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Abstract 

A queueing system M1, M 2 / G  1, G 2 / 1 / N  with different scheduling and push-out scheme is analyzed in this 
paper. This work is motivated by the study of the performance of an output link of ATM switches with traffic of two 
classes with different priorities. However, the queueing model developed in this paper is more general than that of 
the output link of ATM switches with two-class priority traffic. General service time distributions are allowed for 
classes 1 and 2 and a general service discipline function, al(i, j),  is introduced where al(i, j )  is the probability that a 
class 1 packet will be served, given that there are i class 1 and j class 2 packets waiting for service. An exact solution 
is obtained for the loss probabilities for classes 1 and 2, the queue length distribution and the mean waiting time for 
class 1. The queue length distribution and the mean waiting time for class 2 are calculated approximately. It is shown 
that the approximation is an upper bound and the error due to the approximation is very small when the loss 
probability of class 2 is small (e.g., less than 0.01). 
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I. Introduction 

We analyze an M1, M2/G1, G2/1/N queue with different scheduling and push-out schemes. 
Our work is primarily motivated by the study of the performance of an output link of ATM 
switches with traffic of two classes with different priorities. The future Broadband Integrated 
Services Digital Network (B-ISDN) will provide an integrated access that will support a wide 
variety of applications for its customers in a flexible and cost-effective manner. The transfer 
mode chosen by the CCIT-F [1,2] for B-ISDN is called the ATM. ATM is a high bandwidth, 
low-delay, packet-like switching and multiplexing technique. ATM can switch all types of 

* Corresponding author, Tel. + 1 404 894 5141, fax + 1 404 853 9140, Email: ian@armani.gatech.edu. The work of 
Akyldiz was supported in part by National Science Foundation (NSF) under Grant No. CCR-90-11981. 

0166-5316/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved 
SSDI 0166-5316(93)E0030-9 



318 I.F. Akyildiz, X. Cheng / Performance Evaluation 19 (1994) 317-340 

Processor 

Processor 

Switching 

Network 

Output 
Processor 

Buffer f - -  

__[--] 
Output 

Processor 
Buffer 

Fig. 1. An A T M  switch. 

traffic, ranging from low-bit rate to high rate traffic, in a packet format of fixed length called 
cell using a simplified end-to-end protocol. Various different media such as voice, data, video 
and graphics can be accommodated in an ATM network. Each service component of a 
multimedia system requires its own grade of service (GOS). For example, voice packets are 
more sensitive to delay than data packets. A data packet requires a higher level of protection 
against loss than a voice packet. Therefore, the network should be designed and controlled to 
satisfy these greatly differing performance requirements. Various service and buffer control 
mechanisms have been proposed, ranging from the dedicated buffer access for each traffic class 
to the shared buffer with or without push-out scheme [4,6]. 

Consider an ATM switch consisting of a fast switching network, processors and buffers as 
shown in Fig. 1. The processors are responsible for managing the buffers, among other things. 
Cell delay and loss may occur when cells pass through the switch and the output buffer. If we 
assume that there are two traffic classes in the ATM switch, the output buffer can be modeled 
as a finite buffer two-class queue as shown in Fig. 2. The server in Fig. 2 represents the trunk 
for the transmission of cells out of the output buffer. Our work is motivated by the study of the 
performance of the queueing model given in Fig. 2. 

There is only a small number of published studies on the push-out priority schemes. Doshi 
and Heffes [3] have described and analyzed an overload control algorithm using the push-out 
scheme with replacement strategy FIFO for the M / M / 1 / N  queue. Sumita and Ozawa [4] have 
derived conservation laws for systems using a push-out scheme. They have also proposed a 
mixed head-of-line service discipline for the push-out scheme in which, when the server 
becomes idle, the server will serve class 1 packets first with a probability a or class 2 packets 
first with a 1 - a .  They obtain the mean waiting times for packet classes 1 and 2. Their result 
shows that the two mean waiting times are subject to a linear restriction. Furthermore, 
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Fig. 2. A queueing model. 
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Hebuterne and Gravey [6] have evaluated the loss probabilities of a similar system assuming a 
Poisson arrival process, a deterministic service time and the replacement strategy FIFO. Their 
solution is not applicable to a general service time distribution. They observe a tagged low 
priority packet from joining until leaving the system and derive the probabilities that this packet 
will either be served or discarded from the system. Kroner [7] presents a method to compute 
the loss probabilities of an M 1, Mz /G/1 /N  push-out system with FIFO service discipline. He 
considers three different space priority mechanisms, namely, push-out scheme, partial buffer 
sharing, and the scheme with a separate route for each traffic class, and determines the 
push-out scheme as the best scheme in terms of loss probabilities. A finite-buffer priority queue 
M1, Mz/Ga, Gz/1/N is analyzed in [8]. However, no push-out scheme and buffer space 
division are considered in [8]. Saito [10] analyzes an MMPP1 + MMPP2/G/1/K queue with a 
push-out scheme. Recently, some related studies also appeared in [12-14]. 

In this paper we present an exact method to compute loss probabilities, the distribution of 
the number of class 1 packets in the system and the mean waiting time of a class 1 packet. An 
approximate solution is given for the computation of the mean waiting time for class 2 packets. 
Our model in the paper differs from the other analyzed push-out models in that we allow 
general service time distributions for classes 1 and 2, a general service discipline and a divided 
buffer management scheme. This paper is organized as follows. In Section 2 we describe the 
model. In Section 3 we outline the calculation of loss probabilities. In Section 4 we present a 
method for computing the steady state probabilities of the number of class 1 packets and 
number of class 2 packets at a service beginning time in the system. In Section 5 we detail the 
computation for the average number of losses of packet during a service time, which has been 
used in Section 3. In Sections 6 and 7 we derive an exact mean waiting time computation for 
class 1 and an approximate mean waiting time computation for class 2, respectively. We give 
numerical examples in Section 8 with some discussion about the results. Finally, in Section 9 we 
conclude the paper. 

