
IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989 99

Product Form Approximations for Queueing
Networks with Multiple Servers

and Blocking

Abstract-Queueing networks with blocking have become an
important research topic in performance evaluation in recent
years. Various types of blocking within queueing networks have
been studied by several investigators. In this work, the following
type of blocking is examined. Upon completing of its service, a
job attempts to enter a new station. If at that moment, the
destination station is full, the job is forced to reside in the server
of the source station until a place becomes available in the
destination station. The server of the source station remains
blocked during this period of time. It is shown that the
equilibrium state probabilities for this type of blocking queueing
network have an approximate product form solution. The
solution is based on the concept of normalizing the infeasible
states that violate station capacities. The states are adapted to the
allowed capacities of the stations. However, the equilibrium state
probabilities allow only the computation of mean number of
jobs. In order to obtain the throughput values, the concept of the
state space transformation is introduced. This concept is based on
finding a nonblocking network with appropriate total number of
jobs of which the number of feasible states is equal or approxi-
mately equal to the number of feasible states in the blocking
queueing network. This guarantees that the Markov processes
describing the evolution of both networks over time have
approximately the same structure. This leads to the result that the
throughputs of both systems are approximately equal. The
approximations are validated by executing several examples,
including stress tests, and comparing them with simulation
results.

Index Terms-Binomial coefficient formula, blocking, finite
station capacities, performance evaluation, performance mea-
sures, queueing networks.

I. INTRODUCTION

COMPUTER system can be viewed as an organized A collection of hardware and software resources for which
the concurrent processes in the system are constantly compet-
ing. Two major functions of an operating system are the
effective scheduling of conflicting requests and the appropriate
handling of the process queues waiting for resource allocation
and scheduling. Queueing network theory can be used to
provide the basic framework and mathematical tools for the
modeling and analysis of computer system hardware and
software.

Manuscript received June 6, 1986; revised October 29, 1986. This work
was supported in part by the Air Force Office of Scientific Research (AFOSR)
under Grant AFOSR-87-0160.

The author is with the School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA 30332.

IEEE Log Number 8820886.

Queueing networks have received a very special interest
in the last 15 years for uses with performance evaluation and
performance prediction. A queueing network is a collection of
stations (devices with queues) in which jobs/processes proceed
from one station to another in order to satisfy their service
requirements. When dealing with queueing networks with
infinite station capacities, Baskett et al. [IO] and Kelly 1211
have shown that the solutions for four types of stations (*/M/
M/m-FCFS, ./G/l-RR-PS, */G/IS (Infinite Servers), and */
G/1-LCFS-PR) have a product form. The product form
implies that each station in the network can be analyzed
independently from each other. Several algorithms have been
introduced for an efficient computation of performance mea-
sures for queueing networks in the last 15 years [27], [33],
[34], [35]. In the last two decades, many successful applica-
tions have been developed for the modeling of computer,
communication, and manufacturing systems by queueing
networks [27], [35], [40].

Since in actual systems the resources have finite capacity,
queueing networks with blocking must be used for perform-
ance analysis. In queueing networks with blocking, a station
can be thought of as a device with a finite length buffer.
Blocking arises because of the limitations imposed by the
capacity of these buffers.

In recent years, there has been a growing interest in the
development of computational methods to analyze queueing
networks with blocking. Researchers from various areas such
as computer science, operations research, mathematics, and
electrical engineering have studied blocking networks. Several
papers have been published dealing with various types of
blocking types. Previous work regarding the blocking net-
works falls into three classes [28].

1) Transfer (Type I = Manufacturing) Blocking: Upon
completion of its service, a job at station i attempts to enter
destination station j . If station j is full at that moment, the job
is forced to wait at server i until it enters destination stationj.
The server remains blocked for this period of time. It cannot
serve any other job waiting in the queue. This type of blocking
has been used to study models of flexible manufacturing
systems and disk U0 subsystems [1]-[5], [8], [12], [14], [29]-
P11, 1361, 1381, W I , P11.

2) Service (Type 2 = Communication-I) Blocking: A
job in station i declares its destination station j before it starts
its service. If station j is full, the ith server is blocked, i.e., it
cannot serve jobs. When a departure occurs from destination

OO18-9340/89/0lOO-OO99$01 .OO 0 1989 IEEE

100 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

station j , the ith server becomes unblocked and the job begins
receiving service. This blocking type has been used to study
models of production lines and telecommunication networks

3) Rejection (Type 3 = Communication-2) Blocking:
Upon service completion at station i, a job attempts to join
destination station j . If stationj is full at that moment, the job
is refused. The rejected job goes with a certain probability (so-
called “rejection probability”) back to the station i’s server
and immediately receives a new service with the same mean
service time. This is repeated until some job completes a
service at station j and a place becomes available. This
blocking type has been used to model communication net-

[111, ~ 4 1 , [161, ~ 7 1 , [221, [231, [251, ~ 7 1 .

works [61, [71, 191, [131, [151, [181, [191, [211, 1261, 1321,
[421.

Comparisons between these distinct types of blocking have
been carried out by Onvural and Perros [28]. Several other
investigators in recent years have published results on block-
ing queueing networks. Since we investigate closed queueing
networks with transfer blocking here, the discussion of the
previous work will contain the studies of these networks.

The analysis of transfer blocking networks is very difficult.
Exact results exist only for very limited cases. In [l], we
showed that the equilibrium state probability distributions of
two-station closed queueing networks with transfer blocking
and multiple server stations are identical to those of two-
station closed queueing networks without blocking. Onvural
and Perros [29] show that if the number of jobs in a network
with transfer blocking is one more the capacity of the station
with the smallest capacity, there exists an exact product form
solution.

All other studies for this type of networks are approxima-
tions. In [3], we showed that the throughput of a blocking
network with K total number of jobs and single servers is
approximately equal to the throughput of a nonblocking
network with an appropriate total number of jobs R. The
approximation provides very accurate results, on the average 5
percent deviations. In [4], we modify mean value analysis, in
short form MVA 1341, for transfer blocking networks. The
resulting method is called MVABLO. MVABLO estimates the
additional time a job spends in each station because of
blocking. This time is included in the response time formula of
MVA. Even though the method is extremely fast, it provides
larger deviations from actual values. These results have been
extended to networks with general service time distributions in
121.

Suri and Diehl [38] consider transfer blocking policy in
cyclic networks. They present an approximate method to
compute the throughput of the network. They approximate
groups of two stations by a variable capacity station, defined
as a superposition of fixed capacity stations. They start with
the last two stations and successively reduce the network until
two stations in tandem remain. The method is easy to
implement and shows good accuracy but involves much
computation. At each step, all conditional probabilities have to
be found, since they are used to construct the equivalent
variable capacity station. The method only gives the through-
put of the entire network, it does not give statistics for

individual stations. Another disadvantage is that it is applica-
ble only on cyclic networks where one of the stations must
have an infinite capacity. Another drawback is that the
capacity of each downstream station must be smaller than the
total number of jobs in the network.

