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Abstract. Open, mixed and closed queueing networks with multiple job classes, reversible routing 

and rejection blocking are investigated in this paper. Jobs may change class membership and 

general service requirement distributions that depend on the job class are allowed. We prove that 

the equilibrium state probabilities have product form if at all stations either the scheduling 

discipline is symmetric or all service requirements at the station have the same exponential 

distribution. The solution implies insensitivity in this kind of blocking networks, i.e. the distribution 

of the jobs in equilibrium, irrespective of their remaining service requirements, depends only on 

their mean service requirement. 

1. Introduction 

A queueing network is an interconnected collection of stations, i.e. devices with 

queues, in which jobs move from one station to the next requesting service. Queueing 

networks have enjoyed increasing popularity as models of manufacturing computer 

and communication systems over the last two decades. Jackson [16] and Gordon 

and Newell [ 141 show that open and closed networks with one job class, exponential 

service time distributions and First Come First Served (FCFS) scheduling in all 

stations have productform solutions. This is extended to multiple job classes in open, 

mixed and closed networks by Kelly [17]. Baskett, Chandy et al. [4] give product 

form solutions for service requirement distributions that have rational Laplace 

transforms, represented by stages. Multiple job classes can be accommodated, and 

the service requirement distributions can depend on the class. Several scheduling 

disciplines are allowed for stations with nonexponential service requirement distribu- 

tions. More general scheduling disciplines for this same case are obtained by Kelly 

[18], whose result is restricted to service requirement distributions that are finite 

mixtures of Erlang distributions. Barbour [3] proves Kelly’s conjecture [18] that 

the results are applicable to general distributions. For differentiable service require- 

ment distributions Chandy and Martin [8] give necessary and sufficient conditions 

for product form solutions. The allowable scheduling disciplines turn out to be 
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exactly those for which Kelly [18] and Barbour [3] show product form solution. 

For short, we call the above types of networks classical. Efficient exact algorithms 

to compute performance measures are known for classical networks: Convolution 

[6,22,27], Mean Value Analysis (MVA) [29], LBANC [lo]. 

In many situations of practical interest, under certain circumstances a station will 

refuse a job arriving at it. This phenomenon is called blocking. Many different 

blocking policies have been considered in the literature. Onvural and Perros [25] 

compare different blocking policies and derive equivalencies between them. 

The organization of the rest of the paper is as follows: Section 2 gives an overview 

of our model and a short survey of queueing networks with rejection blocking. 

Section 3 gives definitions and our notation for queueing networks, and completes 

the description of the model given in Section 2. In Section 4 we prove the product 

form solution for the equilibrium state probabilities, and Sections 5 and 6 contain 

the proofs of some consequences of the equilibrium state distribution given in 

Section 4. 

2. The rejection blocking policy 

We consider the so-called rejection blocking policy. Once a job in class LY finishes 

service in station i it determines, according to the routing probabilities ~;~,,~a, to 

which station j and class /3 it goes next. With a certain probability (that depends 

on the state of the destination station) the job will be rejected there. The rejected 

job returns to station i (in class a) to get another round of service, independent 

from the one it received before. When this new round of service is finished, the job 

again selects a destination station and class (independent from the ones selected 

before) and so on. 

The rejection blocking policy has the virtue that deadlock is impossible if the 

network is irreducible, since if there is a free place in some station eventually a job 

will move into it even if this takes a long sequence of trials. It leads to simple 

balance equations that are much more tractable than their counterparts for other 

blocking policies. 

