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Product Form Approximations for Queueing 
Networks with Multiple Servers 

and Blocking 

Abstract-Queueing networks with blocking have become an 
important research topic in performance evaluation in recent 
years. Various types of blocking within queueing networks have 
been studied by several investigators. In this work, the following 
type of blocking is examined. Upon completing of its service, a 
job attempts to enter a new station. If at that moment, the 
destination station is full, the job is forced to reside in the server 
of the source station until a place becomes available in the 
destination station. The server of the source station remains 
blocked during this period of time. It is shown that the 
equilibrium state probabilities for this type of blocking queueing 
network have an approximate product form solution. The 
solution is based on the concept of normalizing the infeasible 
states that violate station capacities. The states are adapted to the 
allowed capacities of the stations. However, the equilibrium state 
probabilities allow only the computation of mean number of 
jobs. In order to obtain the throughput values, the concept of the 
state space transformation is introduced. This concept is based on 
finding a nonblocking network with appropriate total number of 
jobs of which the number of feasible states is equal or approxi- 
mately equal to the number of feasible states in the blocking 
queueing network. This guarantees that the Markov processes 
describing the evolution of both networks over time have 
approximately the same structure. This leads to the result that the 
throughputs of both systems are approximately equal. The 
approximations are validated by executing several examples, 
including stress tests, and comparing them with simulation 
results. 

Index Terms-Binomial coefficient formula, blocking, finite 
station capacities, performance evaluation, performance mea- 
sures, queueing networks. 

I. INTRODUCTION 

COMPUTER system can be viewed as an organized A collection of hardware and software resources for which 
the concurrent processes in the system are constantly compet- 
ing. Two major functions of an operating system are the 
effective scheduling of conflicting requests and the appropriate 
handling of the process queues waiting for resource allocation 
and scheduling. Queueing network theory can be used to 
provide the basic framework and mathematical tools for the 
modeling and analysis of computer system hardware and 
software. 
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Queueing networks have received a very special interest 
in the last 15 years for uses with performance evaluation and 
performance prediction. A queueing network is a collection of 
stations (devices with queues) in which jobs/processes proceed 
from one station to another in order to satisfy their service 
requirements. When dealing with queueing networks with 
infinite station capacities, Baskett et al. [IO] and Kelly 1211 
have shown that the solutions for four types of stations (*/M/ 
M/m-FCFS, ./G/l-RR-PS, */G/IS (Infinite Servers), and */ 
G/1-LCFS-PR) have a product form. The product form 
implies that each station in the network can be analyzed 
independently from each other. Several algorithms have been 
introduced for an efficient computation of performance mea- 
sures for queueing networks in the last 15 years [27], [33], 
[34], [35]. In the last two decades, many successful applica- 
tions have been developed for the modeling of computer, 
communication, and manufacturing systems by queueing 
networks [27], [35], [40]. 

Since in actual systems the resources have finite capacity, 
queueing networks with blocking must be used for perform- 
ance analysis. In queueing networks with blocking, a station 
can be thought of as a device with a finite length buffer. 
Blocking arises because of the limitations imposed by the 
capacity of these buffers. 

In recent years, there has been a growing interest in the 
development of computational methods to analyze queueing 
networks with blocking. Researchers from various areas such 
as computer science, operations research, mathematics, and 
electrical engineering have studied blocking networks. Several 
papers have been published dealing with various types of 
blocking types. Previous work regarding the blocking net- 
works falls into three classes [28]. 

1) Transfer (Type I = Manufacturing) Blocking: Upon 
completion of its service, a job at station i attempts to enter 
destination station j .  If station j is full at that moment, the job 
is forced to wait at server i until it enters destination stationj. 
The server remains blocked for this period of time. It cannot 
serve any other job waiting in the queue. This type of blocking 
has been used to study models of flexible manufacturing 
systems and disk U0 subsystems [1]-[5], [8], [12], [14], [29]- 
P11, 1361, 1381, W I ,  P11. 

2) Service (Type 2 = Communication-I) Blocking: A 
job in station i declares its destination station j before it starts 
its service. If station j is full, the ith server is blocked, i.e., it 
cannot serve jobs. When a departure occurs from destination 
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station j ,  the ith server becomes unblocked and the job begins 
receiving service. This blocking type has been used to study 
models of production lines and telecommunication networks 

3) Rejection (Type 3 = Communication-2) Blocking: 
Upon service completion at station i, a job attempts to join 
destination station j .  If stationj is full at that moment, the job 
is refused. The rejected job goes with a certain probability (so- 
called “rejection probability”) back to the station i’s server 
and immediately receives a new service with the same mean 
service time. This is repeated until some job completes a 
service at station j and a place becomes available. This 
blocking type has been used to model communication net- 

[111, ~ 4 1 ,  [161, ~ 7 1 ,  [221, [231, [251, ~ 7 1 .  

works [61, [71, 191, [131, [151, [181, [191, [211, 1261, 1321, 
[421. 

Comparisons between these distinct types of blocking have 
been carried out by Onvural and Perros [28]. Several other 
investigators in recent years have published results on block- 
ing queueing networks. Since we investigate closed queueing 
networks with transfer blocking here, the discussion of the 
previous work will contain the studies of these networks. 

The analysis of transfer blocking networks is very difficult. 
Exact results exist only for very limited cases. In [l], we 
showed that the equilibrium state probability distributions of 
two-station closed queueing networks with transfer blocking 
and multiple server stations are identical to those of two- 
station closed queueing networks without blocking. Onvural 
and Perros [29] show that if the number of jobs in a network 
with transfer blocking is one more the capacity of the station 
with the smallest capacity, there exists an exact product form 
solution. 

All other studies for this type of networks are approxima- 
tions. In [3], we showed that the throughput of a blocking 
network with K total number of jobs and single servers is 
approximately equal to the throughput of a nonblocking 
network with an appropriate total number of jobs R. The 
approximation provides very accurate results, on the average 5 
percent deviations. In [4], we modify mean value analysis, in 
short form MVA 1341, for transfer blocking networks. The 
resulting method is called MVABLO. MVABLO estimates the 
additional time a job spends in each station because of 
blocking. This time is included in the response time formula of 
MVA. Even though the method is extremely fast, it provides 
larger deviations from actual values. These results have been 
extended to networks with general service time distributions in 
121. 