Perros, Nilsson, and Liu [30] give an algorithm for an
arbitrarily connected network where some (very few) stations
may have finite capacity. They partition the set of stations in a
so-called blocking subnetwork and a nonblocking subnetwork.
The nonblocking subnetwork containing infinite capacity
stations is replaced by a composite station using parametric
analysis for infinite capacity networks. The reduced network
is then analyzed numerically. However, if all stations of the
network have finite capacity this method reduces itself to a
numerical analysis method which, as generally known, is only
applicable on very small networks.

Deadlocks are possible in transfer blocking networks. All
stations in a directed cycle could be full at one time. If in each
of the stations of the cycle, the blocked job is scheduled to go
to the next station in the cycle, the network is deadlocked.
There are two possible solutions to the deadlock problem in
blocking networks.

1) Include a strategy to handle deadlocks in the model.
Perros, Nilsson, and Liu [30] assume that in case of deadlock
all jobs involved move simultaneously to their destinations.
This complicates the model, since the deadlock handling
method influences the balance equations.

2) Simply restrict yourself to cases where deadlock is
impossible. One such case arises whenever the number of jobs
in the system is less than the capacity of the directed cycle with
minimal capacity. No directed cycle can ever have all its
stations full at the same time, and deadlock is impossible.

This paper is organized as follows: In Section 11. we show
that the equilibrium state probabilities for multiple server
queueing networks with transfer blocking can be computed
approximately. The solution is based on the concept of
normalizing the infeasible states that violate station capacities.
The states are adapted to the allowed capacities of the stations.
However, the equilibrium state probabilities allow only the
computation of the mean number of jobs. In order to obtain the
throughput values, the concept of a state space transformation
is introduced in Section 111. In Section IV, two examples are
given to explain both algorithms in the case of tandem and
nontandem networks. Additional examples are given to
compare our results to the results of Suri and Diehl in the
evaluation Section V. In the Appendix, several examples are
listed and the results are compared to simulation.

11. APPROXIMATE PRODUCT FORM SOLUTION

We consider closed queueing networks with the following

1) There are N stations.
2) The number of jobs in the system is fixed at K. All jobs

belong to the same class.
3) Each station may have multiple servers (mi L 1) and an

exponentially distributed service time with mean value lip, (i

4) Each station has a fixed finite capacity M, (i = 1, 2, * * * ,

assumptions.

= 1 , 2, e * . , N) .

AKYILDIZ: PRODUCT FORM APPROXIMATIONS FOR QUEUEING NETWORKS 101

N) . (Mi = queue capacity + mi). Cases in which Mi = 03
are also allowed.

5) A job serviced by the ith station proceeds to the j t h
station with probability pij for i, j = 1, 2, - * a , N, if the
number of jobs in the j th station has not exceeded the capacity
Mj. Otherwise, the job is blocked in the ith station until a job
in the j th station is serviced and a place becomes available.

6) The total number of jobs K must be smaller than the sum
of the station capacities, that is,

N

K < C Mi.
i: 1

7) The service discipline in each station is first-come-first-
served.

8) The network must be deadlock free. Deadlock occurs in
blocking networks, if, for instance, assume that station i is
blocked by stationj. Now it is possible that a job in station j
may, upon completion of its service, choose to go to station i.
If station i is full at that time, the deadlock will occur. The
blocking network is deadlock free, if

i.e., the total number of jobs in the network must be smaller
than the sum of station capacities in each cycle C . Since
tandem networks have only one cycle, this condition, (2),
corresponds to (1). Equation (1) is a sufficient condition for
tandem networks to be deadlock free.

9) If there are several stations all linked to station j , then it
is possible that at any time there might be blocked jobs from
more than one station waiting to enter station j. The maximum
number of blocked jobs will be equal to the number of station's
servers which are directly connected to station j. We assume
that these blocked jobs enter station j on a first-blocked-first-
enter basis.

With these assumptions, we obtain the queueing network
model which is classified as transfer blocking case.

Let k* denote the state of the network without considering
the station capacities.

k* = (k? , k;, . . - , k;)

where k,? is the number of jobs in the ith station.
There must be at least (K - mi) waiting places in each

queue (m, jobs can be in service) to ensure that all states are
feasible. Since the capacity of the stations is finite, it is clear
that all states k* cannot be feasible. The feasible states for
blocking networks are obtained by realizing that the number
k,? of jobs in the ith station may not exceed the station capacity
Mi, (k,? I Mi). Blocking events which occur in networks with
finite station capacities have the effect of rendering states
exceeding the station capacities infeasible.

The basic idea is that the infeasible states which violate
station capacities are normalized. The states are adapted to the
allowed capacities of the stations. The normalization of the
states exceeding station capacities is executed by using the
following formula. This indicates that if the number of jobs in

a state of a station exceeds its capacity, k,? > Mi, then the job
distribution is normalized until no violation of the capacity
limits exists:

i f j = i

for all j = 1 , 2, - a - , N. (3)
where e; is the mean number of visits that a job makes to
station i and is computed by

N

e i = C ejpji for i = l , * a * , N. (4)
J = I

The informal interpretation of the formula (3) is: if the
capacity of a station is exceeded in a state, the number of jobs
in that station is set equal to its capacity MJ (first term) and
distribute the remaining number of jobs in the predecessor
stations according to the transition probabilities (second term).

Note that in case of networks with arbitrarily connected
stations, the transition probabilities p,, in the norrnalization
procedure, (3), cause the number of jobs k, in a state to have
noninteger values. All nonfeasible states k* of the queueing
network are normalized by (3). The job distribution in each
state is adapted to the capacity limit of each station in the
blocking network:

fW*) = (k) (5)

where k is the normalized state for the blocking network. The
function f transforms the nonfeasible state (k*) to the feasible
state (k) .

By the normalization procedure, an equivalent state space
structure is obtained for the blocking network. The only
difference between the two state space structures i s that the
jobs are distributed according to the station capacities in the
state space of the blocking network.

For a closed queueing network model with transfer block-
ing, the equilibrium probability distribution for the feasible
states is computed by

k* where f (k *) = k

p*(k*) represents the equilibrium state probability distribution
of the network without station capacity restrictions computed
by the well-known Gordon/Newell theorem [lo], [35], [40].

G(K) represents the normalization constant which can be
calculated by any product form network algorithm, e.g., the
convolution algorithm [33], [35] or LBANC technique [35].

