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Approximate Analysis of Load Dependent General 
Queueing Networks 

I. F. AKYILDIZ, MEMBER, IEEE, AND ALBRECHT SIEBER 

Abstracf-A method for approximate solutions to load dependent 
closed queueing networks containing general service time distributions 
and FCFS scheduling disciplines is presented. The technique demon- 
strated is an extension of the well-known method of Marie. A new for- 
mula for the conditional throughputs is derived. After each iteration a 
check is performed to guarantee that the results obtained are within a 
tolerance level E .  These iterations are repeated whenever invalid results 
are detected. On the average, the solutions obtained vary by less than 
5 percent from their respective exact and simulation results. 

Index Terms-Conditional throughputs, performance analysis, per- 
formance measures, queueing networks. 

I. INTRODUCTION 

UEUEING networks have been used extensively in 
the modeling and analysis of computer systems and 

communication networks since the last two decades. The 
low computational cost and adequate accuracy of queueing 
network models in predicting the performance of com- 
puter systems has been generally established [ 121, [ 141, 
[32]. This is primarily due to their ability to model mul- 
tiple independent resources and the sequential use of these 
resources by different jobs. The basic results of network 
queueing theory were presented by Jackson, Gordon and 
Newell, and Buzen [5], [15], [17]. They demonstrated that 
solutions to both open and closed queueing networks with 
exponentially distributed arrival and service times imple- 
menting a first-come-first-served queueing discipline have 
a product form. 

A product form implies that all stations have equilib- 
rium state probabilities consisting of factors representing 
the individual stations within the network. The resulting 
implication is that the individual stations behave as if they 
were separate queueing systems. Baskett, Chandy, Muntz, 
and Palacios [3] extended these results to obtain product 
form solutions for open, closed, and mixed queueing net- 
works with multiple job classes, nonexponential service 
time distributions, and different queueing disciplines. 
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Such queueing networks are known to have local balance 
[SI, Markov implies Markov property [26], or the station 
balance property [SI. Networks containing four types of 
stations with queueing disciplines FCFS (first-come-first- 
served), PS (processor sharing), IS (infinite server), and 
LCFS-PR (last-come-first-served preemptive resume), 
have product form solution. The service times per visit in 
FCFS stations should have a negative exponential distri- 
bution with the same mean for all classes. The other 
queueing disciplines allow general service time distribu- 
tions (with rational Laplace transforms). 

Several extensions to the existing product form net- 
works have been proposed in recent years. Three new sta- 
tion types with exponential service time distributions and 
the queueing disciplines: SIR0 (service-in-random-order) 
[35], LBPS (last batch processor sharing where jobs are 
processed as per last-come-first-served, but the arrival 
time is determined for a batch of jobs, not individual jobs) 
[27] and WEIRDP (a portion p of the processor is allo- 
cated to the first job in the queue and the remainder ( 1  - 
p )  is allocated to the remaining jobs in the queue) [9], 
have been shown to have product form solutions. 

Product form networks can be solved efficiently using 
the convolution algorithms of Buzen [5] and Chandy/Her- 
zog/Woo [6] as well as mean value analysis of Reiser and 
Lavenberg [29]-[31], as well as their variations [32]. 

Despite their popularity, several drawbacks do exist 
with product form networks. Probably the most signifi- 
cant of these is the assumptions that must be made when 
designing the system model. It is these assumptions that 
allow us to fit a given model to the format required for 
obtaining performance measures using product form net- 
work algorithms. Nevertheless, not all queueing networks 
will conform to one of the classes covered by product form 
algorithms. A queueing model containing even a single 
station not meeting one of the above mentioned seven 
basic types does not have a product form solution. This 
introduces problems when one considers the fact that ser- 
vice time distributions tend to demonstrate a high vari- 
ance at CPU’s (hyperexponential) and low variances at 
the I/O devices (Erlang). Furthermore, incorrectly assum- 
ing an exponential service time distribution can introduce 
significant errors into the results of performance evalua- 
tion for actual systems. 

If a queueing network model is not amenable to a prod- 
uct form solution, it is often necessary to build and solve 
a Markov chain [36] which correctly accounts for the non- 
product form characteristics. However, such an approach 
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becomes infeasible for models requiring a Markov chain 
with a very large number of states. In  such cases, simu- 
lation or approximate analytic techniques are required. 