Suri and Diehl [38] consider transfer blocking policy in 
cyclic networks. They present an approximate method to 
compute the throughput of the network. They approximate 
groups of two stations by a variable capacity station, defined 
as a superposition of fixed capacity stations. They start with 
the last two stations and successively reduce the network until 
two stations in tandem remain. The method is easy to 
implement and shows good accuracy but involves much 
computation. At each step, all conditional probabilities have to 
be found, since they are used to construct the equivalent 
variable capacity station. The method only gives the through- 
put of the entire network, it does not give statistics for 

individual stations. Another disadvantage is that it is applica- 
ble only on cyclic networks where one of the stations must 
have an infinite capacity. Another drawback is that the 
capacity of each downstream station must be smaller than the 
total number of jobs in the network. 

Perros, Nilsson, and Liu [30] give an algorithm for an 
arbitrarily connected network where some (very few) stations 
may have finite capacity. They partition the set of stations in a 
so-called blocking subnetwork and a nonblocking subnetwork. 
The nonblocking subnetwork containing infinite capacity 
stations is replaced by a composite station using parametric 
analysis for infinite capacity networks. The reduced network 
is then analyzed numerically. However, if all stations of the 
network have finite capacity this method reduces itself to a 
numerical analysis method which, as generally known, is only 
applicable on very small networks. 

Deadlocks are possible in transfer blocking networks. All 
stations in a directed cycle could be full at one time. If in each 
of the stations of the cycle, the blocked job is scheduled to go 
to the next station in the cycle, the network is deadlocked. 
There are two possible solutions to the deadlock problem in 
blocking networks. 

1) Include a strategy to handle deadlocks in the model. 
Perros, Nilsson, and Liu [30] assume that in case of deadlock 
all jobs involved move simultaneously to their destinations. 
This complicates the model, since the deadlock handling 
method influences the balance equations. 

2) Simply restrict yourself to cases where deadlock is 
impossible. One such case arises whenever the number of jobs 
in the system is less than the capacity of the directed cycle with 
minimal capacity. No directed cycle can ever have all its 
stations full at the same time, and deadlock is impossible. 

This paper is organized as follows: In Section 11. we show 
that the equilibrium state probabilities for multiple server 
queueing networks with transfer blocking can be computed 
approximately. The solution is based on the concept of 
normalizing the infeasible states that violate station capacities. 
The states are adapted to the allowed capacities of the stations. 
However, the equilibrium state probabilities allow only the 
computation of the mean number of jobs. In order to obtain the 
throughput values, the concept of a state space transformation 
is introduced in Section 111. In Section IV, two examples are 
given to explain both algorithms in the case of tandem and 
nontandem networks. Additional examples are given to 
compare our results to the results of Suri and Diehl in the 
evaluation Section V. In the Appendix, several examples are 
listed and the results are compared to simulation. 

11. APPROXIMATE PRODUCT FORM SOLUTION 

We consider closed queueing networks with the following 

1) There are N stations. 
2) The number of jobs in the system is fixed at K. All jobs 

belong to the same class. 
3) Each station may have multiple servers (mi L 1) and an 

exponentially distributed service time with mean value lip, (i 

4) Each station has a fixed finite capacity M, (i = 1, 2, * * * , 

assumptions. 

= 1 ,  2, e * . ,  N ) .  
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N ) .  (Mi = queue capacity + mi). Cases in which Mi = 03 
are also allowed. 

5 )  A job serviced by the ith station proceeds to the j t h  
station with probability pij for i, j = 1, 2, - * a ,  N,  if the 
number of jobs in the j th  station has not exceeded the capacity 
Mj. Otherwise, the job is blocked in the ith station until a job 
in the j th  station is serviced and a place becomes available. 

6)  The total number of jobs K must be smaller than the sum 
of the station capacities, that is, 

N 

K < C  Mi. 
i: 1 

7) The service discipline in each station is first-come-first- 
served. 

8) The network must be deadlock free. Deadlock occurs in 
blocking networks, if, for instance, assume that station i is 
blocked by stationj. Now it is possible that a job in station j 
may, upon completion of its service, choose to go to station i. 
If station i is full at that time, the deadlock will occur. The 
blocking network is deadlock free, if 

i.e., the total number of jobs in the network must be smaller 
than the sum of station capacities in each cycle C .  Since 
tandem networks have only one cycle, this condition, (2), 
corresponds to (1). Equation (1) is a sufficient condition for 
tandem networks to be deadlock free. 

9) If there are several stations all linked to station j ,  then it 
is possible that at any time there might be blocked jobs from 
more than one station waiting to enter station j. The maximum 
number of blocked jobs will be equal to the number of station's 
servers which are directly connected to station j. We assume 
that these blocked jobs enter station j on a first-blocked-first- 
enter basis. 

With these assumptions, we obtain the queueing network 
model which is classified as transfer blocking case. 

Let k* denote the state of the network without considering 
the station capacities. 

k* = (k? ,  k;, . . - ,  k;) 

where k,? is the number of jobs in the ith station. 
There must be at least (K - mi) waiting places in each 

queue (m, jobs can be in service) to ensure that all states are 
feasible. Since the capacity of the stations is finite, it is clear 
that all states k* cannot be feasible. The feasible states for 
blocking networks are obtained by realizing that the number 
k,? of jobs in the ith station may not exceed the station capacity 
Mi, (k,? I Mi). Blocking events which occur in networks with 
finite station capacities have the effect of rendering states 
exceeding the station capacities infeasible. 

