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Central Server Models with Multiple Job Classes, 
State Dependent Routing, and 

Rejection Blocking 

Absfmcf-Central server models with multiple job classes, state de- 
pendent routing, and rejection blocking are investigated. The service 
time distributim may depend on the job class. Using the concepl of 
job lneal balance, we prove that the equilibrium state Probabilities of 
these networks have an exact product form w1utI~1. From the equilib- 
rium state probabilities we dtduce formulas for the throughputs. An 
algorithm to compute performance measures, like the throughputs and 
the mean number of jobs is given. The complexity of the algorithm is 
discussed. 

Index Tens-Blocking. finite station capacities, performance evai- 
uation, performance measures, queueing network models. 

1. INTRODUCTION 

ENTRAL Server Models are important because most C computer systems can be modeled as central server 
models either directly or after replacing the I/O subsys- 
tems by equivalent stations. A product form solution for 
a central server model with state dependent routing and a 
single job class was first derived by Towsley [28]. Gen- 
eral service time distributions are allowed at a station if 
the scheduling discipline is symmetric. Sauer [25] obtains 
mean queue lengths, throughputs and the marginal distri- 
butions of the station populations for the same model. Yao 
and Buzacott [29] extend the central sewer model in [28] 
to multiple job classes. The service time distributions are 
assumed to be exponential and the same for all job classes 
at a station. The jobs are serviced in random order 1271. 
There is no blocking, capacity restrictions at the stations 
are enforced by the routing probabilities. More general 
queueing networks with state dependent routing are stud- 
ied by Serfozo 1261. The model of a system of flexible 
manufacturing cells of Dallery and Yao [ 121 is also a een- 
tral server model with rejection blocking, but the routing 
probabilities are fixed, i.e., state independent. 

Krzesinski 1191 considers BCMP [6], Kelly 1171 type 
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queueing networks and partitions them into two subnet- 
works, I' and 9. The stations in subnetwork 8 are pani- 
tioned into disjoint groups called branches. The branches 
are arranged into a hierarchy of nested subnetworks. A 
set of state-dependent routing probabilities is used to ad- 
mit jobs from subnetwork I' into the individual branches 
of the subnetwork 8. The state-dependent routing prob- 
abilities are products of linear functions of the branch and 
subnetwork populations such that the entire network has 
a product form solution. He extends the results of Tows- 
ley [28] to multiple job class queueing networks. One can 
easily recognize that Yao and Buzacott's work [29] de- 
scribed above, is of a similar nature. Krzesinski [19] 
claims that there exists a relationship between state-de- 
pendent routing and blocking. In other words, the block- 
ing can be enforced by state-dependent routing probabil- 
ities. Yao and Buzacott [29] used this idea for the 
investigation of finite capacity queueing networks as de- 
scribed above. 

This work extends the results of Towsley [28] and Yao 
and Buzacott [29] for central server models with state- 
dependent routing to a model with multiple job classes 
and rejection blocking. The difference of this work with 
the previous studies is that it considers both state-depen- 
dent routing probabilities and rejection blocking in a 
queueing network model. Additionally, the model may 
have different station types. Note also that we give com- 
putational algorithms for performance measures. 

The blocking policy we consider in this work is the re- 
jection blocking policy [11-[41, [7], [ l  I ] ,  [13]-(161, [18], 
1221. In rejection blocking policy the blocking events oc- 
cur when a job that finishes service at station i determines. 
according to the routing probabilities for its class. to 
which station it tries to go next. According to the blocking 
function for that job at its destination station, it is deter- 
mined if the job is accepted. If the job is rejected, it re- 
turns to station i ,  where it is treated exactly like a newly 
arrived job. The only exception to this is that it cannot be 
rejected. In station i the job gets another round of service. 
after which it again selects a destination. possibly a dif- 
ferent one. 

