =1.0 

3 3 2 ~32 = 1.3333 s -1 P31 = 1.0 
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Table A.6 
Mean residence 
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time t i t (K) 

Station Class Classical MVA Our method Deviation SCAT Deviation 

1 1 42.5967 42.3822 0.50% 42.3483 0.58% 
1 2 124.5160 124.1247 0.31% 124.0078 0.41% 

2 1 72.3141 73.5022 1.64% 75.4397 4.32% 
2 2 15.3304 15.4953 1.08% 15.8877 3.64% 

3 1 9.8579 9.5552 3.07% 7.6393 22.51% 
3 2 1.4820 1.4397 2.85% 1.1522 22.25% 

Table A.7 
Mean number of jobs Icir(K ) 

Station Class Classical MVA Our method Deviation SCAT Deviation 

1 1 38.1769 37.8814 0.77% 37.8615 0.83% 
1 2 45.8118 45.7671 0.10% 45.7134 0.21% 

2 1 32.4055 32.8483 1.37% 33.7235 4.07% 
2 2 3.9483 3.9994 1.29% 4.0997 3.83% 

3 1 4.4176 4.2702 3.34% 3.4150 22.70% 
3 2 0.2399 0.2336 2.63% 0.1869 22.09 

Table A.8 

Station Servers Class Mean service rate Probilities 

1 3 1 /Xll = 0.1 s -1 Pll  = P12 = 0.5 
1 3 2 #12 = 0.08333 S -1 P12 = 1.0 

2 4 1 /~21 = 0.06667 S -1 P21 = P22 = 0.5 
2 4 2 ~22 = 0.125 S -1 P21 = 1.0 

Table A.9 
Mean residence time ?i,(K) 

Station Class Classical MVA Our method Deviation SCAT Deviation 

1 1 647.5947 647.7606 0.03% 652.7501 0.80% 
1 2 776.7732 776.9627 0.02% 782.9391 0.79% 

2 1 26.6294 26.4012 0.86% 19.4061 27.13% 
2 2 14.3592 14.2411 0.82% 10.5306 26.66% 

Table A.10 
Mean number of jobs k i t (K)  

Station Class Classical MVA Our method Deviation SCAT Deviation 

1 1 96.0504 96.0838 0.03 % 97.1129 1.11% 
1 2 98.1849 98.2001 0.02% 98.6728 0.50% 

2 1 3.9496 3.9162 0.85 % 2.8871 26.90% 
2 2 1.8150 1.7999 0.83% 1.3272 26.88% 
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