The basic idea is that the infeasible states which violate 
station capacities are normalized. The states are adapted to the 
allowed capacities of the stations. The normalization of the 
states exceeding station capacities is executed by using the 
following formula. This indicates that if the number of jobs in 

a state of a station exceeds its capacity, k,? > Mi, then the job 
distribution is normalized until no violation of the capacity 
limits exists: 

i f j = i  

for all j = 1 ,  2, - a - ,  N. (3) 
where e; is the mean number of visits that a job makes to 
station i and is computed by 

N 

e i = C  ejpji for i = l ,  * a * ,  N. (4) 
J =  I 

The informal interpretation of the formula (3) is: if the 
capacity of a station is exceeded in a state, the number of jobs 
in that station is set equal to its capacity MJ (first term) and 
distribute the remaining number of jobs in the predecessor 
stations according to the transition probabilities (second term). 

Note that in case of networks with arbitrarily connected 
stations, the transition probabilities p,, in the norrnalization 
procedure, (3), cause the number of jobs k, in a state to have 
noninteger values. All nonfeasible states k* of the queueing 
network are normalized by (3). The job distribution in each 
state is adapted to the capacity limit of each station in the 
blocking network: 

fW*) = ( k )  ( 5 )  

where k is the normalized state for the blocking network. The 
function f transforms the nonfeasible state (k*) to the feasible 
state ( k ) .  

By the normalization procedure, an equivalent state space 
structure is obtained for the blocking network. The only 
difference between the two state space structures i s  that the 
jobs are distributed according to the station capacities in the 
state space of the blocking network. 

For a closed queueing network model with transfer block- 
ing, the equilibrium probability distribution for the feasible 
states is computed by 

k* where f ( k * )  = k 

p*(k*) represents the equilibrium state probability distribution 
of the network without station capacity restrictions computed 
by the well-known Gordon/Newell theorem [lo], [35], [40]. 

G(K ) represents the normalization constant which can be 
calculated by any product form network algorithm, e.g., the 
convolution algorithm [33], [35] or LBANC technique [35]. 

The function Pi(k,?) is defined by 
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Performance measures such as the mean number of jobs ki at 
the ith station are computed by 

Mr 

Ei(K)= C npi(n). (9) 
min n in station i 

The marginalprobability of n jobs in the ith station, p i@) ,  
is computed from the equilibrium state probabilities p ( k ) ,  (7): 

pi(n)= ~ ( k ) .  (10) 
Z z l k i = K & n = k ;  

As mentioned before, the normalized state for blocking 
networks with arbitrarily connected stations may be noninte- 
ger values for the number of jobs. Thus, for networks with 
arbitrarily connected stations, the mean number of jobs is 
computed by 

E , ( K ) =  f , ( k * ) p ( k )  for i = l ,  e . . ,  N(11) 

Z:,”=, k,=K&k 

where the function f, (k*) is the ith component of the function 

Even though all performance measures can be computed 
from the equilibrium state probabilities using the according 
formulas, we discovered this holds only for queueing networks 
with infinite station capacities. For example, in order to obtain 
the throughput in bloclung queueing networks, we could not 
use the following well-known throughput formula [35]: 

f &*I. 

where the marginal probabilities are obtained by (IO) and the 
load dependent service rates are given by 

We were not able to obtain other performance measures by 
the equilibrium state probabilities. Hence, we looked for other 
ways and found the following concept for the computation of 
the throughput values in blocking queueing networks, as was 
also shown in [3] for single server cases. 

111. THROUGHPUT ANALYSIS IN BLOCKING QUEUEING NETWORKS 

In [l], we have shown that the state space of two-station 
networks with blocking is isomorph to the state space of two- 
station nonblocking networks with appropriate total number of 
jobs. Based on this concept, we obtained exact results for two- 
station networks with blocking. In the case of networks with 
more than two stations, we have realized that the state space of 
the blocking network cannot be transformed bijectively into 
the state space of the nonblocking network. However, the 
number of states in both networks may be equal or approxi- 
mately equal. This would imply that both networks have 
approximately the same stochastic structure and the through- 

The following steps are executed in order to compute the 
throughput values in queueing networks with blocking. 

1) Determine the number of states in the blocking queueing 
network. 

2 )  Determine the total number of jobs K in the nonblocking 
queueing network. 

3) Analyze the nonblocking queueing network with K jobs 
using MVA [34] or LBANC technique [35] and obtain the 
throughput value which is approximately equal to the through- 
put value of the blocking network with K jobs. 

A. Determine the Number of States in Blocking 
Queueing Networks 

As mentioned before, in blocking networks, each station has 
a capacity limit, which indicates that a certain number of states 
can be feasible. The feasible states for blocking networks are 
obtained by realizing that the number ki of jobs in the ith 
station may not exceed its capacity M;, k; I Mi. Blocking 
events which occur in networks with finite station capacities 
must also be taken into account. Therefore, the mi neighbors 
of the feasible states are included, representing the blocking 
states for the stations. As many servers a station possesses as 
many neighbors of the feasible states are included to the state 
space. Whenever a transition occurs from one state to another 
state in which the capacity limit of a station would be violated, 
we assume that the transition causes a blocking action in the 
network and that the state entered is a bloclung state. In 
reality, the job still resides in the source station. All the other 
states are infeasible and are cancelled. 

In this way, we obtain a substate space for the blocking 
network, with Z ’ ( K )  number of feasible and blocking states. 
For the computation of Z ’ ( K )  we have developed an efficient 
convolution algorithm [3] which is extended here to multiple 
server cases. 

The number of the feasible and blocking states is obtained 
from the last element Z ‘ ( K )  of the following vector result Z’ . 

where 8 is a convolution operation which is explained as 
follows. 

Let A ,  B ,  and C be three ( N  + 1)-dimensional vectors. The 
convolution operation 8 gives the following result : 

C = A  8 B 

with 

I 

c ( n ) = z  a ( / )  - b(i-1) for i = O ,  1, a - . ,  K. 
I = O  

2, for i = 1, 2, * * * ,  N is a (K + 1)-dimensional vector given 
by 

I Z i k )  I puts of both networks are approximately equal. L J 
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d 

with the binary function as elements 

1 if k=O, 1, 2 ,  e - . ,  {M;+ 5 m,) 

0 if otherwise. 
j =  1 andpj,>O [ z ; ( k ) =  

Note that if the stations have no capacity limitations, then 
Z ’ ( K )  is equal to Z ,  the known binomial coefficient formula: 

N + K - 1  ’=( N - 1  ) ’  
This coefficient indicates the number of possible ways to 
distribute K jobs into N stations and provides the number of 
states 2 in a closed queueing network without station capacity 
restrictions. 