The rejection blocking policy was introduced by Caseau and Pujolle [7], who 

consider tandem networks only. They investigated various blocking policies and 

general service requirement distributions, with the aim of obtaining bounds on 

throughput. Pittel [28] showed that rejection blocking models with multiple classes 

and reversible routing have product form solution if the probability that a job in 

class (Y is accepted in station i when there are ki jobs in station i, of which ki, are 

of class CY, is given by 

kin + 1 
hj,(ki) = k_ + 1 hi(k)- 

I 

Here hi is a nonnegative function. Pittel’s work is restricted to exponential service 

requirement distributions and jobs that do not change class membership. 
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Cohen [ 1 l] found a product form solution for a cyclic rejection blocking network 

with two stations, multiple job classes and class-dependent service requirement 

distributions (not necessarily exponential) when the scheduling disciplines are 

processor sharing with load dependent service efforts. The blocking functions 

allowed are of the form: 

(2) 

Here hi, and hi are nonnegative functions. 

Hordijk and van Dijk [15] showed that for special cases of queueing networks 

with rejection blocking the solutions have product form. They consider models with 

a single job class in which routing is reversible and models in which blocking is 

dominant, i.e. there are so many jobs in the system that no station can ever be 

empty. Balsam0 and Iazeolla [2], based on the above work, find classical networks 

that share part of the state space with rejection blocking networks and show that 

their equilibrium state probabilities agree (up to a normalization constant) with 

those of the blocking network on the intersection of the state spaces. 

Van Dijk and Tijms [13] give a proof of insensitivity of the distribution of jobs 

(i.e. dependence only on the mean of the service requirement distribution) in a 

cyclic network with two stations, multiple job classes and symmetric scheduling 

disciplines. The blocking functions allowed are of the same form as those allowed 

by Cohen [ 111. Tijms [32, Section 2.51 presents this result in more accessible terms. 

Akyildiz and Von Brand [l] prove dualities for rejection blocking networks with 

one job class and exponential service requirement distributions. There is no restric- 

tion on the structure of the network. They show that from a given network one can 

construct another network of the same general type with the same structure of the 

state space and such that the throughputs in the given network and its dual are the 

same. The construction yields an open network if one starts with an open network 

and a closed network if the given network is closed. Using this result, they are able 

to prove a product form solution for the case of a closed blocking network in which 

at most one station can be empty at a time. The solution provides a simple way to 

compute performance measures, in particular throughputs. 

3. Notation and conventions 

We consider queueing networks with N stations and C job classes. First we 

describe an isolated station, and then we turn to describe the interactions between 

stations in the network. 

3.1. An isolated station 

A job of class (Y requests service at station i distributed as F;, with mean l/pLia. 

By the results of Barbour [3], it is enough to establish our results for distribution 

functions that are finite mixtures of Erlang distributions. The restrictions that 
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Barbour imposes on the network are that there be no multiple transitions and that 

the arrival processes be independent of the state of the network. Both are satisfied 

in the model described here. 

We will represent the service requirement distributions as mixtures of Erlang 

distributions of the following form: 

where El,,. is the Erlang distribution with t phases, each with rate via. We assume 

that the sum in (3) is finite, but we refrain from giving the limits to keep the notation 

simple. Definition (3) means that with probability gia;, a job of class cy arriving at 

station i will have to traverse t exponential phases, each of which has rate via. This 

requires 

C gia;r = l. (4) 

It also implies 

By renewal theory the probability that at an arbitrary instant a job with service 

requirement distribution &a still has to traverse s phases is given by 

Note that 

r;a(l)=Pialuia. (7) 

We will denote the state of station i by 

((Kily mil), (KiZy fliz), . . 7 (K,L,, WA,)). (8) 

Here ki is the number of jobs in station i, Kil is the class of the job in position 1 of 

station i and aU is the number of remaining phases of service for that job. We will 

denote the number of jobs of class (Y in station i by ki,. 