2. Model description 

We consider an M 1, Mz/Ga, G2/1/N with additional features in service discipline and 
buffer management as will be explained shortly in this section. Since we allow general, variable 
length service times, we will call a customer a packet instead of a cell called in ATM networks. 
Two classes of packets are denoted by class 1 and class 2. The arrival process for class s 
(s = 1, 2) is Poisson with rate a s (s = 1, 2). (Note that we do not consider the bursty traffic 
here.) The service time of a class s (s = 1, 2) can be a random variable with a general 
probability distribution. Let bs(x) and bs denote, respectively, the probability density function 
and the mean of the service time of a class s packet (s = 1, 2). Service times and arrival 
processes are independent of each other. 

There are N number of total buffer spaces in the system, where N is finite and can be 
divided as N = N 1 + N 2. The number of class 1 packets waiting for service cannot be more than 
N 1 - 1. (Total number of class 1 packets in the system may be N 1 if the one currently in service 
is class 1.) An arrival of class 1 packet can join the system by taking an unoccupied buffer 
space, if it finds that there are less than N 1 - 1 class 1 packets waiting for service and there is 
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an unoccupied  buffer space in the system upon  its arrival. An  arrival of class 1 is lost if there  
are, upon  its arrival, N 1 - 1 class 1 packets waiting for service in the system, even though there  
is an unoccupied  buffer space in the system. In the contrast,  an arrival of class 2 can take an 
unoccupied  buffer  space anywhere in the system upon  its arrival as long as there is one. It is 
lost, otherwise. However,  an arrival of class 1 can join the system by replacing (pushing out) a 
waiting class 2 packet  in the system if it finds that  there are less than N 1 - 1 class 1 packets 
waiting for service and that  there is no unoccupied  buffer space in the system upon  its arrival. 
The  class 2 packet  being pushed  out  is lost. 

The  service discipline is specified by as(i, j) ,  s = 1, 2, where  Cel(i , J )  is the probability that  
class 1 packet  will be served when  there  are i class 1 and j class 2 packets in the system at the 
beginning of the service, a2(i, j) can be similarly defined. Obviously, a2(i, j ) =  1 -  Otl(i , j )  
when i + j  > 0. as(0, 0) (s = 1, 2) is undef ined.  We also assume that  the server will not be idle 
as long as there  is some packet  in the system waiting for service. Equivalently, this is to say that  
al(i, 0) = 1, i > 0, and a2(0, j)  = 1, j > 0. 

Using the a we can model  several different  scheduling disciplines in the system. 
a) Head of Line ( HOL ) Scheduling 

a l ( i  , J') = 1, if i > 0, 

b) Shortest Line First (SLF) Scheduling 

{10 i f i ~ J  
a~(ij) = if i > j .  

c) Longest Line First ( LLF) Scheduling 

{10 i f i>~J  
al(i' J) = if i < j .  

d) Random ( RS) Scheduling 

a~(i, j) =p if i >  0 and j > 0, 

i.e., the server will serve class 1 with probability p and class 2 with probability 1 - p. We should 
point  out  that  a l though o~ 1 is general,  it has to be a function of the (i, j) ,  numbers  of packets of 
two classes, and therefore,  it cannot  exactly model  schemes that  depend  more  than (i, j).  For  
example,  F I F O  and LIFO.  Note that  f rom the loss probabilities point  of view, it does not 
mat te r  in which order  the packets of the same class are served and which class 2 packet  will be 
pushed  out. 

3. Loss probabilities 

Packet  losses occur only when  the server is busy. A packet  can be lost if ei ther there  is no 
space available in the buffer upon  its arrival or it is pushed  out  f rom the buffer  while waiting 
for service. Let  112 be the loss probability for a packet  of ei ther class 1 or class 2 and s12 be the 
ratio of packets lost during a long period of t ime over packets  served in the same period time. 
It could be true that  numbers  of packets  lost during a service t ime (the t ime used to serve a 
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packet) may not be independent .  Nevertheless, an average of the losses should exist and it is 
equal to slz. Consider a time period T when the system reaches the steady state. On the 
average there are (A 1 + A2)T arrivals from classes 1 and 2 in T, and (1 - 112) fraction of them is 
served. Therefore, the average number  of total packet losses in T is (A 1 + A2)T(1 - 112)s12. By 
definition, 112 is the ratio of the average number of total losses in T to the average number of 
total arrivals in T. Thus, 

(A1 + A2)T(1-/12)s12 
1 1 2 :  = (1 --  112)$12" (1 )  

( a  I n t- A2)T 

From Eq. (1) we get 

S12 (2) 
112 - 1 + s12 " 

Obviously, s12 is also equal to the average number  of class 1 or class 2 packets lost during a 
service time. The computation of s12 will be shown later (Section 5) from this point of view. 

Similarly, let l 1 be the loss probability of a class 1 packet and s I be the average number  of 
class 1 packets lost per packet served. We have 

(//.1 + A2)T(1 - 112)Sl (/~1 + a2)(1 - 112)$1 
11 = = (3 )  

A1T a 1 

Finally, let l z be the loss probability of a class 2 packet. Using 

(/~1 +/~2)112 =/~111 q-/~212, (4) 

we obtain 

(A 1 -I- A2)112 --  A l l  1 
t: = (5)  

A2 

s I will be computed in Section 5 from the point of view of the average number of class 1 
packets lost during a service time. 