A large variety of classical approximation methods ex- 
ist for dealing with distributions and/or scheduling disci- 
plines not containing product form, for example, product 
form approximation methods such as diffusion approxi- 
mation [ 131, [ 181, [ 191, EPF-technique (extended product 
form) of Shum and Buzen [34] or aggregation/decompo- 
sition methods such as iterative approximation [7], de- 
composition approximation [ I  l],  method of Kuehn [21], 
method of Marie [22]-[24] or maximal entropy method 
[20], [39] or response time preservation method [l] or 
mean value analysis approximations 121. 

It should be noted that the above list does not contain 
all approximation methods. It is merely provided as a 
framework outlining the basic methods that currently ex- 
ist for approximate methods to queueing networks. 

Our experience indicates that existing or suggested ap- 
proximate solution methods contain inherent disadvan- 
tages or restrictions. In some cases they provide results 
which differ widely from the exact values. In addition, 
these methods are restricted to networks with load-inde- 
pendent stations. The service times, visit ratios and rout- 
ing probabilities do not vary with job population changes. 
These assumptions are too rigid for many real systems. 
For example, if the moving-arm disk employs a scheduler 
that minimizes arm movement, a measurement of the 
mean seek time during a lightly loaded baseline period 
will differ significantly from the average seek time ob- 
served in a heavily loaded projection period. Similarly, 
the visit ratios for a swapping device will differ in base- 
line and projection periods having different average levels 
of multiprogramming. Another example is in the model- 
ing of multiprocessors, where account must be taken of 
the degradation in performance due to the memory inter- 
ference and software lockout (mutually exclusive access 
to share data structures). All of these examples illustrate 
the importance of considering load-dependent behavior. 

Analytical methods can deal with only two kinds of 
load-dependent behavior: 

1) A station's service function may depend on the 
length of that station's queue [33]. 

2) The visit ratios and transition probabilities may de- 
pend on the total number of jobs in the system [38]. 

We will consider load-dependency in which the service 
time of a station may be dependent on the number of jobs 
at that station. 

Load-dependent stations also allow us to analyze: 
1) Multiserver Stations (m, > 1) :  In this case, each 

server has a service rate p , .  The total service rate of this 
station as a function of the number of jobs is: 

P , ( k )  = min ( k P U  m f P f ) '  

2)  Infinite Server Stations (m, = 03): An infinite server 
station is a special multiserver station with: 

P,(k)  = k P l .  

The method proposed is an extension of the well-known 
method of Marie [22]-[24] to load-dependent general 
queueing networks. Our tests have shown that the method 
of Marie is the most reliable of the previously mentioned 
approximate methods. It provides satisfactory results for 
a wide range of queueing networks. It does, however, 
contain the inherent disadvantage of being limited to load 
independent networks. 

The technique proposed is iterative in nature and is 
based on the concept of the conditional throughputs ui (k ) 
of a station. In a closed network each station is analyzed 
under a Markovian arrival process with load-dependent 
arrival rate A, ( k ) .  As a result we are able to analyze net- 
works with X ( k ) / C , / l d  - FCFS ( I d ;  load-dependent) 
station types. 

11. APPROXIMATE ANALYSIS OF LOAD DEPENDENT 
NETWORKS 

We consider closed queueing networks with the follow- 

1) There are N stations and K single class jobs. 
2) The service time of each station is distributed with 

load-dependent mean value 1 / p i  ( k )  (for k = 1, * , 
K )  and general distribution function Fi ( t )  having a ra- 
tional Laplace transform. 

3) Each station has FCFS scheduling discipline and in- 
finite capacity. 

4) A job serviced by station i proceeds to stationj with 
probability pi j  for i ,  j = 1, 2, . . * , N .  

A. Load Dependent Arrival Rates 
To determine the load-dependent arrival rates hi ( k )  ( for 

k = 0, 1, 2, * * . , K )  of a station i ( f o r i  = 1 ,  . . * , 
N ) ,  the ith station is shorted, i.e., its service time is set 
to zero as shown in Fig. 1. 

It is assumed that the subnetwork satisfies local balance 
and has product form solution. The throughput values 
h i ( k )  of the subnetwork can be obtained by any product 
form network algorithm such as mean value analysis [3 11 
or convolution algorithms [ 5 ] ,  [6], [33] for load-depen- 
dent networks. 