The function Pi(k,?) is defined by

102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. I , IANUARY 1989

Performance measures such as the mean number of jobs ki at
the ith station are computed by

Mr

Ei(K)= C npi(n). (9)
min n in station i

The marginalprobability of n jobs in the ith station, p i@) ,
is computed from the equilibrium state probabilities p (k) , (7):

pi(n)= ~ (k) . (10)
Z z l k i = K & n = k ;

As mentioned before, the normalized state for blocking
networks with arbitrarily connected stations may be noninte-
ger values for the number of jobs. Thus, for networks with
arbitrarily connected stations, the mean number of jobs is
computed by

E , (K) = f , (k *) p (k) for i = l , e . . , N(11)

Z:,”=, k,=K&k

where the function f, (k*) is the ith component of the function

Even though all performance measures can be computed
from the equilibrium state probabilities using the according
formulas, we discovered this holds only for queueing networks
with infinite station capacities. For example, in order to obtain
the throughput in bloclung queueing networks, we could not
use the following well-known throughput formula [35]:

f &*I.

where the marginal probabilities are obtained by (IO) and the
load dependent service rates are given by

We were not able to obtain other performance measures by
the equilibrium state probabilities. Hence, we looked for other
ways and found the following concept for the computation of
the throughput values in blocking queueing networks, as was
also shown in [3] for single server cases.

111. THROUGHPUT ANALYSIS IN BLOCKING QUEUEING NETWORKS

In [l], we have shown that the state space of two-station
networks with blocking is isomorph to the state space of two-
station nonblocking networks with appropriate total number of
jobs. Based on this concept, we obtained exact results for two-
station networks with blocking. In the case of networks with
more than two stations, we have realized that the state space of
the blocking network cannot be transformed bijectively into
the state space of the nonblocking network. However, the
number of states in both networks may be equal or approxi-
mately equal. This would imply that both networks have
approximately the same stochastic structure and the through-

The following steps are executed in order to compute the
throughput values in queueing networks with blocking.

1) Determine the number of states in the blocking queueing
network.

2) Determine the total number of jobs K in the nonblocking
queueing network.

3) Analyze the nonblocking queueing network with K jobs
using MVA [34] or LBANC technique [35] and obtain the
throughput value which is approximately equal to the through-
put value of the blocking network with K jobs.

A. Determine the Number of States in Blocking
Queueing Networks

As mentioned before, in blocking networks, each station has
a capacity limit, which indicates that a certain number of states
can be feasible. The feasible states for blocking networks are
obtained by realizing that the number ki of jobs in the ith
station may not exceed its capacity M;, k; I Mi. Blocking
events which occur in networks with finite station capacities
must also be taken into account. Therefore, the mi neighbors
of the feasible states are included, representing the blocking
states for the stations. As many servers a station possesses as
many neighbors of the feasible states are included to the state
space. Whenever a transition occurs from one state to another
state in which the capacity limit of a station would be violated,
we assume that the transition causes a blocking action in the
network and that the state entered is a bloclung state. In
reality, the job still resides in the source station. All the other
states are infeasible and are cancelled.

In this way, we obtain a substate space for the blocking
network, with Z ’ (K) number of feasible and blocking states.
For the computation of Z ’ (K) we have developed an efficient
convolution algorithm [3] which is extended here to multiple
server cases.

The number of the feasible and blocking states is obtained
from the last element Z ‘ (K) of the following vector result Z’ .

where 8 is a convolution operation which is explained as
follows.

Let A , B , and C be three (N + 1)-dimensional vectors. The
convolution operation 8 gives the following result :

C = A 8 B

with

I

c (n) = z a (/) - b(i-1) for i = O , 1, a - . , K.
I = O

2, for i = 1, 2, * * * , N is a (K + 1)-dimensional vector given
by

I Z i k) I puts of both networks are approximately equal. L J

AKYILDIZ: PRODUCT FORM APPROXIMATIONS FOR QUEUEING NETWORKS

Q 1 Q2 Q3

103

d

with the binary function as elements

1 if k=O, 1, 2 , e - . , {M;+ 5 m,)

0 if otherwise.
j = 1 andpj,>O [z ; (k) =

Note that if the stations have no capacity limitations, then
Z ’ (K) is equal to Z , the known binomial coefficient formula:

N + K - 1 ’=(N - 1) ’
This coefficient indicates the number of possible ways to
distribute K jobs into N stations and provides the number of
states 2 in a closed queueing network without station capacity
restrictions.

B. Determine the Total Number of Jobs I? in the
Nonblocking Network

We have shown that the number of states Z ’ (K) (feasible
and blocking states) in the blocking network is obtained by
(14). The goal is to find a total number of jobs K in a network
with infinite station capacities having 2 states such that 2 will
be approximately equal to 2 ’ (K) .

The total number of jobs K in the nonblocking queueing
network is determined by the following binomial coefficient
formula:

N + K - 1 ’=(N - 1)
If we want to make 2 = Z ’ (K) , it is possible that noninteger
values for K will result from (16). Since the number of jobs in
networks is an integer value, we assume as the integer value
which provides the nearest value to the number of states as
Z ’ (K) computed by (14). Note that if a value for Z ’ (K) is
obtained by (14) which is in the middle of two computed 2
values, we choose that value for total number of jobs f? which
provides the higher 2 value.

C. Determine the Throughput of the Nonblocking
Network

By analyzing the nonblocking network with K total number
of jobs using a product form algorithm such as mean value
analysis [34], we obtain the total throughput AN&). As
mentioned before, since the number of states in both networks
is approximately equal, it implies that the Markov processes
describing the evolution of both networks have approximately
the same structure. Consequently, the throughput of the
nonblocking network ANB(@ is approximately equal to the
throughput of the blocking network XB(K).

X B (K) X N B (R) * (17)

The throughput Xi and the utilization p i of each station (for
i = 1, . * a , N) are computed by

M K)
Xi(K) = eiX(K) p i (K) =- .

mipi

The total response time fc (= cycle time = turnaround

2
Fig. 1. A cyclic blocking network.

time) of jobs in the network is obtained by

The mean residence time ii is determined using Little’s law

In the following numerical examples, we outline the general
flow of both techniques.

IV. NUMERICAL EXAMPLES

A . Cyclic Network

We examine a queueing network with N = 3 serially
switched stations and K = 6 jobs shown in Fig. 1 . The stations
have finite capacities as M I = 3, M2 = 2, M3 = 2 and each
has m, = 2 servers (for i = 1 , 2, 3) . The service times are
exponentially distributed with mean values 1IpI = 1 s, 1/pz =
1.5 s, and l/p3 = 2 s.

The state space for this network has the structure shown in
Fig. 2.

In Fig. 2 , a = 2pl, b = 2p2, c = 2p3, al = p l , bl = p 2 ,
and c1 = p3 denote the transition rates bewteen the states.

As can be seen from the state space, Fig. 2 , only the states
(3, 2 , l) , (3, 1, 2) , and (2 , 2, 2) are feasible. All other states
exceed the capacity limits of the stations and hence they must
be normalized. For example, the nonfeasible state (6, 0, 0) is
normalized as follows: the capacity of the first station is
violated so we set the number of jobs equal to its capacity.

k l=3 .