4. Steady state probabilities 

The average number  of packet losses during a service time can be computed by conditioning 
on the number  of class 1 and the number  of class 2 packets in the system at the beginning of 
the service time. In this section, we will compute the probabilistic distribution of the numbers 
of class 1 and class 2 packets in the system at the beginning of a service time. We proceed as 
follows. First, the distribution of the numbers of packets left in the system at a packet's 
departure time is computed,  and then the distribution of the numbers of packets at the 
beginning of a service time is derived from the departure time distribution. 

Let (i, j)  denote that there are i class 1 packets and j class 2 packets in the queue at a 
packet's departure time. Since we restrict our view at a packet's departure time, (i, j)  
constitutes a Markov chain (imbedded Markov chain), where 0 ~< i < N 1, j > 0 and i + j  ~< N - 1. 
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Let p(i, j), 0 <~ i < N 1, j >1 0 and i + j  ~< N - 1, be the steady state probability that  the system is 
in state (i, j )  at a packet 's  depar ture  t ime and P(i, ~);(~,, t) be the one step transit ion probability 
f rom state (i, j )  to state (k,  l). Clearly, P(i, i),(k, l) is a function of arrival rates and service time. 
The  Markov chain is totally de te rmined  by P(i, j);(k, t). To facilitate the expression for P(i, j),(k, t), 
the following definit ions are introduced.  

Definition 1. I(n, A, b(x)) is the probability that  there  are exactly n Poisson arrivals with 
arrival rate h during a service t ime of which the probability density function (pdf) is b(x). 

/o°°(Ax)ne-~Xb(x) I ( n , A , b ( x ) ) =  n! 

/ • n  oo 

= - - f  o n !  Xn e-~Xb(x) dx (6) 

Definition 2. I( >1 n, A, b(x)) is the probability that  there  are at least n Poisson arrivals with 
rate A during a service t ime of which the pdf  is b(x). 

I(>~n, A, b (x ) )  = 1 - 
n-1  
E I ( i , Z , b ( x ) ) .  (7) 
i=0 

Definition 3. H(nl, n2, /~1' /~2' b(x)) is the probability that  there are exactly n I and n 2 
arrivals f rom Poisson processes with arrival rates h a and h2, respectively, during a service t ime 
of which the pdf  is b(x). 

H(nl, n2, A1, A2, b(x)) 

 (Alx)n'exp(_AaX)__ 
= fo n,--5 

( 2x) "2 

n2! 
exp(-A2x)b(x  ) dx 

n I n 2 A1A2 (na + n 2 ) !  
= - n l + n  2 I(nl + n2, A1 + A2, b(x)). (8) 

(A1 + h 2 )  nl !n2!  

Definition 4. H( >1 nl, n2, Am, h2, b(x)) is the probability that  there are at least n 1 and exactly 
n 2 arrivals f rom Poisson processes with arrival rates h a and A2, respectively, during a service 
t ime of which the pdf  is b(x).  

II(>~n a, n 2, Aa, A2, b(x)) 
nl-1 

=I(nz ,  Az, b ( x ) ) -  Y'~ II(i, nz, Aa, Az, b(x)).  (9) 
i=0 

The  following two probabilities are similarly defined.  They are 

H(na, >~n2, Aa, 1~2, b(x)) 

= H( >1 n2, n a, I~ 2, 1~ 1, b(x)) (10) 
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and 

H(>nl ,  >~n2, h , ,h2 ,  b(x)) 

~ ~ ( a ~ x )  i ( A ~ x ) '  

i= l j  = 2 ~ exp(- -a lX)  ~ e x p ( - a 2 x ) b ( x  ) dx 

nl--1 
=I(>~n2, ae, b(x)) - E II(i, >~n2, A,,A2, b(x)). (11) 

i=0 

If n 2 < 0 in the above definitions, the computat ion should not count the arrival process related 
to n 2. For example, H(n 1, n 2, A 1, A z, b(x)) = I(n 1, A 1, b(x)) if n 2 < 0. 

Now we are ready to compute P(i, j);(~, ~). 
Case 1. For i = 0 and j = 0: the class of the packet that will be served next depends on the 

class from which the next packet comes. Since both arrival processes are Poisson, with 
probability A1/(A 1 + A2), the next packet comes from class 1 and with probability A2/(A 1 + h 2) 
from class 2. Therefore ,  we have: 

P(0, 0);(k, l) = 

A1 
- - H ( k ,  l, A1, A2, bl(X))  q- - -  
A 1 + A 2 

i f k < N ~ - l a n d  k + l < N - 1  
al 

- - H ( k ,  >/I, AI, A2, bl(X)) + - -  
A 1 + A 2 

i f k < N  1 - 1 a n d  k + l = N - 1  

hi 
- - I I ( > ~ k ,  1, A,, }~2' bl(X)) + - -  
A 1 + A 2 

i f k = N ~ - l a n d  k + l < N - 1  

h I A2 
- -H(>_-k,  >_.l,X,,ae, b a ( x ) ) + - -  
A 1 + A 2 A1 + A 2 

if k = N  1 - 1  and k + N - 1 .  