B. Determine the Total Number of Jobs I? in the 
Nonblocking Network 

We have shown that the number of states Z ’ ( K )  (feasible 
and blocking states) in the blocking network is obtained by 
(14). The goal is to find a total number of jobs K in a network 
with infinite station capacities having 2 states such that 2 will 
be approximately equal to 2 ’ ( K  ) . 

The total number of jobs K in the nonblocking queueing 
network is determined by the following binomial coefficient 
formula: 

N + K -  1 ’=( N - 1  ) 
If we want to make 2 = Z ’ ( K ) ,  it is possible that noninteger 
values for K will result from (16). Since the number of jobs in 
networks is an integer value, we assume as the integer value 
which provides the nearest value to the number of states as 
Z ’ ( K )  computed by (14). Note that if a value for Z ’ ( K )  is 
obtained by (14) which is in the middle of two computed 2 
values, we choose that value for total number of jobs f? which 
provides the higher 2 value. 

C. Determine the Throughput of the Nonblocking 
Network 

By analyzing the nonblocking network with K total number 
of jobs using a product form algorithm such as mean value 
analysis [34], we obtain the total throughput AN&). As 
mentioned before, since the number of states in both networks 
is approximately equal, it implies that the Markov processes 
describing the evolution of both networks have approximately 
the same structure. Consequently, the throughput of the 
nonblocking network ANB(@ is approximately equal to the 
throughput of the blocking network XB(K ). 

X B ( K )  X N B ( R ) *  (17) 

The throughput Xi and the utilization p i  of each station (for 
i = 1, . * a ,  N )  are computed by 

M K )  
Xi(K) = eiX(K) p i ( K )  =- . 

mipi 

The total response time fc (= cycle time = turnaround 

2 
Fig. 1. A cyclic blocking network. 

time) of jobs in the network is obtained by 

The mean residence time ii is determined using Little’s law 

In the following numerical examples, we outline the general 
flow of both techniques. 

IV. NUMERICAL EXAMPLES 

A .  Cyclic Network 

We examine a queueing network with N = 3 serially 
switched stations and K = 6 jobs shown in Fig. 1 .  The stations 
have finite capacities as M I  = 3, M2 = 2, M3 = 2 and each 
has m, = 2 servers (for i = 1 ,  2, 3 ) .  The service times are 
exponentially distributed with mean values 1IpI = 1 s,  1/pz = 
1.5 s, and l/p3 = 2 s. 

The state space for this network has the structure shown in 
Fig. 2. 

In Fig. 2 ,  a = 2pl, b = 2p2,  c = 2p3, al = p l ,  bl = p 2 ,  
and c1 = p3 denote the transition rates bewteen the states. 

As can be seen from the state space, Fig. 2 ,  only the states 
(3, 2 ,  l ) ,  (3, 1, 2 ) ,  and ( 2 ,  2, 2 )  are feasible. All other states 
exceed the capacity limits of the stations and hence they must 
be normalized. For example, the nonfeasible state (6, 0, 0) is 
normalized as follows: the capacity of the first station is 
violated so we set the number of jobs equal to its capacity. 

k l=3 .  

The remaining three jobs are distributed to other stations: 

By normalization we arrived at the state (3, 0, 3) where the 
capacity of the third station is violated. So we set the number 
of jobs equal to the capacity of the third station. 

k3 = 2 .  

The remaining one job is put to the predecessor station 2:  

k2= k2 + (k3 -M3)p23 = 1 

kl = kl + (k3 -M3)p13= 3 .  



104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989 

5, 1, 0 5, 0, 1 GQ 

Fig. 2. State space by ignoring station capacities. 

As a result, the state (6 ,0 ,0)  becomes assigned the normalized 
job distribution (3, 1, 2); see (3): 

f (6 ,  0, 0) = (3, 1, 2). 

In another nonfeasible state (0, 3, 3), the capacity of the 
second and third station is violated. The number of jobs is set 
equal to the, for example, third station’s capacity. 

k3 = 2. 

The remaining job is put to the second station, 

kl =kl+ (k3 -hf3)p13 = o  
k2 = kz + (k3 -hf3)p23 = 4 

which causes the second station to violate its capacity. 
A further normalization step provides that the state (0, 3, 3) 

becomes assigned the normalized job distribution (2 ,2 ,2) ;  see 
(3): 

f ( 0 ,  3, 3) = (2, 2, 2). 

After normalization of all nonfeasible states, we obtain the 
state space in Fig. 3. 

First ignore the station capacities and compute the equilib- 
rium state probabilities by (7): 

The equilibrium state probabilities for the feasible states of the 
blocking network are computed by (6): 

The mean number of jobs in each station is computed 
from (9): 

R1=2.238 E2~1 .927  E3= 1.827. 

The throughput of the blocking network is determined by 
the throughput analysis method. First the number of states in 

p*(6,0,0) = 0.001 p*(5,0,1) = 0.004 
p*(5,1,0) = 0.003 p*(4,1,1) = 0.012 
p*(4,2,0)=0.004 p*(3,2,1)=0.018 
p*(3,3,0)=0.007 p*(2,3,1)=0.028 
p*(2,4,0)=0.01 p*(1,4,1)=0.042 
p*(l,5,0) = 0.007 p*(0,5,1) = 0.031 

p*(3,1,2) = 0.025 p*(0,3,3) =0.056 
p*(2,2,2) = 0.037 p*(2,0,4) = 0.033 
p*(l,3,2) = 0.056 p*(1,1,4) = 0.099 
p*(0,4,2) = 0.042 p*(0,2,4) = 0.075 
p*(3,0,3)=0.016 p*(1,0,5)=0.066 
p*(2,1,3)=0.05 p*(0,1,5)=0.099 

p*(0,6,0) = 0.01 p*(4,0,2) =O.O083 p*(1,2,3) = 0.075 p*(0,0,6) =0.066. 
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“ I  
3, 1, 2 3, 1, 2 QQ 

Fig. 3 .  Normalized state space. 