The remaining three jobs are distributed to other stations:

By normalization we arrived at the state (3, 0, 3) where the
capacity of the third station is violated. So we set the number
of jobs equal to the capacity of the third station.

k3 = 2 .

The remaining one job is put to the predecessor station 2:

k2= k2 + (k3 -M3)p23 = 1

kl = kl + (k3 -M3)p13= 3 .

104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

5, 1, 0 5, 0, 1 GQ

Fig. 2. State space by ignoring station capacities.

As a result, the state (6 ,0 ,0) becomes assigned the normalized
job distribution (3, 1, 2); see (3):

f (6 , 0, 0) = (3, 1, 2).

In another nonfeasible state (0, 3, 3), the capacity of the
second and third station is violated. The number of jobs is set
equal to the, for example, third station’s capacity.

k3 = 2.

The remaining job is put to the second station,

kl =kl+ (k3 -hf3)p13 = o
k2 = kz + (k3 -hf3)p23 = 4

which causes the second station to violate its capacity.
A further normalization step provides that the state (0, 3, 3)

becomes assigned the normalized job distribution (2 ,2 ,2) ; see
(3):

f (0 , 3, 3) = (2, 2, 2).

After normalization of all nonfeasible states, we obtain the
state space in Fig. 3.

First ignore the station capacities and compute the equilib-
rium state probabilities by (7):

The equilibrium state probabilities for the feasible states of the
blocking network are computed by (6):

The mean number of jobs in each station is computed
from (9):

R1=2.238 E2~1 .927 E3= 1.827.

The throughput of the blocking network is determined by
the throughput analysis method. First the number of states in

p*(6,0,0) = 0.001 p*(5,0,1) = 0.004
p*(5,1,0) = 0.003 p*(4,1,1) = 0.012
p*(4,2,0)=0.004 p*(3,2,1)=0.018
p*(3,3,0)=0.007 p*(2,3,1)=0.028
p*(2,4,0)=0.01 p*(1,4,1)=0.042
p*(l,5,0) = 0.007 p*(0,5,1) = 0.031

p*(3,1,2) = 0.025 p*(0,3,3) =0.056
p*(2,2,2) = 0.037 p*(2,0,4) = 0.033
p*(l,3,2) = 0.056 p*(1,1,4) = 0.099
p*(0,4,2) = 0.042 p*(0,2,4) = 0.075
p*(3,0,3)=0.016 p*(1,0,5)=0.066
p*(2,1,3)=0.05 p*(0,1,5)=0.099

p*(0,6,0) = 0.01 p*(4,0,2) =O.O083 p*(1,2,3) = 0.075 p*(0,0,6) =0.066.

AKYILDIZ: PRODUCT FORM APPROXIMATIONS FOR QUEUEING NETWORKS 105

“ I
3, 1, 2 3, 1, 2 QQ

Fig. 3 . Normalized state space.

TABLE I

m

Fig. 4. State space of the bloclung network.

element Z’ (6) = 21 of the vector result Z’ . By drawing the
state space in Fig. 4, the feasible states and their two
immediate neighbors (two neighbors are required m, = 2 as
servers) representing blocking states, provide the same result
Z ’ (6) = 21 as the algorithm, (14). The innermost dotted lines
in Fig. 4 contain the feasible states where the outermost dotted
lines contain their neighbors as blocking states. The states
where capacity violations occur are cancelled.

The total number of jobs I? in the nonblocking network is
obtained by (16):

the blocking network is computed by (14): By varying the number of jobs K, we obtain different
number of states in the nonblocking network as shown in Table
I. Since the nonblocking network with K = 5 jobs possesses 2
= 21 states which is equal to the number of states Z‘ (6) = 21
of the blocking network, we assume that the nonblocking
network has K = 5 jobs. The state space for K = 5 is shown
in Fig. 5.

Obviously, the state space structure (Fig. 5) is different
from state space structure of the blocking network, Fig. 4.
Hence, no unique transformation of the states is possible such
that the results could be exact. However, the number of states

15

0 0 0 21

Z’ = [J@l]@l]=L‘]. 1 0 0 19

The number of states in this model is obtained from the last

106 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

Fig. 5 . State space of the nonblocking network.

TABLE LI

k2 1.927 1.881 2.5 1.843 2
k , 1.827 1.807 1.1 3.135 7 4
h 0.8253 0.8318 0.07 0.8772 6

Fig. 6. Noncyclic blocking network.

in both systems is equal. Thus, the throughput of the
nonblocking network with I? = 5 total number of jobs is
approximately equal to the throughput of the blocking network
with K = 6 jobs, i.e.,

X,(6)=XNB(S) =0.8253.

The mean residence time 6 is obtained by Little’s law, (20).
All these results are shown and compared to simulation in
Table 11.

Note that NOCAP in Table I1 denotes that the network is
analyzed by ignoring the finiteness of the station capacities
(NOCAPacity). The deviations 6 are computed using the
following relative deviation formula:

stations as shown in Fig. 6. There are K = 3 jobs which
belong to the same class. The service time of each station is
exponentially distributed.

The network parameters are given as follows:

Station Mi (1 / ~ i) P , I p i 2 p i 3
~~

1 1 1 0 0.6 0.4
2 4 1.25 0.3 0.2 0.5
3 3 2 0.3 0.7 0

The mean number of visits ei is computed by (4)
el = 1 e, = 1.955 e3 = 1.378.

We check the deadlock-free property, (2). In the cycle
between stations 1 and 2, the total number of jobs is less than
the total capacity of both networks, i.e.,

{K=3}< c M , = 5 . cJ:, 1
In the cycle between stations 1 and 3, condition (2) also

holds:

also in the cycle between stations 2 and 3, condition (2) holds:

{ K = 3 } < c M , = 7 . c j I , 1
and finally in the cycle 2 and 2, condition (2) is again satisfied,
i.e.,

{ K = 3) < {M2=4}

The state space of the given network without considering the
station capacities is shown in Fig. 7.

In Fig. 7, a = p 1 p 1 2 ; b = p 2 p 2 1 ; c = p 2 P 2 3 ; d = p 3 P 3 2 ;

e = p l p 1 3 ; f = p 3 p 3 1 ; g = p2pzz denote the transition rates
between the states. It is obvious that the states (3, 0. 0), (2, 1,
0), and (2, 0, 1) are nonfeasible. These states exceed the first
station’s capacity and must be normalized using (3).

In the state, (3, 0, 0), the number of jobs in the first station
exceeds the capacity (MI = l), so it is set equal to its capacity:

kl= 1

the remaining jobs are distributed as follows:

e 2 P 2 1
k 2 = k 2 + (kl -MI) = 1.173

e l (1 -PI11

k 3 = k 3 + (kl -Mi) = 0.8268.
el(1 -PI11 x 100.