The load-dependent arrival rates Xi ( k )  to the ith station 
are then: 

Xi(k) = X:.(K - k) 

ing characteristics: 

fork = 0, 1,  . * , K - 1. 

( 1 )  
It is clear that if k jobs are present at the ith station, 

then ( K  - k )  jobs remain in the subnetwork. Thus the 
throughput of the subnetwork with ( K  - k) jobs is equal 
to the arrival rate of the ith station with k jobs. Note that 

h , ( K )  = 0 ( 2 )  
since no job is in the subnetwork and consequently the 
throughput will be zero, X:.(O) = 0. 

In this way each station is shorted and the throughput 
A:. of the corresponding subnetwork is computed and as- 
signed to the according arrival rates Xi. 
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Fig. I 

Note that in the first iteration the service rates of each 
station are the originally given values p i .  In future itera- 
tions the conditional throughputs U ; (  k), computed in Sec- 
tion 11-B, are used as the adjusted service rates for the 
stations. 

B.  Load Dependent Service Rates 

We have assumed that the service times follow an ar- 
bitrary distribution with a rational Laplace transform. Cox 
[IO]  demonstrated that any distribution with rational La- 
place transform can be represented by a sequence of fic- 
titious phases as shown in Fig. 2. 

Each time a job completes a phase it may either depart 
from the station or it may proceed to the next phase. The 
total time a job spends in a phase is exponentially distrib- 
uted. In general, each phase has a different mean service 
rate. Let pIJ(k) denote the load-dependent service rate at 
the j t h  phase ( j  = 1, 2, . , n )  of the ith station ( i  = 
1 ,  . * , N ) .  Also, let a, be the probability that a job upon 
completion of its service at thejth phase will proceed to 
the ( j + 1)th phase. bJ denotes the probability that a job 
upon completion of its service at phase j will depart from 
the station. This type of service distribution is known as 
the Coxian distribution and it is denoted by C,? where n is 
the number of phases. Jobs are assumed to arrive at the 
station in a Poisson fashion at the load-dependent rate 
X ( k )  (computed in Section 11-A). This type of station has 
the shorthand notation X ( k ) / C , , / l d  - FCFS. Cox's rep- 
resentation of arbitrary distributions with rational Laplace 
transforms is useful when dealing with nonexponential 
distributions. In the modeling of nonexponential service 
time distributions we have an estimation of the first and 
second moments of the service law, i .e. ,  the expected 
value and the variance. Marie 1221 has shown that for any 
mean 1 (first moment) and any squared coefficient of vari- 
ation ( c2  = variance/y*) (second moment) such that (0.5 
5: c 2  < m ) ,  it is possible to represent a station's server 
by a Cox-model with two phases. 

The parameters p, ,( k ) ,  p, *( k ) ,  a, and b, are determined 
as follows 1241: 

1 a. = - 
' 2c: 

( 3 4  b. = 1 - a. 

Note that for values of c, less or equal to 0.5, Marie [24] 
suggested an Erlang type of distribution. 

Fig. 2 .  

Various studies of single server and multiple server sta- 
tions with Coxian distributions have been reported in the 
literature. These studies concentrated on the derivation of 
the probability distribution of the number of jobs in the 
system using various recursive procedures. In particular, 
Herzog, Woo, and Chandy [16] and Bux and Herzog [3] 
obtained numerical results for a single server station with 
state dependent arrival and service rates, and assuming 
that the interarrival times as well as the service times fol- 
low a Coxian distribution. 

Marie (241 studied the queue length probability distri- 
bution of a single server station with a Coxian service 
time distribution and exponentially distributed load-de- 
pendent interarrival times. His approach is based on the 
notion of the conditional throughput U ,  ( k )  (adjusted ser- 
vice rate) which is obtained using a recursive formula. 
Marie's model is extended to multiple servers by Stewart 
and Marie 1371 and Marie, Snyder, and Stewart [25] using 
numerical techniques. Perros [28] gives exact closed-form 
expression of the probability distribution of the number 
of jobs in an M / C , /  1 station. 

In this section we derive the formulas for conditional 
throughputs u i ( k )  (for k = 1, . * , K ) (adjusted service 
rates) for load-dependent networks in detail, since the 
classical method of Marie 1221-1241 differs from the tech- 
nique presented only in the computation of U ,  ( k ) .  