A2 1 
H ( k ,  l, /~l, ~2, b2(x) ) /  

A 1 + A 2 / 

A2 

A l + A 2 
H(k,  >l, a,, h2, b2(x))  ] 

"~2 H ( > k , l ,  A1, A2, b2(x))] 
a 1 -{'- 1~ 2 

H(>~k ,  >/l, A1, /~2, b2(x))]  

(12) 

Case 2. For i = 0 and j > 0: a packet of class 2 will be served. Let m 1 = k and A 2 = 1 - ( j  - 1). 
A~ and A 2 indicate, respectively, numbers  of changes of classes 1 and 2 packets during a service 
time. A 2 may become negative if j - 1 > N 2 and A1 > N - j .  Therefore  we have: 

P(0, j);(k, l) = 

'0 

H ( A I ,  A2, /~1, /~2, b2(x))  

H(A1,  ~ A2, ~l ,  /~2, b2(x))  

H(  ~ i l ,  i 2 ,  /~1, /~2, b2(x))  

H(> A,, >1 A2, 1~1, t~2, b2(x)) 

if A 2 < 0  and k + l < N -  1 

i f k < N  1 - 1 a n d  k + l < N - 1  

i f k < N  l - l a n d  k + l = N - 1  
i f k = N  1 - 1  and k + l < N - 1  

i f k = N  l - l a n d  k + l = N - 1 .  

(13) 
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Case 3. For i >  0 and j = 0: a packet of class 1 
A 2 ----I. A 1 and A 2 have the same interpretat ion as 
negative. We have 

0 if 

11(51, A 2 , h 1, h 2 , bl(x))  if 

P(i,O);(k,t)= I I (A1,  >/A2,  A1, A2, b l (X))  if 

II(>~ A1, A2, A1, A 2, bl(X)) if 

II(>~A 1, >~A2, A1, A2, b l (x ) )  if 

will be 
that in 

served. Let h 1 = k - (i - 1) and 
case 2. Note that A 1 cannot be 

A I < O  

k < N ~ - l  and k +l  < N - 1  

k < N  1 - 1 a n d  k + l = N - 1  

k = N 1 - 1 a n d  k + l < N - 1  

k = N l -  l and k + l = N - 1 .  

(14) 

Case 4. For i > 0 and j > 0: a packet of class s (s = 1, 2) will be served with probability 
as(i, j). Let A 1 = k -  ( i -  1), A 1 = l - j ,  5 ] = k -  i, and A22 = l - ( j -  1). A 1 and 51 indicate, 
respectively, the numbers of changes of classes 1 and 2 packets in a class 1 packet service time, 
and 5 ] and 5 2 have the similar interpretat ion except that in a class 2 packet service time. Note 
that it is impossible to have A] < 0 or A 1 < 0 and k + l < N - 1 when a class 1 packet is being 
served and A 2 < 0 or A 2 < 0 and k + l < N - 1 when a class 2 packet is being served. Let 

0 if A I < 0  

6 ( 5 1 , 5 2 ) =  o r A 2 < O a n d k + l < N - 1  (15) 

1 otherwise. 

Thus, 

P(i, j);(k, l) 

'am(i ' j)6(A~, A½)H(A 1, A½, hi, h2, bl(X)) + a2(i ' j)6(A], A~)H(A], Az2, Am, h2, b2(x)) 
i fk  < N I - 1  and k + l < N - 1  

Otl(i , j)a(A 1, A1)H(A 1, >/A 1, A,, A2, bl(x)) + .2(i ,  j)a(A], A~) II(A], >/A22, AI, A2, b2(x)) 
if k < N I - 1  and k + I = N - 1  

= 

al(i, j),~(A~I, A1)H( >/A 1, A~, a~, a 2, bi(x)) + c~2(i, j)a(A21, A{)H( >/82, A2, al, Xz, b2(x)) 
if k = N ~ - I  and k + l < N - 1  

al(i, j)3(All, A1)H( >~ A 1, >/A 1, A1, a2, hi(x)) + 0~2(i , j)a(A 2, A~)H(/> A], >/A~, *~1, a2, b2(x)) 
if k = N I -  1 and k + l = N - 1 .  

(16) 

This completes the computat ion for P(i,j),(k,~), where 0 ~ i ,  k <N1; j, l> /0  and i + j ,  
k + l < N .  

The steady state probabilities, p(i, j), should observe the law of conservation: 

p ( i , j ) =  ~_~ p(k,l)P(k,t),(i . j  ) forO<~i<~N1;j>~O;i+j<~N-1,  (17) 
all (k, l) 

and also 

Y'~ p(i ,  j)--- 1. (18) 
all (i, j) 

We can compute the values of p(i, j) by solving Eqs. (17) and (18) numerically, which involves 
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( N I ( 2 N - N 1  + 1)/2 independent linear equations. We used the svd method in our numerical 
experiment and no numerically nonstable case was encountered. 

Let q(i, j) be the probability that there are i class 1 packets and j class 2 packets at the 
beginning of a service time. Except for the first packet, the beginning of a service is preceded 
by the departure of the last packet served. There is then a one-to-one correspondence between 
a packet's departure and the beginning of the service of the next packet. If there is some packet 
left in the system at a packet's departure time, then the beginning of the service time for the 
next packet coincides with the departure time and they should observe the same packets left in 
the system. However, if there is no packet left at a departure time, there will be either (1, 0) or 
(0, 1) packet in the system at the beginning of the next service time depending on from which 
class the next packet comes. It is clear now that the possible state (i, j) at the beginning of a 
service is i + j  t> 1 and i + j  ~< N - 1 for N >t 2. So q(i, j) is computed as follows: 

1. For N = 1, the only possible states are (1, 0) and (0, 1): 

A1 
q(1, O)= A, + A-----~'  

and 

/~2 

q(0, 1)=A1 + A-------~ " 

2. For N >/2: 

Al 

A 1 + A 2 

q(i, j ) =  

- - p ( 0 , 0 )  i f i = l  and j = 0 a n d  N 1 = 1  

A1 
p ( 1 , 0 ) + - - p ( 0 , 0 )  i f i = l a n d j = 0 a n d N ~ > l  

A 1 + A 2 

A2 
p ( 0 , 1 ) + - - p ( 0 , 0 )  i f i - - 0 a n d  j = l  

p(i, j) if i + j  >~ 2 and i + j  ~ N -  1. 