3.1.1. Scheduling disciplines 

A scheduling discipline (J 4, I,!I) is defined as follows [8,9, 18, 191: 

@f(k): total service effort when there are k jobs in the station; 
l 4(I, k): fraction of the service effort destined to the job in position 1 when there 

are k jobs in the station (zero for I outside of 1 s 1 s k); this requires 

C 4(1,k)=l Vk; 
Is/-k 

(9) 

l $(I, k): probability that an arriving job is placed in position I when there are k 

jobs in the station (zero for I outside of 1 s 1 =S k + 1); this requires 

,$,;,+, +(5 k) = 1 Vk. (10) 
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Kelly [18] calls a scheduling discipline symmetric (Chandy and Martin [S] call 

them station balancing) if 

ccr(l, k) = 4([, k-t 1). (11) 

This framework clearly does not describe all possible scheduling disciplines, for 

example there is no way to give one job class priority over another. Scheduling 

disciplines that depend on the service requirements, like Shortest Job First (SJF), 

cannot be described either. Nevertheless, the class of scheduling disciplines that 

can be described is rich. Some examples are 

FCFS: first come first served is described by 4(1, k) = 1 and $(k + 1, k) = 1; 

LCFS: last come first served preemptive resume is described by d( k, k) = 1 

and $(k+ 1, k) = 1; 

PS: processor sharing is described by +(I, k) = l/k and $(k+ 1, k) = 1; 

RAND: service in random order [31] is described by 4( 1, k) = 1 and +( I, k) = l/k 

for 122. 

Other scheduling disciplines that lead to product form in classical queueing networks, 

like LBPS (last batch processor sharing, [23]) can also be described [S]. 

It should be noted that the description of a particular scheduling discipline is 

not unique. For example, the description for PS given above is not symmetric, but 

if we set +( I, k) = l/(k+ 1) the discipline becomes symmetric. The only difference 

between the two is that this alternative does not keep the jobs in their order of 

arrival, while the description given above does. Of the remaining disciplines, FCFS 

and RAND are not symmetric, while LCFS is. 

We assume that a job selects a service requirement before starting to get service, 

i.e. when a job enters station i in class (Y it is assigned a number of phases of service 

according to the gia;,. If a job in class cy is in position I of station i and the number 

of jobs in station i is ki, the rate at which that job advances to its next phase of 

service (or finishes service at the station if it is in its last phase of service there) is 

pi&(k)+i(l, k). 

3.1.2. Blocking functions 

We call the probability that a job is accepted at a station the blocking function of 

the station. In the most general case, the blocking function of a station could depend 

on the state of the entire network. In our model (as in the models of Pittel [28], 

Hordijk and van Dijk [ 15, 24, 261, Cohen [ 111 and van Dijk and Tijms [ 13]), we 

allow a dependence only on the state of the destination station. The probability 

that a job is accepted depends on its class. 

Define a partition of the job classes, and denote the set of job classes that contains 

class cy by [a]. We write the probability that a job of class LY arriving at station i 

is accepted when there are a total of ki jobs in it, of which k,, are of class LY and 

k ,Lc(l are of classes in the set that contains class (Y, as 

b;,(k)= h;,(ki,)hi,,,(k,,,,)hi(ki). (12) 
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Here hia, hq,] and hi are arbitrary. The only restriction on them is that if h,(Z) = 0 

then hi(k) =0 for all kz 1. Similar restrictions apply to hi, and hit,,. The smallest 

1 as above is then the maximal capacity of the station for jobs, for jobs of class (Y 

and for jobs of classes in [a], respectively. These restrictions are needed to ensure 

irreducibility of the Markov process that represents the queueing network. 

More generally, it is possible to take several independent partitions of the job 

classes and define the blocking function of a job in class (Y as a product similar to 

the one in (12) over all partitions (note that we have the partition into single job 

classes, an arbitrary partition and the partition into a single set in that expression). 

To divide the job classes into partitions is only a notational convenience, since we 

can assign hi,,,(k) = 1 whenever we do not wish jobs in a certain set of classes to 

be blocked in some partition. 

3.2. The network 

The state of the network will be described by (ordered) N-tuples of station states. 

We will use x and y to denote arbitrary states of the network. We define the occupancy 

of the network as an iV-tuple of strings of job classes, where the ith string represents 

the classes of the jobs in station i in order. The population of the network gives the 

numbers of jobs of each class in each station. Occupancies and populations are 

defined in the obvious ways for single stations. The occupancy of the network will 

be denoted by n, and the population by k. For single stations we will use ni and ki, 

respectively. 