A state of a station is denoted by a pair: 

where 

k is the number of jobs, k = 0, 1, 2, . . 
j is the number of phases, j = 1, 2. 

, K 

A transition from one state to another takes place either 
when a new job arrives or when a job leaves the station 
through either phase. We will represent arrival rates by 
X i ( k ) ,  where the arrivals rates are dependent on the num- 
ber of jobs in the station as computed in Section 11-A. A 
job leaving the station after phase one is denoted by 
b i p l i l ( k ) .  p i* (  k )  is the departure rate of a job leaving the 
station after phase two. A job enters into phase two at a 
rate a i p i I ( k )  and may do so only after receiving service 
in phase one. The state ( 0 )  denotes that no job is in the 
ith station. 

To compute the probability of being in a state as shown 
in the state transition diagram, Fig. 3, we use the Chap- 
man-Kolmogorov equations. Consider the probability 
p i  ( k ,  j ) as the probability of being in the ith station of the 
network given k jobs and the current job in phase j. There 
are six cases to consider. 



1540 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 11, NOVEMBER 1988 

Fig. 3 

Let the probability of k jobs in a station, independent 

p j ( k )  = p i ( k ,  1 )  + p i ( k ,  2 )  fork = I ,  * , K.  

of which phase a job is executing in, be denoted as 

( 10) 

We can express the conditional throughputs ui ( k )  (ad- 
justed service rates) in terms of the equilibrium state prob- 
abilities and the service rates of the Cox phases. Note that 
the service rates of the Cox phases (3) do not vary in the 
entire execution of the algorithm: 

1 
u ; ( k )  = - [pi(k, 1 )  biPiI(k) + pi(k, 2)  ~ i 2 ( k ) ] .  

p i ( k )  

( 1 1 )  

The derivation of ( 1  1 )  is obvious in Fig. 4 .  
The following theorem has been proven by Marie [22]: 

p j ( k  - 1) Xi(k - 1 )  = p i ( k )  u ; ( k ) .  (12) 

Simply stated, the probability that a job leaves a station 
in which there are k jobs, is equal to the probability that 
a job arrives at the same station when there are ( k  - 1 ) 
jobs. 

To determine U ;  ( k )  we modify (7) and obtain: 

( 9 )  Substituting (16)  into (14): 
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The solution of (22) after v , ( k )  provides the desired 
formula for the recursive computation of the conditional 
throughputs v , ( k )  (adjusted service rates) from the pa- 
rameters of the Cox-2-distribution and the arrival rates - hi(k - 1 )  p i ( k  - 1 ,  2)  

aiPil(k) pi(k,  2 )  . ( 1 7 )  ~ ; ( k )  fork  > 1 .  

(23) 

To solve the (17) in terms of U, ( k ) ,  without determining 
the state probabilities p ,  ( k ,  j ) the term 

The computation for U, ( k )  is an iteration process based 
on previous U, ( k )  values. Analogous to (6) we obtain: 

(24) 
-- P l ( L  1 )  - W) + Pl2(1) [ i i 2 ) ]  P l ( L  2) a I P l l ( 1 )  . 

must be replaced in (17). Equation (16) is also valid for k = 1. Substituting (16) in 
(24) we obtain: Observe that 

P I @  - 1, 2)  - P , ( k  - 1, 2 )  . P l ( k  - 1) - 
P l ( k ,  2) P f ( k  - 1) P f ( k )  aIPll(1) U I ( 1 )  - b l P l l ( 1 ) '  

- 

p ; ( k  - I )  U ; ( k  - 1) Note that in case of load-independent stations, it is valid 
that 

= p ; ( k  - 1, 1) b;p;I(k - 1)  
p U ( k )  = pij fo r i  = 1 ,  - 

j = 1, 2. 

, N, k = 1, * * - , K ;  

(27) 

Substituting (27) in (23) the following formula for con- 
ditional throughputs U ,  ( k )  for load-independent networks 
is obtained, which is also given by Marie [24]. 