Since none of the station capacities are violated, the normal-
ization procedure yields

1 (Simulation Value - Analytical Value(
Simulation Value

6 =

B. Noncyclic Network
As mentioned before, the normalization procedure, (3),

causes the number of jobs in a state to have noninteger values
in the case of networks with arbitrarily connected stations. In
order to explain this fact, we analyze a closed queueing
network with N = 3 arbitrarily switched single server

f (3,0,0) = (1 , l . 173,0.8268).

This is the situation that is mentioned before. The transition
probabilities cause noninteger values for the job distributions
in a normalized state.

AKYILDIZ: PRODUCT FORM APPROXIMATIONS FOR QUEUEING NETWORKS 107

Fig. 7. State space by ignoring station capacities.

Fig. 8. Normalized state space

Another nonfeasible state, (2, 1, 0), is normalized: The equilibrium probabilities for the feasible states of the
blocking network are computed by (6):

f(2,1,0)= (1,1.5865,0.4134).
p(l,l.173,0.8268) =p*(3,0,0) = 0.0103

The nonfeasible state (2, 0, 1) is normalized as

f(2,0,1)=(1,0.5865,1.4134). p(1,0.5865,1.4134)=p*(2,0,1)=0.0284

After normalization of all nonfeasible states, we obtain the p (l , l , l) =p*(l , l , l) = 0.0694
state space given in Fig. 8.

Now we ignore the station capacities and compute the
equilibrium state probabilities by (7): p(0,2,1) =p*(0,2,1)=0.1695

p*(3,0,0) = 0.0103 p * (l , l , l) =0.0694 p*(2,1,0) = 0.0251 p*(0,0,3) = 0.2157.
p*(0,2,1)=0.1695 p*(1,2,0)=0.0615 p*(1,0,2)=0.0783
p*(0,3,0) = 0.1502 p*(0,1,2) = 0.1912 p*(2,0,1) = 0.0284

108

TABLE III

IEEE TRANSACTIONS ON COMPUTERS, VOL. 3 8 , NO. I , JANUARY 1989

700.0 T

I Approx. I Exact I 6 (%) I NOCAP I 6(%) -
f l I I I 1 I 0 I 1.2716 I 27

p(0,3,0) =p*(0,3,0) = 0.1502

p(0,1,2) =p*(0,1,2) = 0.1912

p(1,O32)=p*(1,0,2)=O.0783

p(0,0,3) =p*(0,0,3) = 0.2157.

600.0

500.0

400.0

300.0

* - - -
x..

0

Single Server
No Capacity
Multiple Servcrs

X

,*'
X'

K

Fig. 9. Number of states dependent on the number of jobs.

From (1 1) we calculate the mean number of jobs in each
station, e.g., Nu.hi,r nf F x . i n ~ l o <

I

+fl(1,1,1)p(1,1,1) +f1(1,0,2)P(1,0,2) = 0.273. 100

Similarly we calculate the mean number of jobs in stations 2

The total throughput, (17), and the throughput of each

computed, listed, and compared with exact results in Table 111.

V. EVALUATION

and 3.

De". I
station, (18), and the mean response time ti, (20), are 0 - 1 1 - 3 3 - 6 6 - 1 0

Fig. 10. Histogram 1 .

We have introduced two different techniques for the
computation of performance measures in blocking networks
with multiple servers. Both techniques have been implemented
on a VAX 11/780 system. For the validation of both
techniques, we have executed 200 network examples with
different structures. Half of the examples were networks with
arbitrarily connected stations. Each network model is also
analyzed by varying the number of jobs. The number of jobs is
varied from 5 to 100, the number of stations from 3 to 8, and
the number of servers from 1 to 8. All examples have been
simulated using the RESQ package [35].

Throughout the tests, we could not find any network model
for which our approximations demonstrated instabilities. In all
examples we have observed the same behavior. The fewer the
jobs in the queueing network with finite station capacities, the
less the chance for blocking. After a certain number of jobs in
the network is reached, blocking events start to occur. As a
result, the throughput does not increase with the number of
jobs in the network. As the number of jobs in the network
approaches the total capacity of the network (the sum of all
station capacities), the more blocking events may occur. This
has the effect of reducing the state space of the blocking
network, which can be seen in Fig. 9. The solid line shows the
number of states for a blocking queueing network consisting of
three stations with station capacities M I = 12, M2 = 10, and
M3 = 14, the number of servers ml = 4, m2 = 2, and m3 =
5 and the dashed line shows the number of states of the same
network without station capacity limitations for different
numbers of jobs. By dotted line, we show that the number of
states in the blocking network is significantly reduced when

the stations have single servers. It is obvious that the station
capacities have the effect of decreasing the number of states as
the number of jobs approaches the total capacity of the
network.

In our test cases, most of the deviations for the throughput
values are below 2 percent, implying that our throughput
technique provides very accurate results for throughput and
utilization. As can easily be seen in the chart in Fig. 10, the
throughput values of the 65 examples in case of tandem
networks (shaded portions) and of 43 in case of nontandem
networks lie in the range of 0-1 percent deviation.

The major advantage of this technique is that the throughput
values are obtained from a product form network which can
easily be analyzed by mean value analysis or by any other
product form network algorithm. Since mean value analysis
has the advantage that it is extremely fast, it follows that we
can obtain results for even a large queueing network with
blocking in a very short time.

For the computation of the mean number of jobs k, , we need
the equilibrium state probabilities which are given by (6). The
method has shown a very stable behavior in the computation of
the k, values. The vast majority of the deviations were in the
range of 1-5 percent as shown in histogram 2 in Fig. 11.

Compared to the throughput values, the deviations for the
mean number of jobs are higher which can be observed in both
histograms 1 and 2. Extremely small numbers cause deviations
of 35 percent which makes 6 percent of the cases in histogram
2. As generally known, small numbers can provide high
deviations even though the numerical results are not too
different. In the histogram 3, in Fig. 12, we show the

AKYILDIZ: PRODUCT FORM APPROXIMATIONS FOR QUEUEING NETWORKS 109

200

100

NmSer Of E x a m D l e s
0

0 - 1 1 - J 3 - 6 ‘ 6 - 10’10-15 ‘15-20 ‘ 2 0 - 3 5 0 - 1 1 - 3 3

Fig. 11. Histogram 2.

100 -

> D e v . i
0 - 1 1 - 3 3 - 6 ’ 6 - 10’13-15 ‘15-2C 20-55

Fig. 12. Histogram 3.

percentage of errors by ignoring the small (less than K X N/
10) numerical results.

As it can be seen in histogram 3, the highest deviation for
tandem networks is decreased to 15 percent. In the case of
nontandem networks, the number of cases in the range 20
percent and 35 percent has also decreased enormously.