A class CY job that tries to leave station i to go to station j in class p but is rejected 

there returns to station i in class CL It is treated exactly like an arriving job, only 

that it cannot be rejected. Note that our model differs from the model of Van Dijk 

and Tijms [13], and of Hordijk and Van Dijk [24,26] in that they specify that the 

job returns to the same position in station i’s queue. In our model it may be placed 

in any position of the queue, as long as the scheduling discipline allows it. 

The structure of the network itself is fixed by the following: 

l pia,jP : routing probabilities. Probability that a job of class LY that leaves station i 

tries to enter station j in class p. Direct feedback is not allowed, i.e. pia,ip = 0 Vi, 

ff, P. 
l P,,,~: probability that an exogenous job tries to enter station j in class /3. We 

assume that new jobs arrive at a (fixed) rate y to the network. The process that 

generates exogenous arrivals is assumed to be Poisson. 

l Pin,o: probability that a job that finished service in station i in class (Y leaves the 

network. 

One can define an equivalence relation on pairs (station, job class) by defining 

(i, a) = (j, p) iff a job that starts in station i, class CY can wind up in station j, class 

p after a series of transitions. We call each of the equivalence classes of this relation 

a routing chain or chain for short. Without loss of generality we assume that the 

sets of job classes in different routing chains are disjoint. So we can identify a 

routing chain with a set of job classes. 
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The network is closed for routing chain r if po,jp = 0 for all j, p E lY The network 

is open for routing chain r if po,jp is non-zero for at least one station j and job class 

p in routing chain lY The network is closed if it is closed for all routing chains. The 

network is mixed if it is closed for some routing chains and open for others. The 

network is open if it is open for all routing chains. 

For future convenience, we define the e, by 

e la = YPO,ia + C ejflPjj3.h. (13) 
ici 

There will be one such system of equations for each routing chain. Note that for 

closed chains the linear system (13) is homogeneous. In that case, we take any 

particular solution of the system as the e,,. 

In classical networks the eia are the throughputs of station i for jobs of class (Y 

if the network is open for the routing chain that contains job class (Y. If the network 

is closed for the routing chain that contains class LY, they can be interpreted as 

relative throughputs. In the present case these quantities have no physical sig- 

nificance, since the routing of the jobs depends not only on the routing probabilities 

but also on blocking. 

We furthermore assume that routing is reversible, i.e. 

ei, Pie, jj3 = ej, Pj0.h vi, j, a, P, 

?/PO&3 = ejf3 Pip.0 vj, P. 

(14) 

Reversible routing means that the Markov chain of the pairs (station, class) visited 

by a job is reversible [19]. In a classical network reversible routing means that the 

flow of jobs from station i and class (Y to station j and class p is the same as the 

flow of jobs from station j and class /3 to station i and class CL This interpretation 

is not applicable to blocking networks. 

We introduce the following operators: 

A,,(x): advances the Ith job in station i to the next phase of its service requirement 

(defined whenever 1 s kj and u,, > 1). 

Q,(x): deletes the Ith job in station i (defined only when IS ki and a,, = 1). The 

jobsinpositionsZ+l,Z+2,..., ki are shifted forward to positions 1, I+ 1, . . . , ki - 

1, respectively. 

li/;a,s(X): inserts a job of class (Y in the Ith position in station i and s phases of 

service left (defined whenever 1 ~k,+l).Thejobsinpositionsl,l+l,...,ki(if 

any) are shifted back one position to 1+ 1, I + 2, . . . , kj + 1, respectively. 

Tik,k,;olr(~): transfers the job in position k of station i to position I of station j 

and class (Y with s phases of service left (defined whenever k< ki, w;k = 1 and 

Is k, + &, where & is defined in terms of Kronecker’s delta by & = 1 - 6,). The 

same as ~jl:as(Dik(X)). 