(28) 
blMk)PlI + P l l P l 2  

W) + PI1 + PI2 - U , ( k  - 1) 
U , @ )  = 

C.  Equilibrium State Probabilities 

From (12) and considering that 

Substituting (12), (16), and (21) in (18) the term for 
equilibrium state probabilities in (17) can be expressed as 

K 

c P , ( k )  = 1 
k = O  

follows: 
the equilibrium state probabilities p , ( k )  for k = 0, 1, 

* * , K are obtained as follows [23]: P I N  - d k )  
v , ( k )  - blPll(k) 

k -  I 

- h ( k )  + PL,Z(k) - XI(k  - 1) fork = 1, . , K - 
a, PL I (  k )  a, PI I ( k )  

K k - l  I-'. (30) 
k = l  N = O  q ( n  + 1) 
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D. Termination Test 
After each iteration we check to see if the sum of the 

mean number of jobs is equal to the total number of jobs 
in the given network within a tolerance level E :  

I I 
IK - C c k p i ( k ) l  
I , = I  k = l  

N K  

< E .  (31) K 

Additional check is made to see if the throughput rates 
of each station are consistent with the topology of the net- 
work: 

. N . K  I 

I 1  1 ti I 
I -  C - C p i ( k )  v i (k)I  

I I N  i = l  ei k = i  

< E  

f o r j  = 1 ,  . * , N  (32 )  
where e, is the mean number of visits that a job makes to 
station i and is compared by: 

N 

e, = elPJl 
J =  I 

and E is a tolerance level. Usual value is E = 

vice rates are adjusted 
If one or both of these conditions are violated, the ser- 

p c c , ( k )  :=  v , (k)  fo rk  = 1, . , K ,  (33) 

i.e., the conditional throughputs [(25) and (28)] are as- 
sumed to be the new service rates, and the next iteration 
is carried out. Iterations continue until acceptable toler- 
ances are obtained. The performance measures can then 
be computed by the following formulas. 

Throughput of each station: 
ti 

(34)  

Mean number of jobs in each station: 
ti 

k , ( K )  = k * p , ( k ) .  (35) 
!,=I 

Mean residence time: 

111. ALGORITHM SUMMARY 
The following is the complete algorithm for calculating 

performance measures for the load-dependent general net- 
works: 

1) Determine the parameters for the Cox distribution 
using (3). 

2) Iterative Part: 
a) Compute the throughput values h : . ( k )  for each 

subnetwork without the ith station (for i = 1. 
. . . , N ) using the convolution algorithm [ 5 ] ,  [6], 
[33] or mean value analysis for load dependent 

stations [3 I ] .  Assign the throughput values Xi ( k )  
with k jobs to the arrival rates of the ith station 
with ( K  - k )  jobs (1). 
Compute the conditional throughputs U ,  ( k )  using 
(23) and (26) for i = 1, * . . , N a n d  k = 1 ,  

, K .  
Compute the equilibrium state probabilities for 
stations i = 1, 
Check the termination conditions (3 1) and (32). If 
the test is not successful, then apply (33) and goto 
a). Otherwise compute the performance measures 
from (34)-(36). 

. . .  

. , N using (29) and (30). 

IV. EVALUATION 
The algorithm has been implemented on a VAX 11/780 

system. The computation of load-dependent arrival rates, 
in Section 11-A has been realized by both the convolution 
algorithm [ 5 ] ,  [6], [33] and also mean value analysis for 
load dependent networks [31]. Our tests have shown that 
mean value analysis for load-dependent networks has the 
advantage of handling a greater number of jobs. Several 
different networks containing two to ten stations were 
analyzed, with the number of jobs ranging from ten to 
eighty in each network. The termination value e ranged 
from I O p 4  to The vast majority of the variations 
beneath 5 percent. It is clearly evident that this approxi- 
mation method is capable of accurate modeling of load 
dependency. It should be noted that in all instances where 
the algorithm showed a relatively high deviation from the 
actual results (over 8 percent), the numbers involved were 
quite small. In such cases the relative error might appear 
large even though the difference in the two numbers is 
insignificant. Under these circumstances, the relative er- 
ror cannot be considered a reliable indicator of the accu- 
racy of the method. 

The number of iterations in the method is not predict- 
able. It depends on the number of stations, the number of 
jobs, the complementary subnetworks and the epsilon 
value used. In most of the cases the method converges in 
6-10 iterations. Although no mathematical proof for con- 
vergence is given here or also in [22]-[24] we were un- 
able to find any model with load dependent stations in 
which the method did not converge. 