The normalization procedure has a fairly long run time.
However, it is not nearly as long as the long run times of
simulation or global balance techniques. The latter are only
applicable to very small networks. As pointed out before, the
normalization procedure, (3), for the computation of the mean
number of jobs can yield noninteger values for the job
distribution in a state. The normalization of states must be
proceeded until no station’s capacity is violated. Here the
problem arises that the normalization can cause the capacity
violation of another station. Further normalization would
result in another violation of the previous mentioned station’s
capacity. For example, if the capacity of ith station is violated,
the normalization causes station j to obtain some jobs which
leads to its capacity violation. Further normalization leads to a
situation that station i gets some jobs back so that its capacity is
again violated. In other words, in the normalization proce-
dure, two or more stations can keep exchanging the jobs
between each other. This can cause long run times. Based on
our test examples, the normalization procedure always con-
verges, i.e., a normalized state is always reached in which the
station’s capacities are not violated. This will be explained in
detail.

Let us consider the example given in Section IV-B. Ignoring
the possibility of deadlock, assume that the station’s capacities
are selected as MI = 2, M2 = 1 and M3 = 1. An interesting

TABLE IV
k , = I
k , = 0.897

k , = 0.926

normalization occurs in case of the nonfeasible state (0 , 3, 0).
The capacity of the second station is exceeded. So we apply (3)
and obtain

k2= 1

kl=O.766

k3 = 1.234.

Here we see that the normalization procedure, (3), resets the
number of jobs in the second station to its capacity. However,
some of the remaining jobs cause the capacity of the third
station to be exceeded. In this case, we set the number of jobs
in the third station back to its capacity and obtain

k3 = 1

k l = 0.834

k2= 1.166.

This time the capacity of the second station is violated
again. The normalization causes both stations to swap jobs
back and forth to each other. However, the remaining number
of jobs is shuffled to the first station in each new normalization
step. This is shown in Table IV.

As it can easily be seen in Table IV, the state values are
tending towards (1, 1, 1). Note that in the implementation of
this algorithm, an epsilon value of (eps = prevents long
run times for the normalization in such situations where two or
more stations effect each other. If, after a normalization, the
number of jobs exceeding the capacity less than the eps value,
then the normalization is assumed to be done. In the example
above, Table IV, the value for k3 violates the capacity by
exceeding it by only 0.044. There is no reason to continue the
normalization procedure until the values (1, 1, 1) are reached.
Similar situations also occur for states (0, 1, 2), (0, 0. 3), and
(0, 2, l) , which are normalized to the state (1, 1, 111.

Suri and Diehl [38] also consider closed queueing networks
with Type 1 (transfer) blocking. They assume that the first
station must have a capacity greater than the number of jobs in
the network. They apply Norton’s theorem [27], [35], [40] and
reduce each two-station pair to a single station with a variable
size queue capacity that is easy to analyze. An approximation
algorithm is derived for the total throughput of the network. In
the following we compare our throughput results to those of
Suri and Diehl [38] and plot the throughput results for three
blocking queueing networks with various number of jobs.
Each graph contains three computations of total throughputs
for various number of jobs: a) our algorithm, b) exact or
simulation, c) Suri/Diehl results.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. I , JANUARY 1989

1 1; U ,
10
10
10

110

Example I :

I '1' 1 ' 1 p 3 00999 Exact Our 00907 Approx 0 6 s u ~ ~ ~ ~ ' ~

1 5 00957 00924 3 4
I 10 00793 00743 6 3 00796
1 20 00483 00465 3 7 00483

x 1 . 0 7

10
IO
10
10

0.7

0.5

10 10 0.0613 0.0610 0 0.0595 251
10 20 0.0420 0.0423 0 0.0415 I
20 IO 0.0417 0.0423 1.3 0.0400 4.15
20 20 0.0330 0.0340 2.8 0.0326 I.:.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 K

Total throughput dependent on the number of jobs. Fig. 13.

Example 2:

4 6
5 1 2

0 .31

0.1
e---. Suri/Diehl

_ _ _ _ _ _ - __. simulation
m-. approximation

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 K
0.0

Fig. 14. Total throughput dependent on the number of jobs.

0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 24.0 27.0 30.0 K

Total throughput dependent on the number of jobs Fig. 15.

In the following tables, we give total throughput results for
different network examples which are taken from Suri and
Diehl [33].

Example 4:
N = 3 stations (cyclic); K = 5 jobs; M I = 03; M2 = 1; M3

= 2;

ii 10

10
10 10
10 10
10 10
10 10

0 0472
100 00099

0 0661
10 00613
20 00443

T- 0 0452 0 0 0734 0472

0 0100 0 0099
0 0730 0 0664
00694 4 9 00649
0 0600 0 0600
00423 4 5 00438

1 8
2 1 ir 1 1

10 20 I 00428 00465 8 6 00426
10 20 5 00427 00452 5 8 00413

10 20 100 00099 00099 0 00099
10 100 1 000990 00100 I 00099
10 100 5 000990 00100 1 00098

Example 5:
N = 3 stations (cyclic); K = 5 jobs; MI = 03; M;! = 2; M3

= 1;

AKYILDIZ: PRODUCT FORM APPROXIMATIONS FOR QUEUEING NETWORKS

ri c3
X

APPENDIX

2.6233 2.38 4.6 10.03 1 3 3 3 44
7 4 0 6 5 7.70 1.3 3.81 0 7 4 1 91
0.9999 0.99 1.3 0.32 0 999 0.32

111

!I
k_2
k ,

Example 3. (Cyclic):

A IOX. Simul. Std Dev. 6 D NOCAP 6 C]
I T 11.94 0.7
7.009 7.31 1.1 4 I 1.333 82

13.99 13 76 0.9 1.6 3.424 75

i.? 28.242 "7

We give results for 10 blocking queueing networks with
various number of jobs. We have a total of 25 test cases with
different system input parameters. Each table contains three
computations of results for various number of jobs: 1) our
algorithm 2) simulation, and 3) NOCAP. The third column
contains the standard deviation of simulation results. shows
the relative deviations between our results and the simulation.
h2 shows the deviations between NOCAP and the simulation.
This column demonstrates the effects of finite station capacity
on the performance of the network.