When discussing the balance equations, we will need the inverses of these operators 

to describe the state from which the network enters state x. Except for the case of 

Ti,,j,;a,y and Dir, the inverse is uniquely defined. When one of these operators are 
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applied, the class in which the affected job was is lost. We will not need an inverse 

for Q,. We write T,i(P,‘, for the inverse of Ti,,j,;ac if the affected job comes from . . 
class /3 in what follows. 

4. The equilibrium state distribution 

Let S be the set of feasible states of the network, i.e. states in which the capacity 

of no station is exceeded, and 4(x, y) the transition rate from state x to state y. The 

global balance equations can then be written: 

4x) ,& dx, Y) =,& dY, XMY). (15) 

For later convenience, we define 

4(x) = & dx, Y) (16) 

That is, q(x) is the total rate out of state x. 

To keep the equations readable, we will assume that the job at position I of station 

i is in class K and has CT phases of service left. With the above notation and these 

conventions, we can write down the transition rates from state x to other states as 

follows: 

Equation (17) corresponds to exogenous jobs entering the network while (18) 

corresponds to jobs leaving the network. Equation (19) is for a job that finishes a 

phase of its service and advances to the next one. Equations (20) and (21) are for 

jobs that try to go from station i to station j, successfully in (20) and unsuccessfully 

in (21). No other transitions are possible. If the network is closed, the transitions 

described by (17) and (18) are also ruled out. 

Now we can state our principal result, the following theorem. 

Theorem 1. Consider an open, closed or mixed queueing network with rejection blocking 

in which routing is reversible and there is no direct feedback. Assume that all stations 

satisfy one of the following: 
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(i) They have symmetric scheduling disciplines with general service requirement 

distributions that may depend on the job class. We call these stations type I, For 

scheduling disciplines in the class we consider, the symmetry condition is necessary and 

sufficient tf the service requirement distributions are diflerent for diflerent job classes 

or are non-exponential. 

(ii) They have exponential service requirement distributions that do not depend on 

the job class. Here the scheduling discipline is arbitrary in the class of disciplines we 

consider. We call these stations type II. 

Furthermore, assume all blocking functions take the form: 

bia(k) = hi~(ki,)hiC,i(kiI,l)h;(ki), 

where [a] is the routing chain that contains job class (Y. 

Then the equilibrium state probabilities have the product form 

(22) 

xfl n h,,(l-l)fl n 
I‘ ISlSk,,. a lS/Sk,, 

eiOhi;;;-l) . 1 
Here i ranges over all stations, I ranges over all routing chains and a ranges over all 

job classes. Also, G is a normalization constant, selected such that the equilibrium state 

probabilities add up to one. 

Proof. An elegant way of proving (23) is to guess the form of the reversed process 

and use this to verify the solution. Kelly [19] describes this method in detail. If we 

denote the quantities for the reversed process by primes, the method is based on 

the following relations [ 19, Theorem 1.131: 

T(XMX, Y) = T(YM(Y, XL (24) 

q’(x) = q(x). (25) 

The equilibrium distributions for both processes, the original and the reversed one, 

are the same. 

In this case, the reversed process is almost the same network with rejection 

blocking. The only difference is that the scheduling disciplines are different: 

+I(l, ki) = rlri(l, ki - l), (26) 

rcII(l, k,) = +i(l, ki+ 1). (27) 

Also, in the reversed network the state keeps track of the phases of service completed, 

not of the phases yet to be completed as in the original network. As a result, the 

expressions for the transition rates are somewhat more complex than (17) to (21), 

since we need to distinguish between the case in which the present phase is the last 

one, and the job leaves the station, or service has not yet finished, and the job 
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advances to its next phase. Assuming that the job is in station i in class (Y and has 

reached phase s of its service, we need 

Pr(this is the last phase of service) = 
giol;s 

Las g,,;, 

Yiagia ; s 

= Pu,J+im(S) ’ 
(28) 

Pr(this is not the last phase of service) = 
CIa;+r gie;r 

Et=, g,,;, 

r,,(s+ 1) 
= ria(.s) . 