When analyzing the complexity of the algorithm we find 
that the space complexity of the algorithm is O(3NK).  
The majority of this space was required for the compu- 
tation of the equilibrium state probabilities (29), (30). 
Analyzing the time complexity of the method shows that 
it increases drastically as the number of jobs K in the net- 
work increases. 

In the following we give nine examples with different 
input parameters. In Examples 1-5 networks with single, 
multiple, and infinite servers are analyzed. In  Examples 
6 and 7 we treat networks with load-dependent service 
rates. Approximate, exact, or simulation results for per- 
formance measures such as throughput and the mean 
number of jobs are given in tables. The approximate re- 
sults are compared with exact values obtained by numer- 
ical analysis [36] in case of small number of jobs. How- 
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ever, numerical analysis cannot be applied for large 
number of jobs such as in Examples 8 and 9. The approx- 
imation is validated by simulation in those cases. The 
simulation results are obtained within 95 percent confi- 
dence interval. The tables also contain relative deviations 
which are computed by: 

* 100. 
Exact (or Simulation) - Approximation 1 

6 = [ !  Exact (or Simulation) 

In Example 3 we plot the marginal probabilities as a 
function of the number of jobs in each station. In the 
graphs, the solid lines show approximate results, the 
dashed lines show exact results and the dotted lines show 
the case where the service time distributions are assumed 
to be exponential ( i .e . ,  c, = 1 for all i). 

In Example 4 we calculate the performance measures 
for different c f  parameters. We plot total throughput re- 
sults for different squared coefficient of variation values 
in Example 5 .  

1 

Example 1: (Tandem Network); K = 5 jobs. 

2.0 
2.0 

4 1.0 

1.0322 1.0340 
1.2438 1.2669 1.82 

k ,  2.0333 2.0214 OS9 
1.8108 1.7803 1.71 

Exumple 2: K = 9 jobs. 

5.0 

3.1054 3.0634 
2.1694 2.1578 0.54 

j I rn  

0.5 100 

0.5 I r n  

0.5 0.5 

- 
k, - 
2.806 

2.994 

3.134 

3.561 

3.081 

3.754 

3594 

4.553 
- 

- 
L - 
2.825 

2.970 

3.147 

3554 

3.m 

3.718 

3.595 

4.628 - 

a67 

0.81 

0.41 

0.20 

0.39 

0.97 

0.03 

1.62 

Example 3 .  

Plot of marginal probabilities of station 1 ss a function of jobs 

0.40 

Plot of marginal probabilities of station 3 ss a function of jobs 

0'301 i 

Plot of marginal probabilities of station 3 ss a function of jobs 

Example 4: (Tandem Network); K = 10 jobs; c' are 
variable. 

- - 
kl, - 
3 . 8 ~ )  

3.952 

4.169 

4.676 

3626 

4.041 

4.017 

4.771 - 

1543 

2.451 

2541 

1.998 

1.899 

2.598 

3.123 

1.915 

2.361 

3.424 

3.97 

3.138 2836 

1.884 4.067 

2.363 2868 
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k, 
1 

Example 5: (Tandem Network); K = 6 jobs; c: = c ;  

14.6536 15.8204 1.9 7.38 
3 . 0 1 3  3.6656 0.7 4.68 

= e;. 

3.3 7 
mi 

2.0 

0 .5  1 4 9 16 2 5  36 4 9  64 100 

Plot of throughput as a function of the squared coefficient of variation ~,1 

Example 6: (Tandem Network); K = 7 jobs; c: = 0.5; 
c; = 16; c: = 4. 

2.2 

1 Approximation 1 Exact 1 6(%) 
k ,  I 3.5202 I 3.5031 I 0.49 

Example 7: (Central Server Model); K = 8 jobs. 

2.2820 2.2629 
1.4529 1.4477 0.36 

Example 8: K = 50 jobs. 

0.5 0.7 0 0.3 
IO 0 0.2 0 0.8 

2.1485 2.1547 0.4 0.29 
8.3539 0.8 2.23 

3.4980 3.4989 0.75 0.03 

Example 9: (Tandem Network); K = 50 jobs. 

11.87 

7.52 
1.929 1 2.0310 0.8 5.02 

2.5 2.47 
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