A 1 + A 2 

(19) 

5. Average number of losses during a service time 

We define L(n, A, B(x)) as the average number of arrivals after the first n arrivals of a 
Poisson arrival process with rate A during a service time whose pdf is b(x), i.e. L(n, A, b(x)) is 
the average number of arrivals counted after the first n arrivals during a service time. By 
definition 

L(n,A,b(x)) 
, ( A x )  k 

= • fo ( k - n ) ~  e-axb(x) dx 
k = n + l  

=Ab-  )-'~kl(k,A,b(x))-nI(>_-(n+ 1), A, b(x)) ,  (20) 
k = l  
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where b is the mean of b(x). Suppose there are (i, j), i > 0 and j > 0, packets in the system 
(including the one which is going to receive service) at the beginning of a service time. Consider 
the number  of class 1 packets that may be lost during the service time. If a class 1 packet is 
served, then the first (N 1 - i )  arrivals of class 1 packets during the service time can join the 
system. After that, all arrivals are lost due to the fact that there are (N1 - 1) class 1 packets 
waiting in the queue. Therefore, the average number  of class 1 packets lost during a service 
time which begins with i class 1 packets and j class 2 packets is equal to the average number of 
class 1 packets arrived after the first (N 1 - i) class 1 arrivals if the packet in service is class 1 or 
is equal to the average number of class 1 packets arrived after the first (N 1 - (i + 1)) class 1 
arrivals if the packet in service is class 2. Therefore, 

sl = E q(i, j)al(i, j )L(N 1 - i ,  A1, ba(x)) 
i>0 , j>~0 

+ E q(i, j)a2(i, j )L(N 1 - i -  1, AI, b2(x)). (21) 
j>0 , i>~0  

The idea for computing Sl2, the average number  of losses of packets of either class during a 
service time is similar but more complicated. Again, suppose there are (i, j)  packets in the 
system at the beginning of a service time. First, let us consider the case where the next packet 
to be served is a class 1 packet. Let t = min{N 1 - i, N - i - j }  and y = max{0, N 2 - j } .  t can be 
thought as the maximum number of class 1 arrivals during the service time which result in no 
packets being lost or pushed out, and y is the number of unoccupied buffer spaces that only 
class 2 packets can take. ( N - i - j )  is the total number of unoccupied buffer spaces at the 
beginning of the service time. Assuming that there are k and l arrivals from classes 1 and 2, 
respectively, during a service time beginning at state (i, j), the number  of total losses of packets 
of the two classes during the service time is 

I 
l - ( N - i - j - k )  i f k < ~ t a n d l > N - i  j k 

i 
- t  i f k > t  and l~<y  (22) 

s12 I(i,  j);(k, 1) ~- - -  t + l - y if k > t and l > y 

otherwise. 

Therefore, the average number of packets of the two classes lost during a class 1 service time 
beginning at (i, j)  is 

S12 [ (i, j) 

(A,x) 
= f o  E E k! e x p ( - A l x )  l! 

k = O l = N - i - j - k + l  

oo o¢~ y 

fo - -  
x e x p ( - i z x ) ( l - ( N - i - j - k ) ) b 1 ( x ) d x +  E E k! 

k = t + l  1=0 
l 

xexp(-a x) exp(-, 2x)(k- t)b,(x ) dx 

+Jo E E 
k = t + l  l = y + l  

, t , 

k! exp[-Azx)(k-t +l-y)bl(X ) dx 
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Ae ) -~ (k+l ) I I ( k+l ,  >~(N i - j  k),A1, Ae, bl(x)) 
A~ k=O 

t 

- ~ ( U - i - j - k ) I I ( k ,  > ( N - i  j k+l ) ,A , ,A2 ,  bl(x)) 
k=O 

t 

+(A l + A z l b l -  Y'~kI(k, Al, b l ( x l l - t I ( > ( t +  l),Al, b1(x)) 
k = 0 

Y A2 ~ ( k + l ) l I ( ( k + l ) ,  >ly, Al, A2, bl(X)) 
-- 1=0 £ / / ( 1 '  A2 ,  b l ( X ) ) -  ~11 k = 0  

- y I I ( > ( t + l ) ,  > ( y + l ) , a , , a 2 ,  b , (x ) ) .  (23) 

The  case of the next packet  to be served being a class 2 packet  can be derived similarly. The  
result will be the same except that  t and y are calculated slightly differently: t = min{N 1 - (i + 
1), N - i - j }  and y = max{0, N 2 - ( j  - 1)}, where  j > 1. Let 

g ( i , j , t , y , b ( x ) ) = ~  (k+OtZ(k+l, > (U- i - j - k ) , a~ ,a2 ,  b(x)) 
k = 0  

t 

- E ( U - i - j - k ) I I ( k ,  > ( U - i - j - k + l ) , a , , a 2 ,  V(x)) 
k = 0  

t 

+(al + a2)b- E kt(k, a,, b(x) ) - t t (>~( t  + 1), as, b(x)) 
k = 0  

Y A2 ~ (k + 1)lI((k + 1), >~y, A1, ,h, 2,  b ( x ) )  - - , = 0 E l I ( l ' h 2 ' b ( x l ) - - - £ T k = 0  