TABLE I 

m 

Fig. 4. State space of the bloclung network. 

element Z’  (6 )  = 21 of the vector result Z’ . By drawing the 
state space in Fig. 4, the feasible states and their two 
immediate neighbors (two neighbors are required m, = 2 as 
servers) representing blocking states, provide the same result 
Z ’ ( 6 )  = 21 as the algorithm, (14). The innermost dotted lines 
in Fig. 4 contain the feasible states where the outermost dotted 
lines contain their neighbors as blocking states. The states 
where capacity violations occur are cancelled. 

The total number of jobs I? in the nonblocking network is 
obtained by (16): 

the blocking network is computed by (14): By varying the number of jobs K, we obtain different 
number of states in the nonblocking network as shown in Table 
I. Since the nonblocking network with K = 5 jobs possesses 2 
= 21 states which is equal to the number of states Z‘  ( 6 )  = 21 
of the blocking network, we assume that the nonblocking 
network has K = 5 jobs. The state space for K = 5 is shown 
in Fig. 5. 

Obviously, the state space structure (Fig. 5) is different 
from state space structure of the blocking network, Fig. 4. 
Hence, no unique transformation of the states is possible such 
that the results could be exact. However, the number of states 

15 

0 0 0 21 

Z’ = [J@l]@l]=L‘]. 1 0 0 19 

The number of states in this model is obtained from the last 
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Fig. 5 .  State space of the nonblocking network. 

TABLE LI 

k2 1.927 1.881 2.5 1.843 2 
k ,  1.827 1.807 1.1 3.135 7 4  
h 0.8253 0.8318 0.07 0.8772 6 

Fig. 6. Noncyclic blocking network. 

in both systems is equal. Thus, the throughput of the 
nonblocking network with I? = 5 total number of jobs is 
approximately equal to the throughput of the blocking network 
with K = 6 jobs, i.e., 

X,(6)=XNB(S) =0.8253. 

The mean residence time 6 is obtained by Little’s law, (20). 
All these results are shown and compared to simulation in 
Table 11. 

Note that NOCAP in Table I1 denotes that the network is 
analyzed by ignoring the finiteness of the station capacities 
(NOCAPacity). The deviations 6 are computed using the 
following relative deviation formula: 

stations as shown in Fig. 6. There are K = 3 jobs which 
belong to the same class. The service time of each station is 
exponentially distributed. 

The network parameters are given as follows: 

Station Mi ( 1 / ~ i )  P , I  p i 2  p i 3  
~~ 

1 1 1  0 0.6 0.4 
2 4 1.25 0.3 0.2 0.5 
3 3 2  0.3 0.7 0 

The mean number of visits ei is computed by (4) 
el = 1 e, = 1.955 e3 = 1.378. 

We check the deadlock-free property, (2). In the cycle 
between stations 1 and 2, the total number of jobs is less than 
the total capacity of both networks, i.e., 

{K=3}< c M , = 5  . cJ:, 1 
In the cycle between stations 1 and 3, condition (2) also 

holds: 

also in the cycle between stations 2 and 3, condition (2) holds: 

{ K = 3 } <  c M , = 7  . c j I ,  1 
and finally in the cycle 2 and 2, condition (2) is again satisfied, 
i.e., 

{ K =  3 )  < {M2=4} 

The state space of the given network without considering the 
station capacities is shown in Fig. 7. 

In Fig. 7, a = p 1 p 1 2 ;  b = p 2 p 2 1 ;  c = p 2 P 2 3 ;  d = p 3 P 3 2 ;  

e = p l p 1 3 ;  f = p 3 p 3 1 ;  g = p2pzz denote the transition rates 
between the states. It is obvious that the states (3, 0. 0), (2, 1, 
0), and (2, 0, 1) are nonfeasible. These states exceed the first 
station’s capacity and must be normalized using (3). 

In the state, (3, 0, 0), the number of jobs in the first station 
exceeds the capacity (MI  = l), so it is set equal to its capacity: 

kl= 1 

the remaining jobs are distributed as follows: 

e 2 P 2 1  
k 2  = k 2  + (kl -MI)  = 1.173 

e l ( 1  -PI11 

k 3  = k 3  + (kl -Mi) = 0.8268. 
el(1 -PI11 x 100. 

Since none of the station capacities are violated, the normal- 
ization procedure yields 

1 (Simulation Value - Analytical Value( 
Simulation Value 

6 =  

B. Noncyclic Network 
As mentioned before, the normalization procedure, (3), 

causes the number of jobs in a state to have noninteger values 
in the case of networks with arbitrarily connected stations. In 
order to explain this fact, we analyze a closed queueing 
network with N = 3 arbitrarily switched single server 

f (3,0,0) = (1  , l .  173,0.8268). 

This is the situation that is mentioned before. The transition 
probabilities cause noninteger values for the job distributions 
in a normalized state. 
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Fig. 7. State space by ignoring station capacities. 

Fig. 8. Normalized state space 

Another nonfeasible state, (2, 1, 0), is normalized: The equilibrium probabilities for the feasible states of the 
blocking network are computed by (6): 

f(2,1,0)= (1,1.5865,0.4134). 
p(l,l.173,0.8268) =p*(3,0,0) = 0.0103 

The nonfeasible state (2, 0, 1) is normalized as 

f(2,0,1)=(1,0.5865,1.4134). p(1,0.5865,1.4134)=p*(2,0,1)=0.0284 

After normalization of all nonfeasible states, we obtain the p ( l , l , l )  =p*( l , l , l )  = 0.0694 
state space given in Fig. 8. 