In our model, each class has an independent routing 
strategy of the class considered by Towsley [28]. The 
queueing network is closed, and no class changes are al- 
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lowed. Stations in the network may have general service 
time distributions. Service time distributions may depend 
on the job class provided that the scheduling discipline at 
the station is symmetric (station type I). For arbitrary 
scheduling disciplines the service time distributions at the 
station must be the same exponential distribution for all 
job classes (station type 11). The routing probabilities from 
the central server to the peripheral stations are state de- 
pendent. Additionally, the rejection policy is allowed in 
the model. 

One application example is a central server model of a 
computer system with the CPU as the central server and 
the remaining stations as the disk devices. State depen- 
dent routing probabilities are used to route the jobs from 
the CPU to the disks. Each disk has finite capacity such 
that a certain maximum number of jobs can be accomo- 
dated. If the capacity of each disk is full, then the job 
coming from the CPU will be rejected and will be sent 
back to the CPU where it will receive another round of 
service. State dependent routing offers substantial 
throughput gains over state independent routing [19]. State 
independent routing probabilities cannot prevent the rout- 
ing of jobs to already congested disk stations, the state 
dependent routing probabilities preferentially route jobs 
to the least loaded disks. Another application of this model 
might be a computer communication network with adap- 
tive muting and window flow control. 

The paper is organized as follows. In Section I we de- 
scribe the state-of-the-art. In Section 11 we describe the 
model. In  Section 111 we derive the transition rates which 
are then used to prove the exact product form solution for 
equilibrium state probabilities. In Section IV, formulas 
are derived which are then used to outline an algorithm to 
compute performance measures such as throughputs, 
mean number of jobs, in Section V. In Section VI we 
discuss the complexity of the algorithm outlined in sec- 
tion V. Conclusions are given in Section VII. 

11. MODEL DESCRIPTION 
The cerzrrul zerivr is numbered 1 and the rest of the 

stations 2, 3, . * * , N. The stations 2 to N are called pe- 
Gpheral stations. There are C different job classes in the 
network. A job of class a requests service at station i dis- 
tributed as Fi, with mean 1 /pia. By the results of Barbour 
[5] it is enough to establish our results for finite mixtures 
of Erlang distributions. The restrictions that Barbour im- 
poses on the network are that there be no multiple tran- 
sitions and that the arrival processes be independent of the 
state of the network. Both are satisfied in this model. 

We will represent the service requirement distributions 
as mixtures of Erlang distributions of the following form: 

where E,“,,, is the Erlang distribution with t phases, each 
with rue Y , ~ .  We assume that the sum in ( 1 )  is finite, but 
we refrain from giving the limits to keep notation simple. 
Equation ( I )  means that with probability gjat, a job of class 

CY arriving at station i will have to traverse t exponential 
phases, each of which has rate via. This requires: 

It also implies: 

By renewal theory the probability that at an arbitrary 
instant a job with service requirement distribution Fia still 
has to traverse s phases, including the one being tra- 
versed, is given by: 

(3 )  

Note that: 

Assume that we consider the job in station i at position 
I ,  and that it is in phase s of its service. Then we have: 

Pr (this is the last phase of service) = 
gia:r 

Pia gia: s 
via rio ( s I 

1 2 s  

=- 

c gh:r 
Pr (this is not the last phase of service) = ‘zA+’ 

- - rin(S + 1)  
ria($) * 

( 5  1 
The state of the network will described by (ordered) N- 

tuples of station states where a station i ’ s  state is denoted 
by : 

( ( K i i ,  ai l ) ,  ( K i Z ,  ai,?). * . * ( K i k j r  uiki)). ( 6 )  

Here ki is the number of jobs in station i, K~~ is the class 
of the job in position I of station i and oil is the number 
of remaining phases of service for that job. We will de- 
note the number of jobs of class a in station i by ki,. We 
will use x and y to denote arbitrary states of the network. 
We define the occupancy of the network as an N-tuple of 
strings of job classes, where the ith string represents the 
classes of the jobs in station i in order. The population of 
the network gives the number of jobs of each class in each 
station. Occupancies and populations are defined in the 
obvious ways for single stations. The occupancy of the 
network will be denoted by n, and the population by A. 
For single stations we will use n, and ki, respectively. The 
total number of jobs in class CY is denoted by K,. 
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A scheduling discipline (f, 4. $)  is defined by 191. 

f ( k )  Total service effort when there are k jobs in 
the station. 