--ylI(>~(t+l), > ~ ( y + l ) , a l ,  ag, b (x ) ) ,  (24) 

where  b = foxb(x) dx. Then,  s12, the mean  number  of losses of packets of the two classes in a 
service time, is 

S 1 2 =  E q(i, j)al(i , j)g(i, j, tl(i, j), Yl(J), bl(X)) 
i>O,j~>O 

+ Y'. q(i, j)ee2(i, j)g(i, j, t2(i , j), Y2(J), b2(x)) ,  (25) 
j>0, i>~0 

where 

tl(i, j )  = min{N 1 - i ,  N - i - j }  

Yl(J) = max{0, N 2 --j} 
t2(i, j )  = min{N 1 - (i + 1), N - i - j }  

y2( j )  = max{0, N 2 - ( j -  1)}. (26) 

Special Case: if N 1 = N, i.e. class 1 packets  can take any buffer space in the system, the 
computa t ion  for s12 is much  simpler. Suppose there are i and j packets  of classes 1 and 2, 
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respectively, at the beginning of a service time. Any arrival after the first ( N -  i - j )  arrivals 
from both classes either is lost or pushed out a class 2 packet. Therefore ,  Eq. (25) is simplified 
to the following form: 

$12 = E q(i,  j )al ( i ,  j ) L ( N - i - j ,  ,~II-A2, bl(X)) 
i>0,j>~0 

+ Y'~ q ( i , j ) a z ( i , j ) L ( U - i - j ,  A l - A z ,  bz(x)) .  (27) 
j>O,i~>O 

6. Exact computation of the queue length distribution and the mean waiting time for class 1 

In this section, we compute  the probability of being i, 0 ~< i ~< N1, class 1 packets in the 
system at a random time. The result is then used to compute the mean  waiting time of a class 1 
packet. Since Poisson arrivals see time average [9], the probability that there are i, 0 ~< i ~< N~, 
class 1 packets in the system at a random time is equal to the probability that there are i class 1 
packets in the system at the arrival time of a class 1 packet. So we will compute the probability 
from the point of  view of an arriving class 1 packet. As before, T is used to denote  a period of 
time when the system is in the steady state. 

Let a~d~e be the probability that a class 1 packet finds the server idle upon its arrival. This is 
possible only when there is no packet in the system at a service completion time and the next 
arrival is a class 1 packet. Therefore ,  we have 

(/~1 -'1- A2)T(1  - 1 1 2 ) P (  O, 0)/~1/(/~1 -Jr- /~2) 
aidle = A1T 

= (1 - 112)P(0, 0). (28) 

Let a k, 0 <~ k <~ N a, be the average number  of class 1 arrivals which see k class 1 packets in 
the system upon their arrivals during a service time. The population of class 1 packets can be 
divided into two sets: those lost upon their arrivals and those served. The class 1 packets lost 
can see only N~ - 1 o r  N 1 class 1 packets in the system upon their arrivals, while class 1 packets 
served can see 0 ~< k ~< N 1 - 1 class 1 packets in the system upon their arrivals. The number  of 
losses of class 1 packet in a service time is 

s 1 = a' + a~l N l -1 '  

where 

a' = Y'~ q(i j )al ( i ,  j ) t ( N , - i  A 1, b,(x))  N 1 ' , , 
i>0,j>~0 

and 

(29) 

(30) 

a' = E q(i j)az(i, j )L(N l - i - 1  Z , , b 2 ( x ) ) .  N 1 - 1 ' ' 
j>0,i>~0 

(31) 

a' and a' N,-1 N1 are the average numbers of class 1 packets lost during a service time which see 
N 1 - 1 and N 1 class 1 packets in the system upon their arrivals, respectively. 
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The average number  of class 1 packets served which see k, 0 ~< k ~ N 1 - 1, class 1 packets in 
the system upon their arrivals during a service time can be computed as follows. If there is no 
class 1 packet at the beginning of a service, there should be at least k + 1 class 1 arrivals during 
the service time for only the (k  + 1)st arrival will observe k class 1 packets in the system upon 
its arrival. If there are i, i >I 1, class 1 packets in the system at the beginning of a service, there 
should be at least k - i + 1 class 1 arrivals during the service time for only the (k  - i + 1)st 
arrival will observe k class 1 packets in the system upon its arrival. Obviously, i ~< k and 
i + 1 < N 1 if a packet of class 2 is in service. Therefore  we have 

[ ~i<~kq(i, j )a l ( i ,  j ) l ( > ~ ( k - i  + 1), hi,  bl (x) )  

+ ~i<l~q(i, j )aa( i  , j ) I (  > / ( k -  1 + 1), A1, b2(x)) 
i f 0 ~ k < N l - 1  

ak ]~i<~J,q(i,j)al(i,j)I(>~(k-l+l),)tl, bl(x)) +a'N 1 - 1 ( 3 2 )  

i f  k = N 1 - 1 

~a~v ' i f k = N  1. 