Now we ignore the station capacities and compute the 
equilibrium state probabilities by (7): p(0,2,1) =p*(0,2,1)=0.1695 

p*(3,0,0) = 0.0103 p * ( l , l , l )  =0.0694 p*(2,1,0) = 0.0251 p*(0,0,3) = 0.2157. 
p*(0,2,1)=0.1695 p*(1,2,0)=0.0615 p*(1,0,2)=0.0783 
p*(0,3,0) = 0.1502 p*(0,1,2) = 0.1912 p*(2,0,1) = 0.0284 
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TABLE III 
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700.0 T 

I Approx. I Exact I 6 ( % )  I NOCAP I 6(%) - 
f l  I I I 1  I 0 I 1.2716 I 27 

p(0,3,0) =p*(0,3,0) = 0.1502 

p(0,1,2) =p*(0,1,2) = 0.1912 

p(1,O32)=p*(1,0,2)=O.0783 

p(0,0,3) =p*(0,0,3) = 0.2157. 

600.0 

500.0 

400.0 

300.0 

* - - -  
x.. . . . . . . . 

0 

Single Server 
No Capacity 
Multiple Servcrs 

X 

,*' 
X'  

K 

Fig. 9. Number of states dependent on the number of jobs. 

From (1 1) we calculate the mean number of jobs in each 
station, e.g., Nu.hi,r nf F x . i n ~ l o <  

I 

+fl(1,1,1)p(1,1,1) +f1(1,0,2)P(1,0,2) = 0.273. 100 

Similarly we calculate the mean number of jobs in stations 2 

The total throughput, (17), and the throughput of each 

computed, listed, and compared with exact results in Table 111. 

V. EVALUATION 

and 3. 

De". I 
station, (18), and the mean response time ti, (20), are 0 - 1  1 - 3  3 - 6  6 - 1 0  

Fig. 10. Histogram 1 .  

We have introduced two different techniques for the 
computation of performance measures in blocking networks 
with multiple servers. Both techniques have been implemented 
on a VAX 11/780 system. For the validation of both 
techniques, we have executed 200 network examples with 
different structures. Half of the examples were networks with 
arbitrarily connected stations. Each network model is also 
analyzed by varying the number of jobs. The number of jobs is 
varied from 5 to 100, the number of stations from 3 to 8, and 
the number of servers from 1 to 8. All examples have been 
simulated using the RESQ package [35]. 

Throughout the tests, we could not find any network model 
for which our approximations demonstrated instabilities. In all 
examples we have observed the same behavior. The fewer the 
jobs in the queueing network with finite station capacities, the 
less the chance for blocking. After a certain number of jobs in 
the network is reached, blocking events start to occur. As a 
result, the throughput does not increase with the number of 
jobs in the network. As the number of jobs in the network 
approaches the total capacity of the network (the sum of all 
station capacities), the more blocking events may occur. This 
has the effect of reducing the state space of the blocking 
network, which can be seen in Fig. 9. The solid line shows the 
number of states for a blocking queueing network consisting of 
three stations with station capacities M I  = 12, M2 = 10, and 
M3 = 14, the number of servers ml = 4, m2 = 2, and m3 = 
5 and the dashed line shows the number of states of the same 
network without station capacity limitations for different 
numbers of jobs. By dotted line, we show that the number of 
states in the blocking network is significantly reduced when 

the stations have single servers. It is obvious that the station 
capacities have the effect of decreasing the number of states as 
the number of jobs approaches the total capacity of the 
network. 

In our test cases, most of the deviations for the throughput 
values are below 2 percent, implying that our throughput 
technique provides very accurate results for throughput and 
utilization. As can easily be seen in the chart in Fig. 10, the 
throughput values of the 65 examples in case of tandem 
networks (shaded portions) and of 43 in case of nontandem 
networks lie in the range of 0-1 percent deviation. 

The major advantage of this technique is that the throughput 
values are obtained from a product form network which can 
easily be analyzed by mean value analysis or by any other 
product form network algorithm. Since mean value analysis 
has the advantage that it is extremely fast, it follows that we 
can obtain results for even a large queueing network with 
blocking in a very short time. 

For the computation of the mean number of jobs k, ,  we need 
the equilibrium state probabilities which are given by (6). The 
method has shown a very stable behavior in the computation of 
the k, values. The vast majority of the deviations were in the 
range of 1-5 percent as shown in histogram 2 in Fig. 11. 

Compared to the throughput values, the deviations for the 
mean number of jobs are higher which can be observed in both 
histograms 1 and 2. Extremely small numbers cause deviations 
of 35 percent which makes 6 percent of the cases in histogram 
2. As generally known, small numbers can provide high 
deviations even though the numerical results are not too 
different. In the histogram 3, in Fig. 12, we show the 
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200 

100 

NmSer Of E x a m D l e s  
0 

0 - 1 1 - J 3 - 6 ‘ 6  - 10’10-15 ‘15-20 ‘ 2 0 - 3 5  0 - 1  1 - 3  3 

Fig. 11. Histogram 2. 

100 - 

> D e v . i  
0 - 1 1 - 3 3 - 6 ’ 6 - 10’13-15 ‘15-2C 20-55 

Fig. 12. Histogram 3. 

percentage of errors by ignoring the small (less than K X N/ 
10) numerical results. 

As it can be seen in histogram 3, the highest deviation for 
tandem networks is decreased to 15 percent. In the case of 
nontandem networks, the number of cases in the range 20 
percent and 35 percent has also decreased enormously. 

The normalization procedure has a fairly long run time. 
However, it is not nearly as long as the long run times of 
simulation or global balance techniques. The latter are only 
applicable to very small networks. As pointed out before, the 
normalization procedure, (3), for the computation of the mean 
number of jobs can yield noninteger values for the job 
distribution in a state. The normalization of states must be 
proceeded until no station’s capacity is violated. Here the 
problem arises that the normalization can cause the capacity 
violation of another station. Further normalization would 
result in another violation of the previous mentioned station’s 
capacity. For example, if the capacity of ith station is violated, 
the normalization causes station j to obtain some jobs which 
leads to its capacity violation. Further normalization leads to a 
situation that station i gets some jobs back so that its capacity is 
again violated. In other words, in the normalization proce- 
dure, two or more stations can keep exchanging the jobs 
between each other. This can cause long run times. Based on 
our test examples, the normalization procedure always con- 
verges, i.e., a normalized state is always reached in which the 
station’s capacities are not violated. This will be explained in 
detail. 