+ ( I ,  k )  Fraction of the service effort destined to the 
job in position 1 when there are k jobs in the 
station (zero for 1 outside of 1 c I 5 k).  
This requires: 

[IO], [171, 1181: 

c + ( 1 ,  k )  = I vk. (7) 
I s l s k  

$ ( l ,  k )  Probability that an arriving job is placed in 
position 1 when there are k jobs in the sta- 
tion (zero for 1 outside of 1 I 1 5 k + 1 ). 
This requires: 

c $ ( 1 ,  k )  = 1 wk.  (8)  
IS/LP+I 

Kelly [ 171 calls a scheduling discipline symmerric 
(Chandy and Martin [9] call them station balancing) if 

+(& k )  = 441, k + 1 ) .  ( 9 )  

This framework clearly does not describe all possible 
scheduling disciplines, for example there is no way to give 
one job class priority over another. Scheduling disciplines 
that depend on the service requirements, like Shortest Job 
First (SJF), cannot be described either. Nevertheless, the 
class of scheduling disciplines that can be described is 
rich. Some examples are: 

First come, first served is described by 
&( 1, k) = I and $ ( k  + 1, k )  = 1. 
Last come, first served preemptive is de- 
scribed by + ( k ,  k )  = l and $ ( k  + l ,  k )  
= 1. 
Processor sharing is described by + ( I ,  k )  
= l /kand $ ( k  + I ,  k )  = 1. 
Service in random order (Spirn 1271) is 
described by &( 1, k )  = 1 and $ ( l .  k) = 
l / k f o r l  2 2. 

Other scheduling disciplines that lead to product form 
in classical queueing networks, like LBPS (last batch pro- 
cessor sharing, Noetzel [20], can also be described [9]. 

It should be noted that the description of a particular 
scheduling discipline is not unique. For example, the de- 
scription for PS given above is not symmetric, but if we 
set $ ( l ,  k) = l/(k + 1)  the discipline becomes sym- 
metric. The only difference between the two is that this 
alternative does not keep the jobs in their order of arrival, 
while the description given above does. Of the remaining 
disciplines, FCFS and RAND are not symmetric, while 
LCFS is. 

We assume that a job selects a service requirement be- 
fore starting to get service, i.e., when a job enters station 
i in class a it is assigned a number of phases of service 
according to the gia;s. If a job in class Q is in position 1 of 
station i and the number of jobs in station i is ki, the rate 
at which that job advances to its next phase of service (or 
finishes service at the station if it is in its last phase of 
service there) is Y., f : ( k )  h ( 1 .  k . ) .  

FCFS 

LCFS 

PS 

RAND 

I307 

We call the probability that a job is accepted at a station 
the blocking firnction of the station. In the most general 
case, the blocking function of a station could depend on 
the state of the entire network. In our model (as in the 
models of Pittel [22], Hordijk and van Dijk [15], [la], 
Akyildiz and von Brand [2], [3], Cohen [ 111, van Dijk 
and Tijms [ 131, and van Dijk and Akyildiz [14]) we allow 
a dependence only on the state of the destination station. 
The probability that a job is accepted depends on its class. 

We write the probability that a job of class (Y arriving 
at station i is accepted when there are a total of ki jobs in 
it, of which ki, are of class a as: 

b ia (4 )  = hia(kia) hi(ki)* (10) 
Here hi, and hi are arbitrary functions. The only restric- 
tion on them is that if h i ( f  ) = 0 then h i ( k )  = 0 for all k 
1 1. A similar restriction applies to hia. The smallest I 
such that hi( 1 ) = 0 is then the maximal capacity of the 
station for jobs and forjobs of class a, respectively. These 
restrictive conditions on hi and hja seem to be necessary 
and sufficient for the irreducibility of the Markov process 
that represents the queueing network. 