(29) 

Using the equilibrium state distribution (23) and relation (24) we can compute the 

transition rates of the reversed process. With (28) and (29) we can interpret the 

result as the transition rates of another network. 

In detail, we obtain for jobs arriving from outside in the original network to go 

to position m of station j, in class p with s phases of service left 

q’(lim;o.s(X), ~1 =~~,j~~bjp(kj)$j(my kj)gjp;.T 
pjpf;(kj + 1) 

ej$jp(kj)r;p(s) 

=pjp,ovjp~(kj+l)~j(m, kj)~. (30) 
./P IP 

In the reversed network, this corresponds to a job of class p that leaves the network 

from position m of station j after s phases of service. 

For a job that leaves the original network from position 1 in station i we get 

=Po,iKYbiK(ki-UK)~i(I) k). 
To derive (31) we used the identity 

r,,(l)=hJc(Ye 

(31) 

(32) 

Equation (31) corresponds to a job that arrives from outside at station i, position 

1 in class K in the reversed network. 

For a job in station i position 1 that advances to its next phase of service in the 

original network we have 

q’(Ai,(x), X) = ~idi(k)4i(4 k) 
rik(a+ 1) 

r_ (a) . 

IK 

(33) 

This corresponds to the same thing in the reversed network, only that in the original 

network the job advances towards phase 1 while it advances to higher phases in 

the reversed network. 
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For a job that in the original network leaves position I of station i and goes to 

position m of station j in class /3 with s phases of service left we have 

In the reversed network this corresponds to a job of class p leaving position m of 

station j to go to position 1 of station i in class K. 

Finally, for a job that in the original network tried to go from position 1 of station 

i to station j in class /3, but was rejected and returned to position n of station i we 

have 

XCpiK,jptl-bjp(kJ)), 
iP 

= v,J(k,)&(l, k;)$;(n, ki-l)z 
IK IK 

XCPiK,jptl-bjptkj))- 
iP 

(35) 

In the reversed network, the job in position n of station i tried to leave station i to 

go to some other station j and class /3 but was rejected and returned to station i, 

position 1. 

The above transition rates for the reversed process were obtained from (17) 

through (21) by using the equilibrium state distribution (23) and relation (24). To 

complete the proof, we need to show that relation (25) also holds. We will consider 

a simpler (and more detailed) version of (25). It is clear that if we consider only 

changes at a particular position in a station, and for them an analogue of (25) holds, 

then (25) also holds by adding the result over all positions in all stations. This is 

the same idea that gives rise to the job local balance equations [8,18,19]. In the 

same way, by considering one job class and a single station one gets an analogue 

to the local balance equations [9]. 

In this case, the flow out of state x due to changes at position 1 of station i in 

the original network is given by 

qir(x) = vA(k)k(l, ki). (36) 

This follows since the later history of the job is irrelevant. The counterpart to (36) 

for the reversed process is obtained by adding up the transition rates (17) to (21). 
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The result is 

4;,(X) =&&L r 
IK 

(a) [piKrLi(k k - l)ga;,+ vi,+i(l, ki)ri,(a+ 111. 

Now we can specialize the results to stations of type I and II. 

(37) 

Station type I. It is seen that (25) is not automatically satisfied. Summing (37) 

over all 1 does not help, because of the K = Kil and u= a,, that appear in it. So one 

cannot get a sum of the rcli and +i alone as 

if the scheduling discipline is symmetric we 

$i(l, k -1) =.L(l, k) 

in which case (37) reduces to 

q;(x) = v,J(k)4i(l, k). 