Example I . (Cyclic):

- h1 24.096 24 580 0.06 1 9
k , 14.999 14.500 0.9 3.3

a) K = 22 jobs

1 9 9 9 92
37096 173

1 Approx I Simul. I Std Dev I a,(%) I NOCAP I 6 2 (v

k; I 11 9703 I 11.92 I 2.4 I 0.42 I 1 9 9 2 6 I 67

-
h3
k,
k ,
X

0.154 0.157 0.1 1.9 0 153 2
0 500 0.499 0.5 0 0.501 0
0.250 0.250 1.1 0 0.25 0
1.333 1.344 1.1 0.8 1.333 0

b) K = 30 jobs

-
k2
h3
k ,
F6
X

Example 2. (Cyclic):

15 13.69 0 3 9 .5 47096 244
0 15 0.15 0 8 0 0 153 0
0.5 0.49 1 0 0.501 0
9.34 10.72 0.4 I ? 8 0.25 98
1.333 1.330 0.2 0 1 3 3 3 0

a) K = 40 jobs

1.3
I .4

4 1 3 1.3
5 14 1.2 4

a) K = 25 jobs

b) K = 50 jobs

C) K = 60 jobs

11.0986

Example 4. (Cyclic):

K = 33 jobs
a) mi = 2 f o r i = 1, 2, 3

b) m, = 2; rn2 = 5 ; m3 = 5

Approx. Simul. Std. Dev. SI(%) - hI 12 11.99
k_z 7 7.008
k. 14 14

0.9 0.08 30.91 .54
0.65 0
0.3 0 1.51

b) K = 50 jobs
c) m, = 3; m2 = 8; m3 = 5

I -\pprox. I Simul I Std. Dev I 6,(%) I NOCAP I ~5~('?3
k; I 25 I 24.97 I 0 0 7 I 0 I 1.999 I 92

112

d) m , = 4; m2 = 2; m3 = 5

-
k2
k ,
X

1 Approx. 1 Simul. 1 Std. De". I SI(%) 1 NOCAP 1 6,(%
6, I 11 99 I 11.92 I 2.1 I 0.6 I 15.541 I 30

9 10 8.64 3.2 5.2 14.281 65
11 90 12.44 1.8 4.3 3 178 75

1.78 1.73 0.8 3 1.929 I 1

-
k2
k3
k ,
X

Example 5 . (Noncyclic):
K = 9 jobs;

3 02 2.76 2.5 9.2 4.19
0.05 0 05 0 4 1 0.04
0.05 0.05 2 2 4.1 0 0 5
2.33 2.23 3.1 4.2 2 36 i i 6

2 5
0.3

k_2
k 3
h

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

2.68 2.54 1.2 5 6 2 4 5 3 5
1 4 7 1.89 4 7 22 1.25 34
I 7 4 4 1661 0.6 0.5 1.74 0.5

a) K = 1 1 jobs;

k2
k3
k ,
X

3.89 43.2 2.93 2.72
k3 0.04 0.04 0.7 2.8 0.046 2 8

0.04 0.04 3.7 5 5 0 046 5 6
2.28 2.23 1.3 2.4 2.33 4 3

3.321 3.321 7 4 0
3.468 3.461 I 1 0
1.226 1.255 5 7 2.3 0 851

406 0 3 8 3 2.2 6 0.406

b) K = 12 jobs;

I Approx. 1 Simul. I Std .Dev . I SI(%) I NOCAP I 621'@
k; 1 8.87 I 9.13 1 0.2 1 2.8 1 7.71 1 l!i 6

a) mI = 2; m2 = 5 ; m3 = 3
Example 8. (Noncyclic):

1 58 1.66 4.6 0 6 8 58.7
k , 1.47 1 6 6 1.4 11.2 0.57 65.2

0.8 0.79 0.7 0.37 0.79

b) m, = 5; m2 = 2; m3 = 5

I Approx. I Simul I Std Dev I 6 , (%) I NOCAP 1 6*(%
k , I 4 84 I 4.56 1 I 1 I 5.9 1 5.31 I 16

Example 6. (Noncyclic):

a) K = 8 jobs

0.399

b) K = 10 jobs

1 9 5 1 8 4 8 3 8 5 4 0 3 9 9 78
0 3 9 9 0 4 0 1 2 3 0 399

c) K = 1 1 jobs

0.399

Example 7. (Noncyclic): 1 1 1
0 2 0 0

4 2 0 2 2 0 0 0

0 3

a) K = 8 jobs

3.17
3 37

b) K = 9 jobs

Approx. Simul Std. Dev . 6 o

IF, 1 0 984 0.963 I 1.2 1 i.7 I Nt%p I "9

Example 9. (Noncyclic):

1 7

a) K = 7 jobs;

1.03 1.02 1 2 0.5 1.11 3.5
k3 0.81 0.82 1.7 0.7 0.91 10.5

1.10 1.09 2.1 1.3 1 1 1 1 1
0.96 0 95 0.7 0 3 0.96 0 3

b) K = 14 jobs;

113

[I 11.11 11.71 2.1 5.1 9.04
I.. 1 57 1.45 0.7 2.5 8.5

AKYILDIZ: PRODUCT FORM APPROXIMATIONS FOR QUEUEING NETWORKS

c) K = 16 jobs;

23
78

‘1‘
k_l
k ,
X

- -
1.21 1.08 0.9 12 2 1 8 2 68
2.11 1.75 0.74 20.1 2.57 46

4.9 1.42 14 1 3 2 1.25 0 6

Example. 10. (Noncyclic):

c2
ix
I . ,
X

a) K = 8 jobs

2.99 2.99 0.3 0 3.17 6
3.13 3.12 0.7 0 3.37 8
1.03 1.05 0.8 1.8 0.81 23
0 398 0.38 0.3 2.6 0.39 2.6

b) K = 9 jobs

REFERENCES
I. F. Akyildiz, “Exact product form solution for queueing networks
with blocking,” IEEE Trans. Comput., vol. 1, pp. 122-126, Jan.
1987.
-, “General closed queueing networks with blocking,” in Per-
form. ’87 Proc., pp. 283-303.
-, “On the exact and approximate throughput analysis of closed
queueing networks with blocking,” ZEEE Trans. Software Eng., vol.
SE-14, pp. 62-71, Jan. 1988.
-, “Mean value analysis for blocking queueing networks,” IEEE
Trans. Software Eng., vol. SE-14, pp. 418429, Apr. 1988.
I. F. Akyildiz and J. Liebeherr, “Application of Norton’s theorem on
queueing networks with finite capacities,” Tech. Rep., Georgia Tech.
GIT 88-024, July 1988. Also in Proc. Comput. Networks, ZNFO-
COM ’89 Conf., to be published.
I. F. Akyildiz and H. von Brand, “Exact solutions for open, closed and
mixed queueing networks with rejection blocking,” Theoret. Comput.
Science J . , to be published.
-, “Duality in open and closed Markovian queueing networks with
rejection blocking,” Tech. Rep., LSU-TR-87-011, Apr. 1987.
T. Altiok, “Approximate analysis of exponential tandem queues with
blocking,” Euro. J . Oper. Res., vol. 11, 1982, pp. 390-397.
S. Balsamo and G. Iazeoalla, “Some equivalence properties for
queueing networks with and without blocking,” in Proc. Perform. 83
Conf., 1983, pp. 351-360.
F. Baskett, K. M. Chandy, R. R. Muntz, and G. Palacios, “Open,
closed and mixed network of queues with different classes of
customers,” J. ACM, vol. 22, pp. 248-260, Apr. 1975.
0. Boxma and A. Konheim, “Approximate analysis of exponential
queueing systems with blocking,” Acta Informatica, vol. 15, pp. 19-
66, Jan. 1981.
A. Brandwajn and Y. L. Jow, “An approximation method for tandem
queues with blocking,” Oper. Res., June 1988.
P. J . Caseau and G. Pujolle, “Throughput capacity of a sequence of
queues with blocking due to finite waiting room,” IEEE Trans.
Software Eng., vol. SE-5, pp. 631-642, Nov. 1979.
G. W. Diehl, “A buffer equivalency decomposition approach to finite
buffer queueing networks,” Ph.D. dissertation, Harvard Univ., May
1984.