The routing probabilities are assumed to take the form 
1281: 

Pl j :a (k )  = wja(kja) wa(Ka - kIa) (11) 

Pjl:cr = 1. (12) 
In (1 1) and (12) we assume j f 1. From (1 I )  it follows 
that the functions wj, and w, must take the forms [28, 
Theorem 31: 

W J k )  = c,k + 4, (13) 

r 1 - 1  

1 
Here c,, and d,a are constants. For later convenience, we 
define the functions: 

I g k )  = n W j J l  - 1 )  
1 s/sk 

V&) = n w,(l - 
I i / = k  

To describe the movement of jobs in the network, we 

Tll,,,,:s(x) Operator that transfers the job in position 1 
of station i to position m of stationj with 
s stages of service left. We will also need 
the inverse of this operator, which we 
will write T < & s ( ~ ) .  This inverse is 
unique whenever it is defined. 

Operator that advances the Ith job in sta- 
tion i to the next phase of its service re- 
quirement (defined whenever f s ki and 
U(/ > 1). 

define: 

A ; , ( x )  

As mentioned before, the blocking policy we consider 
is the rejection blocking. A job that finishes service at 
station i determines, according to the routing probabilities 

, ."".. , ,,. I ,, for its class, to which station it tries to go nei;. According 
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4 ( x ,  Y) = 

-PIj:,(k) v l u @ l ( l ,  kl ) f i ( k l )  

* bjx(kj) $j(m, k,)gjr:s 

i fy  Ti/.jm.v(x) 

' l K 6 l ( ' ,  k l ) f i ( k l )  k l  - I ) g j K : S  

f # I  c Pl , ;x(k) [ l  - b,K(k,)] (17) 

i f Y  = 7-l/.lfi:.,(x) 

i fy  = A l , ( x )  

V l K 6 1 ( f 9  k I ) f l ( k l )  

0 otherwise. 

Again, the first line is for a job moving out of the station, 
the second line is for a job that finishes service but is re- 
jected and returns while the third line is for a job that 
completes a phase of service. 

We are now ready to state our main result: 
Theorem I :  In the central server model described in 

Section 11, assume that all stations satisfy one of the fol- 
lowing: 

i) Have symmetric scheduling disciplines with general 
service requirement distributions that may depend on the 
job class. We call these stations type I. For scheduling 
disciplines in the class we consider the symmetry condi- 
tion is necessary and sufficient if the service requirement 
distributions are different for different job classes or are 
nonexponential. 

ii) Have exponential service requirement distributions 
that do not depend on the job class. Here the scheduling 
discipline is arbitrary in the class of disciplines we con- 
sider. We call these stations type 11. 

Then the equilibrium state probabilities have the fol- 
lowing exact product form solution: 

Pro05 The equilibrium state distribution (19) is 
proved by substituting it into the global balance equa- 
tions. To simplify this task, one can take simpler (and 
more detailed) balance equations that add up to the global 
balance equations. Such sets are the job local balance 
equations [9],  [ 151-[ 181 and the local balance equations 
161, [lo]. The job local balance equations equate the flow 
into a state due to changes at a particular position 1 in a 
station i due to jobs of class (Y to the rate out of that state 
due to the same kind of change. The local balance equa- 
tions are the summation of the job local balance equations 
over all positions in the station. They equate the flow out 
of a state due to jobs of class a! with the rate into that state 
due to the same kind of change. The global balance equa- 
tions (Chapman-Kolmogorov equations) equate the rate 
of flow out of a state with the rate of flow into that state. 
They are the summation of the local balance equations 
over all stations and all job classes. We will use the job 
local balance equations in this proof. 