We used the identity 

would be needed. On the other hand, 

have, by definition (ll), 

(38) 

(39) 

= ymria Cs). (40) 

Comparing (39) with (36) shows that expressions (23) for r(x) and expressions 

(30), (31), (33) and (34) do satisfy relations (24) and (25). So they are the equilibrium 

state distribution and the transition rates of the reversed process, respectively, as 

claimed. Moreover, if the service requirement distribution at station i is not exponen- 

tial, or the service requirement distributions for different job classes are different, 

expression (23) is a solution iff the scheduling discipline is symmetric. This proves 

the claim for station type I. 

Station type II. For stations of type II the above does not hold. But the analogue 

of local balance does. We have (+ = 1 and 

Coc(a)=l, r,,(a+l)=O, (41) 

because there is only one phase of service. 

Moreover, we have giK;, = 1 and zero everywhere else. Also, we can write pi both 

for all piu and all via, there being only one phase and all service requirement 

distributions having the same mean. 

Summing (36) over all positions in station i’s queue we get 

= l*&(k). (42) 

Note that we are able to simplify (42) only because all the viol are equal to pi* 
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The counterpart to (37) summed over all positions in station i is 

.L(ki) ,SFSk P&,(1, ki - 1) = piA ,%FS, ccli(l, k; - 1) 

= Pi.L(k,), (43) 

since the ggKiC = 1 and the Ye, = 1 disappear. The terms with 4i appear multiplied 

by rik(a+ 1) = 0. So the expressions given satisfy both (24) and (25), as claimed. 0 

As pointed out when we described single stations, more general blocking functions 

can be considered. For definiteness, the proof is carried through for the case in 

which there is only one partition (except for single classes and all jobs) and we 

selected the routing chains as partition since we believe that this is the case of most 

practical interest. In general, however, one can consider several partitions of the 

job classes and the partitions may even be different for depending on the station. 

Our equations (36) and (37) only consider one station and a routing chain at a 

time. We use reversible routing to derive (37) from (23). Under the hypothesis of 

Theorem 1, it is well known that there is a product form solution for classical 

networks without restrictions on the routing matrix [4,18]. This can be proved in 

the same way as Theorem 1 [l&19]. The restrictions are then needed only for 

routing chains in which there is blocking and only for flows to/from stations that 

block. 

5. Distributions of occupancies and populations 

As for classical networks, the form of the equilibrium state distribution (23) has 

interesting consequences. 

For later convenience, we define the auxiliary functions 

(44) 

Corollary 2. The equilibrium distribution of the occupancy depends only on the means 

of the service requirement distrbutions (insensitivity). The equilibrium occupancy distri- 

bution is given by 

and for populations the equilibrium distribution is given by 

n-(k) =& Ai( 
I 

(47) 
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Here G is the same normalization constant as in the equilibrium state probabilities 

(23). 7’he functions Pi and Ai are defined by (44) and (45) respectively. 

Proof. To obtain the probability of the occupancy n all that has to be done is to 

sum the equilibrium state probabilities (23) over all possible number of phases of 

service left for each job. The form of the equilibrium state probabilities shows that 

we need sums of the form 

C ria(S) =kC C tTicx;l 
s Via S f2.7 

= pLicl c F 

s 

= 1. (48) 

Using (48) and the equilibrium state distribution (23) we get the equilibrium 

occupancy distribution (46): The service requirement distributions enter into the 

equilibrium occupancy distribution only by their means, as claimed. 

The probability of an occupancy given by (46) does not depend on the order of 

the jobs in the stations. There are 

( 

ki 
ki,ki, . . . kiC > 

(49) 

occupancies of station i that have the same population, thus proving the distribution 

for populations (47). q 

Open networks have particularly simple equilibrium distributions as stated in the 

following corollary. 