N. M. van Dijk and I. F. Akyildiz, “Networks of mixed processor
sharing parallel queues and common pools,” Tech. Rep., Georgia
Tech, GIT-ICS-88-022, June 1988.
W. J. Gordon and G. F. Newell, “Cyclic queueing systems with
restricted queues,’’ Oper. Res., vol. 15, pp. 266-277, Apr. 1967.
K. Goto, Y. Takahashi, and T. Hasegawa, “An approximate analysis
on controlled tandem queues,” in Proc. Int. Conf. Modeling
Perform. Eval. Methodology, Jan. 24-26, 1983, pp. 601-613.
L. Gun and A. Makowski, “Matrix-geometric solution for finite
capacity queues with phase-type distributions, ” in Proc. Perform. 87
Conf., 1988, pp. 269-283.
A. Hordijk and N. Van Dijk, “Networks of queues with blcocking,” in
Proc. Perform. 81, Modeling, Measurement, Evaluation. Nov. 4-6,

-, “Networks of queues: Part 1: Job-local balance and the adjoint
processes; Part U: General routing and service characteristics,” in
Proc. Int. Conf. Modeling Perform. Eval. Methodology, Jan. 24-

F. P. Kelly, “Networks of queues with customers of different types,”
J . Appl. Prob., vol. 12, pp. 542-554, 1975.
-, Reversibility and Stochastic Networks. New York: Wiley,
1979.
-, “The throughput of a series of buffers,” Adv. Appl. Prob.,

A. G. Konheim and M. Reiser, “A queueing model with finite waiting
room and blocking,” J . ACM, vol. 23, pp. 328-341, A p . 1976.
__ , “Finite capacity queueifig systems with applications in computer
modeling,” SIAM J. Comput., vol. 7, pp. 210-229, May 1977.
J . Labetoulle and G. Pujolle, “Isolation method in a network of
queues,” IEEE Trans. Software Eng., vol. SE-6, pp. 37.3-381, July
1980.
E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik, Quantitative
System Performance: Computer System Analysis Using Queueing
Network Models.
R. 0. Onvural and H. G. Perros, “On equivalencies of blocking
mechanisms in queueing networks with blocking,” Oper. Res. Lett.,
vol. 5 , pp. 293-297, Dec. 1986.
-, “Some equivalencies for queueing networks with blocking,”
Perform. Eval. J . , to be published.
H. G. Perros, A. A. Nilsson, and Y. C. Liu, “Approximate analysis of
product form type queueing networks with blocking and deadlock,”
Perform. Eval., vol. 8, pp. 19-39, Feb. 1988.
H. G. Perros and T. Altiok, “Approximate analysis of open networks
of queues with blocking: Tandem configurations,” IEEE Trans.
Software Eng., vol. SE-12, pp. 450-462, Mar. 1986.
B. Pittel, “Closed exponential networks of queues with saturation: The
Jackson type stationary distribution and its asymptotic analysis,”
Math. Oper. Res., vol. 4, pp. 367-378, 1979.
M. Reiser and H. Kobayashi, “Queueing networks with multiple
closed chains: Theory and computational algorithms,” ZBM J. Res.
Develop., vol. 19, pp. 283-294, May 1975.
M. Reiser and S. S. Lavenberg, “Mean value analysis. of closed
multichain queueing networks,” J . ACM, vol. 27, pp. 313-322, Apr.
1980.
C. H. Sauer and K. M. Chandy, Computer Systems Pcrformance
Modeling. Englewood Cliffs, NJ: Prentice-Hall, 1981.
P. Schweitzer and T. Altiok, “Aggregate modeling of tandem queues
with blocking,” in Proc. Znt. Workshop Applied Math. Perform-
ance/Reliability Models Commun. Syst., May 1987.
R. Suri and G. Diehl, “A new building block for performance
evaluation of queueing networks with finite buffers,” ACM Perform.
Eval. Rev., 1984, pp. 134-142.
R. Suri and G. W. Diehl, “A variable buffer-size model arid its use in
analyzing closed queueing networks with blocking,” Mmagement
Sci., vol. 32, pp. 206-225, Feb. 1986.
Y. Takahashi, H. Miyahara, and T. Hasegawa, “An approximation
method for open restricted queueing networks,” Oper. Rey., vol. 28,
pp. 594-602, May-June 1980.
J. Walrand, An Introduction to Queueing Networks. Englewood
Cliffs, NJ: Prentice-Hall, 1988.
G. Yamazaki, T. Kawashima, and H. Sakasegawa, “Revcrsibility of
tandem blocking queueing systems,” Management Sci., vol. 3 1, Jan.
1985.
D. D. Yao and J. A. Buzacott, “Modeling a class of state-dependent
routing in flexible manufacturing systems,” Ann. Oper. Res., vol. 3,
pp. 153-167, 1985.

1981, pp. 51-65.

26, 1983, pp. 79-135.

vol. 14, pp. 633-653, 1982.

Englewood Cliffs, NJ: Prentice-Hall, 1984.

114 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

I. F. Akyildiz (M’85) was born in 1954 in Istanbul,
Turkey. He received the Vordiplan, Diplom Infor-
matiker, and Doctor of Engineering degrees in
computer science from the University of Erlangen-
Nuernberg, West Germany in 1978, 1981, and
1984, respectively.

From 1981 through 1985 he served as a Scientific
Employee in the Informatik IV (Operating Systems)
at the University of Erlangen-Nuernberg. During
that time, he coauthored a text book titled Analysis
of Computer Systems (in German) published by

Teuhner Verlag in Fall 1982. In January of 1985, he joined the faculty of the
Department of Computer Science, Louisiana State University as an Assistant

Professor. He was also a Visiting Professor in the Department of Computer
Science at the University of Florida, Gainesville, in the summer of 1985 and
in the Computer Science Department of the Universidad Tecnica de Federico
Santa Maria in Valparaiso, Chile in the summer of 1986. In Fall 1987, he
joined the faculty in the School of Information and Computer Science at
Georgia Institute of Technology as an Assistant Professor. His research
interests are performance evaluation, operating systems, and computer
networks.

Dr. Akyildiz is a member of the Association for Computing Machinery
(Sigops and Sigmetrics), GI (Gesellschaft h e r Informatik), and MMB
(German Interest Group in Measurement, Modeling and Evaluation of
Computer Systems).