Now let B k, 0 <~ k <~ N~, denote  the probability that a class 1 packet finds that there are k 
class 1 packets in the system upon its arrival. B k is then 

(a) If k = 0: 

(h 1 + A 2 ) T ( 1 -  1,2)ao 
B 0 = + a idle 

AIT 

(h 1 + h 2 ) ( 1 -  112)a0 
= -1- aidle. (33) 

hi 

(b) If k = 1, 2 . . . .  ,NI: 

(A, + Ae)T(1 - l l z ) a  k 
B/~= 

A~T 

(h I + he ) (1 -112)ak  
= (34) 

hi 

It can be verified that 

N1 

E Bk = 1. (35) 
k=0 

The mean system time of a class 1 packet can be computed by Little's law. The average 
number  of packets in the system equal to the mean  system time multiplied by the effective 
arrival rate. Therefore ,  the mean  waiting time of a class 1 packet, ~ ,  is 

N1 ~ k  = l k B k  
wl (1 - I,)A, b, (36) 
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7. Approximate mean waiting time for class 2 

We are unable to compute the mean waiting time of a class 2 packet exactly due to the fact 
that a class 2 packet may get pushed out after joining the waiting queue. However, in the 
context of an ATM switch, the loss probability of a class 2 packet, which can be computed 
exactly by the method described in Section 3, is usually very small. When the loss probability is 
small, we can analyze approximately the mean waiting time of a class 2 packet by overlooking 
part of lost packets. Particularly, in the following we will present an approximate method of 
computing the mean waiting time of a class 2 packet with the assumption that only those 
arrivals of class 2 packets which arrive after the first ( N -  i - j )  arrivals of class 2 packets 
during a service time beginning with i class 1 and j class 2 packets in the system will be lost and 
there is no push-out loss. 

If there are i class 1 and j class 2 packets in the system at the beginning of service, 
(N - i - j )  is the number of unoccupied buffer spaces at the beginning of the service. An arrival 
among the first N -  i - j  arrivals of class 2 packets during a service may or may not be lost, 
depending on the number of class 1 packets arrived ahead of it during the service time. The 
arrivals of class 2 packets after the first N - i - j  arrivals of class 2 are always lost. Thus, the 
number of actual losses of class 2 packets in computing the mean waiting time of a class 2 
packet is reduced. We will comment  on the accuracy of it shortly. As before, we compute the 
mean number of class 2 packets in the system at a random time first, which can be carried out 
equivalently by computing the mean number  seen by an arriving class 2 packet. We then use 
Little's law to compute the mean waiting time. Because of the assumption, the mean number of 
class 2 packets in the system at a random time computed this way is greater than the actual 
mean number of class 2 packets served. So the mean waiting time computed with the 
assumption is an upper  bound of the actual mean waiting time. We can also estimate a lower 
bound of the mean waiting time of a class 2 packet as follows. Let N u be the upper bound of 
the mean number  of class 2 packet at a random time in the system. Therefore, N,(1 - / 2 )  is a 
lower bound of the actual mean number of class 2 packets in the system. So the error in the 
mean waiting time introduced by the assumption is, by Little's law, no more than 12 fraction of 
the actual mean waiting time. For example, suppose the loss probability of a class 2 packet is 
10 -2, our approximate computation of the mean waiting time of a class 2 packet will have an 
error of less than 1% of that of exact computation, which is probably acceptable for practical 
interest. 

Similar to the previous section let Cidle be the probability that a class 2 packet finds the 
server idle upon its arrival, then 

Cidle = (1 - /12)p(0 ,  0). (37) 

Let ck, 0 <~ k <<. N, be the average number of class 2 arrivals which see k class 2 packets in 
the system upon their arrivals during a service time. The arrivals of class 2 during a service time 
can be divided into two sets, depending on whether they are lost or not upon their arrivals. Let 
c~, N 2 + 1 ~< k ~< N, be the average number  of class 2 packets in a service time which see k class 
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2 packets in the system upon their arrivals and are lost at the same time due to no unoccupied 
buffer space, then 

c'k= Y'~ q ( N - k ,  j ) a , ( N - k ,  j ) L ( k - j ,  A2, b,(x)) 
j < k  

+ ~_. q ( N -  k, j ) a 2 ( N -  k, j )L (k  - j ,  h2, b2(x)) 
j < k  

for N2 + l <~k <~N, (38) 

and c k ,0~<k~<Nis  

¢k = 

[~j<~k and i+k<Uq( i, j)a,(i ,  j)I(>~ (k - j  + 1), A2, b,(x)) 

+Ej~ka.di+k<uq(i, j)a2(i, j ) l ( > ~ ( k - j  + 1), A2, bz(x)) ] 

ifk<U2 

[Ej~<k.ndi+k<Uq( i, J)al(i, j)I(>~ ( k - j  + 1), A2, bl(x)) + 

Y"i~<k.ndi+k<Uq( i, j)a2(i, j)I(>7 ( k - j  + 1), A:, bz(x)) +c~] 

if N 2 ~ k  <N 
C~v if k = N. 

(39) 

Let D k, 0 ~< k ~< N, denote the probability that a class 2 packet finds there are k class 2 
packets in the system upon its arrival. Then 

(1) If k = 0: 

(A 1 + A2)T(1 -- 112)Co 
D o = + Cidle 

A2T 

(h I + A2)(1 -/12)co 

A2 
-']- Cidle (40) 

(2) If 0 < k  ~<N: 

O k 
(A| + A2)T(I - 112)ck 

A2T 

(A1 +A2)(1 - l , 2 ) c  k 

A2 
(41) 

The mean waiting time of a class 2 packet, ~2, is approximately 

N Ek ~ 1 kD1, 
~2 = (1 +/2)Az b2 (42) 
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8. Numerical examples 

In this section we present some of the experimental computations conducted in the study. It 
is assumed, in all of our examples, that service times for two classes are constant and equal to 1. 
Three service disciplines, namely HOL, SLF and LLF, are used for comparison. Let p = ~1  --I- }k 2 
be the total load to the system (since the service time is normalized to 1). An admissible load 
with respect to a certain GOS for classes 1 and 2, which is specified in terms of loss 
probabilities and mean waiting times for classes 1 and 2 in the study, is the maximum total load 
without violating the GOS. At a given load, three different mixes of loads from classes 1 and 2 
are tried. The three mixes a r e  '~1 ~-- /~2,  /~1 = 2A2 and 2A 1 -- A 2. 
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Fig. 3. Admissible load versus buffer size ('~1 = ~ 2  )" 
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Fig. 4. Admissible load versus buffer size (,t 1 = 2A2). 
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The first set of examples (Figs. 3, 4 and 5), displays the relationship between admissible loads 
and the total buffer sizes. The same GOS are used in three figures with A~ = A 2 in Fig. 3, 
A 1 = 2A 2 in Fig. 4 and 2A 1 = A 2 in Fig. 5. The GOS is 

l) < 10  - 1 ° ,  12 ~< 10  - 6  

W1 ~ 1.5, W2 ~ 5. 