Corollary 3. In an open network, the states of the stations are independent. 7’he same 

holds for the occupancies and the populations 

Proof. This is an immediate consequence of the product form of the equilibrium 

state, occupancy and population distributions for open networks, equations (23), 

(46) and (47), respectively. 0 

Remarks 

Theorem 1 was originally conjectured based on the results of Cohen [ 111, and 

Van Dijk and Tijms [13], who proved product form for cyclic networks with two 

stations of types I and II. Class changes are not allowed in these models. The routing 

is reversible in cyclic networks with two stations, and Hordijk and Van Dijk [15] 

proved that in closed networks with a single job class, exponential service require- 

ment distributions and reversible routing, the equilibrium state probabilities have 

product form. Hordijk and van Dijk [24,26] studied similar models like in our case. 
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However, they do not allow job class changes in the network. The distributions are 

assumed to be exponential. The blocking protocol is different. Moreover, they assume 

that the product form solution exists. The proof is then carried out based on that 

assumed solution. Von Brand [S] proved Theorem 1 by a different method. He also 

investigated several other related models with rejection blocking and derived exact 

algorithms to compute performance measures. Pittel [29] proved a similar result for 

multiple job classes when the scheduling discipline is processor sharing. Another 

hint was the result of Melamed [21], who proved that classical (non-blocking) 

networks with reversible routing are reversible [19] if the service requirement 

distributions are exponential and the scheduling disciplines are symmetric. From 

Melamed’s [21] result and the truncation theorem for reversible Markov processes 

[ 19, Lemma 1.91 it would follow by a messy induction argument that networks 

similar to these but with rejection blocking also have product form solutions, and 

that the solution is precisely of the form (23). Class changes were also included, 

since in classical networks class changes can be allowed [ 181. As can be seen, there 

are very strong similarities between classical networks and networks with rejection 

blocking and reversible routing. 

6. The departure processes 

Using the proof of Theorem 1 we can deduce some further properties of the 

network in a simple way. The fact that the reversed process is very similar to the 

original processs is of great help in this. 

Corollary 4. The streams of jobs of each class that leave the network (either after 

traversing it or after being rejected when trying to enter) are independent Poisson 

streams. 

Proof. In the original description of the network we assume a single Poisson arrival 

stream that is split by the pO,jp. So the arrivals of each class form independent 

Poisson streams. In the proof of Theorem 1 we found that the reversed process is 

of the same type, i.e. a network with independent Poisson arrivals for each job class. 

Now each arrival in the reversed process corresponds to a departure or a rejection 

in the original process, and the result follows. 0 

Corollary 5. The distribution of states at the instants at which jobs of any particular 

class arrive at the network is the equilibrium state distribution. The same holds for the 

distribution of the states at instants at which jobs depart from the network, either after 

traversing the network or after being rejected on arrival. 

Proof. The arrival process for jobs of any particular class is Poisson. To check the 

state of the network at arrival instants is then the same as checking it at random, 
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and the first claim follows. Departures correspond to arrivals in the reversed process. 

So the second assertion follows by the same argument and the fact that the equili- 

brium state distributions of the original process and its reverse are the same. Cl 

For the following corollary we need the definition of quasi-reversible process 

[19]. A process in equilibrium is called quasi-reversible if 

(i) the state of the network at time t is independent of arrivals after t; 

(ii) the state of the network at time t is independent from departures prior to t 

Corollary 6. The open and mixed networks described in Section 3 are quasi-reversible. 

Proof. We need to check the two conditions of the above definition. But (i) is 

obvious from the definition of the network, and similarly (ii) is clear by considering 

the reversed process. 0 

7. Conclusions 

We show that a class of queueing networks with rejection blocking has a product 

form equilibrium state distribution, and that the distribution of the population is 

insensitive. The results are strikingly similar to the corresponding results for classical 

(non-blocking) networks. This poses the question of how far the similarities go. For 

example, one might expect that there is a simple relation between the state of the 

network at equilibrium and the state of the network at the instants at which jobs 

arrive at a station. For classical networks, this is called the Arrival Instant Distribu- 

tion Theorem [20,30]. In the case of classical networks, all jobs that arrive at a 

station are accepted. In the models considered here this is not necessarily so, and 

one could also consider an analogous Acceptance Instant Distribution Theorem for 

rejection blocking networks. 
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