Let us consider the example given in Section IV-B. Ignoring 
the possibility of deadlock, assume that the station’s capacities 
are selected as MI = 2, M2 = 1 and M3 = 1. An interesting 

TABLE IV 
k ,  = I 
k ,  = 0.897 

k ,  = 0.926 

normalization occurs in case of the nonfeasible state (0 ,  3, 0). 
The capacity of the second station is exceeded. So we apply (3) 
and obtain 

k2= 1 

kl=O.766 

k3 = 1.234. 

Here we see that the normalization procedure, (3), resets the 
number of jobs in the second station to its capacity. However, 
some of the remaining jobs cause the capacity of the third 
station to be exceeded. In this case, we set the number of jobs 
in the third station back to its capacity and obtain 

k3 = 1 

k l =  0.834 

k2= 1.166. 

This time the capacity of the second station is violated 
again. The normalization causes both stations to swap jobs 
back and forth to each other. However, the remaining number 
of jobs is shuffled to the first station in each new normalization 
step. This is shown in Table IV. 

As it can easily be seen in Table IV, the state values are 
tending towards (1, 1, 1). Note that in the implementation of 
this algorithm, an epsilon value of (eps = prevents long 
run times for the normalization in such situations where two or 
more stations effect each other. If, after a normalization, the 
number of jobs exceeding the capacity less than the eps value, 
then the normalization is assumed to be done. In the example 
above, Table IV, the value for k3 violates the capacity by 
exceeding it by only 0.044. There is no reason to continue the 
normalization procedure until the values (1, 1, 1) are reached. 
Similar situations also occur for states (0, 1, 2), (0, 0. 3), and 
(0, 2, l ) ,  which are normalized to the state (1, 1, 111. 

Suri and Diehl [38] also consider closed queueing networks 
with Type 1 (transfer) blocking. They assume that the first 
station must have a capacity greater than the number of jobs in 
the network. They apply Norton’s theorem [27], [35], [40] and 
reduce each two-station pair to a single station with a variable 
size queue capacity that is easy to analyze. An approximation 
algorithm is derived for the total throughput of the network. In 
the following we compare our throughput results to those of 
Suri and Diehl [38] and plot the throughput results for three 
blocking queueing networks with various number of jobs. 
Each graph contains three computations of total throughputs 
for various number of jobs: a) our algorithm, b) exact or 
simulation, c) Suri/Diehl results. 
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1 1; U ,  
10 
10 
10 

110 

Example I :  

I '1' 1 ' 1  p 3  00999 Exact Our 00907 Approx 0 6 s u ~ ~ ~ ~ ' ~  

1 5 00957 00924 3 4 
I 10 00793 00743 6 3 00796 
1 20 00483 00465 3 7 00483 

x 1 . 0 7  

10 
IO 
10 
10 

0.7 

0.5 

10 10 0.0613 0.0610 0 0.0595 251 
10 20 0.0420 0.0423 0 0.0415 I 
20 IO 0.0417 0.0423 1.3 0.0400 4.15 
20 20 0.0330 0.0340 2.8 0.0326 I.:. 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 K 

Total throughput dependent on the number of jobs. Fig. 13. 

Example 2: 

4 6  
5 1 2  

0 .31  

0.1 
e---. Suri/Diehl 

_ _ _ _ _ _ -  __. simulation 
m-. approximation 

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 K 
0.0 

Fig. 14. Total throughput dependent on the number of jobs. 

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 K 

Total throughput dependent on the number of jobs Fig. 15. 

In the following tables, we give total throughput results for 
different network examples which are taken from Suri and 
Diehl [33]. 

Example 4: 
N = 3 stations (cyclic); K = 5 jobs; M I  = 03; M2 = 1; M3 

= 2;  

ii 10 

10 
10 10 
10 10 
10 10 
10 10 

0 0472 
100 00099 

0 0661 
10 00613 
20 00443 

T- 0 0452 0 0 0734 0472 

0 0100 0 0099 
0 0730 0 0664 
00694 4 9 00649 
0 0600 0 0600 
00423 4 5 00438 

1 8  
2 1  ir 1 1  

10 20 I 00428 00465 8 6  00426 
10 20 5 00427 00452 5 8 00413 

10 20 100 00099 00099 0 00099 
10 100 1 000990 00100 I 00099 
10 100 5 000990 00100 1 00098 

Example 5: 
N = 3 stations (cyclic); K = 5 jobs; MI = 03; M;! = 2; M3 

= 1; 
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ri c3 
X 

APPENDIX 

2.6233 2.38 4.6 10.03 1 3 3 3  44 
7 4 0 6 5  7.70 1.3 3.81 0 7 4 1  91 
0.9999 0.99 1.3 0.32 0 999 0.32 

111 

!I 
k_2 
k ,  

Example 3. (Cyclic): 

A IOX. Simul. Std Dev.  6 D NOCAP 6 C ]  
I T  11.94 0.7 
7.009 7.31 1.1 4 I 1.333 82 

13.99 13 76 0.9 1.6 3.424 75 

i.? 28.242 "7 

We give results for 10 blocking queueing networks with 
various number of jobs. We have a total of 25 test cases with 
different system input parameters. Each table contains three 
computations of results for various number of jobs: 1) our 
algorithm 2) simulation, and 3) NOCAP. The third column 
contains the standard deviation of simulation results. shows 
the relative deviations between our results and the simulation. 
h2 shows the deviations between NOCAP and the simulation. 
This column demonstrates the effects of finite station capacity 
on the performance of the network. 