The admissible loads are represented on y-axes and the total buffer sizes N are on x-axes 
where  N =  N~ is assumed. The three curves in each figure correspond to the three service 
disciplines. 

As we can see, H O L  administers the largest admissible loads with respect to the GOS used 
here. This is true not only for different buffer sizes but also for different load mixes. In Fig. 3, 
the limiting factor of the admissible load is the loss probability of class 2 in all three service 
disciplines. In Fig. 4, where A 1 = 2A 2, the limiting factor differs with the service discipline. For 
HOL, the limiting factor is the loss probability of class 1 when N, the total buffer size, is less 
then or equal to 20 and the loss probability of class 2 when N > 20. However, at N = 40 both 
the loss probability and the mean waiting time of class 2 approach the GOS limit simultane- 
ously. For SLF, the limiting factor is the loss probability of class 1 when N ~< 38 and the mean 
waiting time of class 1 when N = 40. For LLF, the limiting factor is the loss probability of class 
1 when N ~< 12, the loss probability of class 2 when 12 < N ~< 32 and the mean waiting time of 
class 1 when N > 34. In Fig. 5, where 2A 1 = A 2, the limiting factor is the loss probability of class 
2 for HOL, the loss probability of class 1 for SLF, the loss probability of class 2 when N ~ 26 
and the mean waiting time of class 1 when N > 28 for LLF. 

The second set of  examples (Figs. 6 to 11), shows how loss probabilities and mean waiting 
times of two classes vary with the total load. Again, three service disciplines and three load 
mixes are used. In all these examples, N = N 1 = 40 is assumed and the total load changes from 
0.05 to 0.95. Figs. 6 to 8 are curves of loss probabilities versus total load with A 1 = A 2 in Fig. 6, 
A~ = 2A 2 in Fig. 7 and 2 A  1 = A 2 in Fig. 8. Figs. 9 to 11 are curves of mean waiting times of mean 
waiting times versus total load with A 1 = A 2 in Fig. 9, A~ = 2 A  2 in Fig. 10 and 2A~ = A 2 in Fig. 
11. 
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Fig. 15. Sliding buffer size ( N  1) versus mean waiting time ( N  = 40, h 1 = h2, total load = 0.9). 
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The loss probabilities of LLF surprisingly resemble the loss probabilities of HOL in all three 
figures. On the other hand, the mean waiting times of HOL and LLF are in opposite directions. 
HOL tends to minimize the mean waiting time of class 1 and maximize the mean waiting time 
of class 2 while LLF holds also in the next set of numerical examples when N = N~ and can be 
explained intuitively. It seems that loss probabilities and mean waiting times of HOL are least 
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Fig. 16. Sliding buffer size ( N  0 versus mean waiting time ( N  = 40, hj = 2A 2, total load = 0.9). 
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size ( N  1) ve r sus  m e a n  wa i t ing  t ime  ( N  = 40, 2A 1 = A2, to ta l  load  = 0.9). Fig. 17. S l id ing  b u f f e r  

sensitive to the change of the ratio of ,t~ and /~2 for a given total load, while LLF and SLF are 
more and most sensitive. 

The last set of example (Figs. 12 to 17), shows changes of loss probabilities and mean waiting 
times of two classes with the increase of N 1. In all these examples, N = 40 and p - - 0 . 9  are 
assumed. Figs. 12 to 14 are curves of loss probabilities versus N 1 with A 1 = A z in Fig 12, 
"~1 = 2A2 in Fig. 13 and 2 A  1 = / ~ 2  in Fig. 14. Figs. 15 to 17 are curves of mean waiting times 
v e r s u s  N 1 with A 1 = A 2 in Fig. 15, A 1 = 2A 2 in Fig. 16 and 2A 1 = A 2 in Fig. 17. 

These examples show that once N 1 surpasses certain value, it no longer significantly affects 
the loss probabilities and mean waiting times. 

9. Conc lus ions  

In this work we analyzed a queueing model M1, M 2 / G  1, G 2 / N  with different scheduling 
and pushout schemes. Our work can be used to evaluate the performance of an output  link of 
ATM switches with traffic of two classes with different priorities, and may also have other 
applications in computer  and communications systems. 

By introducing a l ( i  , J), a service discipline function, we were able to consider various 
scheduling disciplines such as HOL, SLF, LLF and Random Scheduling. By dividing the total 
buffer space into two parts, we created a push-out scheme that permits a controlled share of 
the buffer space between the two classes. We gave an exact solution for the loss probabilities of 
both classes, the queue length distribution and the mean waiting time for class 1. An 
approximate solution for the queue length distribution and the mean waiting time for class 2 
were also obtained. We gave a set of numerical examples which considered the loss probabili- 
ties and mean waiting time simultaneously. It remains to extend these results to cases of bursty 
arrivals. 
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