Again we treat changes at station 1 separately from 
changes elsewhere. The rate out of state x due to the job 
at ( 1 , l )  is given by: 

x ( x )  ' l K 6 l ( ' ,  k l ) f i ( k l ) *  (20) 
The rate into state x due to changes at ( 1, I ) can be writ- 
ten: 

LO otherwise. ADVl 4- M O V l  + REJI (21) 
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where A D V I ,  M O V I ,  and REJl are terms for finishing a 
phase of service, moving into station 1 from some other 
station and finishing service at station 1 but returning to 
it because of a rejection, respectively. Written out in full, 
they are: 

ADVl = Y i N 6 1 ( f 9  k i ) f i ( k , )  " ( A ; ' ( x ) )  (22) 

= blN(kl - $I(', k l  - ' ) g I # : O l /  

while the rate into that state is written: 

ADVJ + MOVJ + REJJ 

where ADVJ, MOVJ, and REJJ are terms for finishing a 
phase of service, moving into stationj from station 1 and 
finishing service at station j but returning to it because of 
a rejection, respectively. Written out in full, they are: 

(33) 

Using the product form solution (19). the equilibrium state 
probabilities that appear in (34)-(36) can be expressed in 
terms of x ( x )  as follows: 

(37) 

q K (  1 ) 
44. .( ~j&l:uJ,l, (4) = - 

fying: ' ~ x  (ojin 1 
Substituting (25)-(27) into (22)-(24) gives after simpli- 

(39) 

r l ~ ( ' l l  + l )  (28) In (38) we have used k + ulr  - U to indicate the pop- 
ulation of the network in state 7'~~j , , , : s (x) .  Substituting 
(37)-(39) into (34)-(36) and simplifying gives: 

ADVl = 41) V l X 4 l ( L  kI)f,(kl)  
t lK(uI / )  

I l lrglr:ol/ kl - 1 )  ___ 
(40) 

rjK (ujni + 1 ) 
MOVI = . ( ~ ) f i ( k l )  

ADVJ = x(x) v j , g ( m ,  k j ) f i ( k j )  r l K ( ' l / )  

C ~ l l ; i ( k )  bjN(kj) (29) rjx ( Ujm ) 
I #  I 

where j # 1. The rate out of state x is given by: 

Y j K + j ( m ,  k j )&(k j )  (32) 
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Now (20) and (31) or (32) and (43) are the same if either: 
i) The scheduling discipline is symmetric, in which 

case by (9): 

and by (4) 

ii) the service time distribution is the same exponential 
for all classes. Then U,/ = 1, vjK = pj and rjK ( uj,) = 1. 
rju( U,/ + 1)  = 0. Now summing (20) and (31) or (32) and 
(43) over I and using (7) and (8) gives the desired equal- 
ities. Note that in reality K does depend on I ,  so the as- 
sumption that the service time distribution is the same for 
all classes is needed. 

Finally, from (31) and (43) we can deduce that the 
expression (19) is indeed a solution under the conditions 

From the product form solution (19) we can obtain the 

Corollary I :  The distributions of occupancies and pop  

given. 0 

distributions for occupancies and populations. 

ulations are given by 

? Ai(ki) (45 1 
where G (  K )  is the normalization constant of theorem 1 
and the functions Pi and A, are defined by: 

Proof: Summing (19) over all possible numbers of 
phases of service left for each job in the network gives 
(44) and summing equation (44) over all permutations of 
jobs in each station then gives (45). 

IV. PERFORMANCE MEASURES 

central server model described in Section 11. 

jobs of class a can be written: 

Here we will derive formulas for the throughput of the 

Theorem 2: The throughput of station j ( j # 1 ) for 

and the throughput of station 1 for jobs of class a is 

where G(K) is the normalization constant of Theorem 1 
and the function H,, is defined by: 

Here we used S( K ) as the set of populations of the net- 
work when the total population of the network is K. 