Example I .  (Cyclic): 

- h1 24.096 24 580 0.06 1 9  
k ,  14.999 14.500 0.9 3.3 

a) K = 22 jobs 

1 9 9 9  92 
37096  173 

1 Approx I Simul. I Std Dev  I a,(%) I NOCAP I 6 2 ( v  

k; I 11 9703 I 11.92 I 2.4 I 0.42 I 1 9 9 2 6  I 67 

- 
h3 
k, 
k ,  
X 

0.154 0.157 0.1 1.9 0 153 2 
0 500 0.499 0.5 0 0.501 0 
0.250 0.250 1.1 0 0.25 0 
1.333 1.344 1.1 0.8 1.333 0 

b) K = 30 jobs 

- 
k2 
h3 
k ,  
F6 
X 

Example 2. (Cyclic): 

15 13.69 0 3 9 .5  47096  244 
0 15 0.15 0 8  0 0 153 0 
0.5 0.49 1 0 0.501 0 
9.34 10.72 0.4 I ?  8 0.25 98 
1.333 1.330 0.2 0 1 3 3 3  0 

a) K = 40 jobs 

1.3 
I .4 

4 1 3  1.3 
5 14 1.2 4 

a) K = 25 jobs 

b) K = 50 jobs 

C) K = 60 jobs 

11.0986 

Example 4. (Cyclic): 

K = 33 jobs 
a) mi = 2 f o r i  = 1, 2, 3 

b) m, = 2; rn2 = 5 ;  m3 = 5 

Approx. Simul. Std. Dev.  SI(%) - hI 12 11.99 
k_z 7 7.008 
k. 14 14 

0.9 0.08 30.91 .54 
0.65 0 
0.3 0 1.51 

b) K = 50 jobs 
c) m, = 3; m2 = 8; m3 = 5 

I -\pprox. I Simul  I Std. Dev  I 6,(%) I NOCAP I ~5~('?3 
k; I 25 I 24.97 I 0 0 7  I 0 I 1.999 I 92 
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d) m ,  = 4; m2 = 2; m3 = 5 

- 
k2 
k ,  
X 

1 Approx. 1 Simul. 1 Std. De". I SI(%) 1 NOCAP 1 6,(% 
6, I 11 99 I 11.92 I 2.1 I 0.6 I 15.541 I 30 

9 10 8.64 3.2 5.2 14.281 65 
11 90 12.44 1.8 4.3 3 178 75 

1.78 1.73 0.8 3 1.929 I 1  

- 
k2 
k3 
k ,  
X 

Example 5 .  (Noncyclic): 
K = 9 jobs; 

3 02 2.76 2.5 9.2 4.19 
0.05 0 05 0 4 1 0.04 
0.05 0.05 2 2 4.1 0 0 5  
2.33 2.23 3.1 4.2 2 36 i i 6  

2 5  
0.3 

k_2 
k 3  
h 
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2.68 2.54 1.2 5 6  2 4 5  3 5  
1 4 7  1.89 4 7  22 1.25 34 
I 7 4 4  1661 0.6 0.5 1.74 0.5 

a ) K  = 1 1  jobs; 

k2 
k3 
k ,  
X 

3.89 43.2 2.93 2.72 
k3 0.04 0.04 0.7 2.8 0.046 2 8 

0.04 0.04 3.7 5 5 0 046 5 6 
2.28 2.23 1.3 2.4 2.33 4 3 

3.321 3.321 7 4 0 
3.468 3.461 I 1 0 
1.226 1.255 5 7 2.3 0 851 

406 0 3 8 3  2.2 6 0.406 

b) K = 12 jobs; 

I Approx. 1 Simul. I Std .Dev .  I SI(%) I NOCAP I 621'@ 
k; 1 8.87 I 9.13 1 0.2 1 2.8 1 7.71 1 l!i 6 

a) mI = 2;  m2 = 5 ;  m3 = 3 
Example 8. (Noncyclic): 

1 58 1.66 4.6 0 6 8  58.7 
k ,  1.47 1 6 6  1.4 11.2 0.57 65.2 

0.8 0.79 0.7 0.37 0.79 

b) m, = 5; m2 = 2; m3 = 5 

I Approx. I Simul  I Std Dev  I 6 , ( % )  I NOCAP 1 6*(% 
k ,  I 4 84 I 4.56 1 I 1  I 5.9 1 5.31 I 16 

Example 6. (Noncyclic): 

a) K = 8 jobs 

0.399 

b) K = 10 jobs 

1 9 5  1 8 4 8  3 8 5 4 0 3 9 9  78 
0 3 9 9  0 4 0 1  2 3 0 399 

c) K = 1 1  jobs 

0.399 

Example 7. (Noncyclic): 1 1 1  
0 2  0 0 

4 2 0 2  2 0 0 0  

0 3  

a) K = 8 jobs 

3.17 
3 37 

b) K = 9 jobs 

Approx. Simul Std. Dev .  6 o 

IF, 1 0 984 0.963 I 1.2 1 i.7 I Nt%p I "9 

Example 9. (Noncyclic): 

1 7  

a) K = 7 jobs; 

1.03 1.02 1 2  0.5 1.11 3.5 
k3 0.81 0.82 1.7 0.7 0.91 10.5 

1.10 1.09 2.1 1.3 1 1 1  1 1  
0.96 0 95 0.7 0 3 0.96 0 3 

b) K = 14 jobs; 
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[I 11.11 11.71 2.1 5.1 9.04 
I.. 1 57 1.45 0.7 2.5 8.5 
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c)  K = 16 jobs; 

23 
78 

‘1‘ 
k_l 
k ,  
X 

- - 
1.21 1.08 0.9 12 2 1 8 2  68 
2.11 1.75 0.74 20.1 2.57 46 

4.9 1.42 14 1 3 2  1.25 0 6  

Example. 10. (Noncyclic): 

c2 
ix 
I . ,  
X 

a) K = 8 jobs 

2.99 2.99 0.3 0 3.17 6 
3.13 3.12 0.7 0 3.37 8 
1.03 1.05 0.8 1.8 0.81 23 
0 398 0.38 0.3 2.6 0.39 2.6 

b) K = 9 jobs 
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