Proof: The throughput of station j ( j # 1)  for jobs 
of class a can be written: 

In this equation we used the function c defined so that: 

1 i f p  is true c 0 i f p  is false. 
( 5 2 )  4 P )  = 

The right-hand side of (51) is the rate at which jobs of 
class a finish service at stationj (picked out by the i func- 
tions) and are accepted in station 1 summed over all states 
of the network. The expression for the equilibrium state 
probabilities, (19), is independent of the order of the jobs 
in the stations. Substituting (19) into (51) and using this 
fact gives: 

., 

where we have defined: 
r 1 

(53) 
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used Sa, and Si, to indicate that a job of class CY is missing 
from station j and the network. Doing this provides the 
factorplj,,(k - ujU) that appears in (55). Equation (55) 
is the same as a sum over S( K - U,), so we are justified 
in defining a set of functions: 

r 1 

* Ai(ki)  P l j : u ( k )  btu(kl I bju(kj) * ( 5 6 )  

The sum in (55) is then Hju(K - U, ), and this is the claim 
for station j (49). The throughput of station 1 is simply 
the sum of the throughputs of the other stations, and add- 
ing equation (49) over all peripheral stations gives (50). 

0 

V .  ALGORITHM FOR THE COMPUTATION OF 
PERFORMANCE MEASURES 

We can express the functions G and H,, as convolu- 
tions. With this, they can be computed by the convolution 
algorithm. 

ul Array with elements II, V , ( K ,  - k l x )  A , ( k , ) .  
uJ Array with elements n, F K ( k j K )  AJ(k, ) .  
kl, Array with elements k l ,  U, V,(K, - k t K )  A l ( k l ) .  
kJu Array with elements kJa II, Y K ( k J , )  A j ( k J ) .  
b , ,  Array with elements btu w,( K,  - k, , )  II, V, (K, 

bj, Array with elements bJp w,,(kJ,) II, y,(kJ,) 

In what follows, we use * for convolution, + for de- 
convolution, and we take products of arrays as convolu- 
tions. The (array of) normalization constants can be writ- 
ten: 

- k I J  Adkl). 

AJ(k,). 

c=II I U,. ( 5 7 )  

The (array of) mean number of jobs in station i is 
- 
k,, = (G+u,)  * k,,. 

HI, = (G + u l )  * bl,. 

( 5 8 )  

( 5 9 )  

Define the auxiliary array H I ,  by 

Then the (array of) HJe forj # 1 is given by 

Equations (56)-(60) provide an efficient algorithm to 
compute G, E,,, and the HI,. From these values the 
throughputs can be computed using Theorem 2. The mean 
sojourn times can then be obtained using Little's Law. 

VI. COMPLEXITY OF THE ALGORITHM 

convolutions and deconvolutions. Each convolution or 
deconvolution involves C K C  operations if there are K 
jobs in each class. So the time complexity of computing 
the throughputs is O( C2NKc) .  This contrasts with the 
convolution algorithm for classical (state independent and 
nonblocking) networks [23] where the total number of op- 
erations to compute the throughputs is O( NCKC). For the 
mean number of jobs again we have a time complexity of 
O( C z N K c ) .  In case of classical networks the operation 
count for the mean number of jobs is the same. The space 
complexity is given by a fixed number of arrays, and so 
it is o(K'). 

VII. CONCLUSIONS 
We have shown that central server models with state- 

dependent routing and rejection blocking have product 
form equilibrium state probabilities. Using the exact equi- 
librium state distribution found, exact algorithms to com- 
pute performance measures are derived. The algorithms 
are more demanding than their counterparts for classical 
networks (nonblocking networks with state-independent 
routing). One of the most interesting properties of clas- 
sical networks is that the distribution of states of the net- 
work as seen by a job arriving at a station is exactly the 
same as the equilibrium state distribution of the same net- 
work, only with the arriving job deleted. This is known 
as the Arrival Instant Distribution Theorem [24]. In view 
of the noted similarities it would be interesting to know 
whether there is a similar simple relation between the dis- 
tributions at arrival instants at a station and the equilib- 
rium state distribution. A related question is to look for 
relations between the distribution at the instants when a 
job is accepted and the equilibrium state distribution. In 
case of classical networks, the arrival instant distribution 
theorem is the basis for the mean value analysis, MVA 
[24]. It is doubtful that the corresponding arrival instant 
theorem and/or acceptance instant theorem (if they exist) 
for queueing networks with rejection blocking and state 
dependent routing can be used to construct a MVA-like 
algorithm. 
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