
A Formal Protection Model of Security in
Centralized, Parallel, and Distributed
Systems

GLENN S. BENSON, IAN F. AKYILDIZ AND WILLIAM F. APPELBE
Georgia institute of Technology

One way to show that a system is not secure is to demonstrate that a malicious or mistake-prone
user or program can break security by causing the system to reach a nonsecure state. A fundamental
aspect of a security model is a proof that validates that every state reachable from a secure initial
state is secure. A sequential security model assumes that every command that acts as a state transition
executes sequentially, while a concurrent security model assumes that multiple commands execute
concurrently. This paper presents a security model called the Centralized-Parallel-Distributed model
(CPD model) that defines security for logically, or physically centralized, parallel, and distributed
systems. The purpose of the CPD model is to define concurrency conditions that guarantee that a
concurrent system cannot reach a state in which privileges are configured in a nonsecure manner. As
an example, the conditions are used to construct a representation of a distributed system.

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General-
security and protection; C.2.4 [Computer-Communication Networks]: Distributed Systems-
distributed applications, network operating systems; D.1.3 [Programming Techniques]: Concurrent
Programming; D.2.0 [Software Engineering]: General-protection mechanisms; D.4.1 [Operating
Systems]: Process Management-concurrency, scheduling, synchronization; D.4.6 [Operating Sys-
tems]: Security and Protection-access controls; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs-inuariants, specification techniques

General Terms: Design, Security

Additional Key Words and Phrases: Access control, concurrency control, distributed system security,
operating system security, protection model

1. INTRODUCTION

A security model has two components: a security predicate and a model of
computation. A security predicate is a Boolean function that is satisfied by a
state of privileges only if the state is secure. An example security predicate is the
conjunction of the Bell-La Padula m-property, *-property, and ds-property [71,

The work of I. F. Akyildiz was supported in part by the National Computer Security Center under
grant MDA 904-90-C-7030.
Authors’ current addresses: G. S. Benson, Trusted Information Systems, 3060 Washington Road,
(Rt. 97), Glenwood, MD 21738; I. F. Akyildiz and W. F. Appelbe, College of Computing, Georgia
Institute of Technology, Atlanta, GA 30332.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1990 ACM 0734-2071/90/0800-0183 $01.50

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990, Pages 183-213.

184 - G. S. Benson et al.

which describes privileges for accessing information. A model of computation is
a state machine that moves between states by executing commands from a
command set, where each command is a sequence of atomic operations.

This paper presents the Centralized-Parallel-Distributed model (CPD model),
a privilege-based security model whose state is defined in terms of privileges,
where a privilege is either a permission to access data (e.g., an access right, or a
privilege to continue execution, for instance, a synchronization condition). Most
privilege-based models [7, 12, 26, 271, represent a centralized, sequential system;
yet, the CPD model provides concurrency and ensures security for every state
reachable from a secure initial state. If concurrency were not controlled in the
CPD model, then concurrently executing commands could potentially interleave
their operations and reach a nonsecure state. For example, multiple invocations
of a command that trades high-sensitivity-level privileges for low-sensitivity-
level privileges, if not correctly executed, could potentially erroneously yield an
intermediate state that grants both high and low sensitivity-level privileges
simultaneously.

The purpose of the CPD model is to formally guarantee that the problem of
proving security for a concurrent model is reducible to the problem of proving
security for a sequential model, where solutions to the sequential problem are
well known (e.g., [7, 10, 12, 26, 27, 401). A polynomial time test is presented that
is satisfied only if a given concurrent model can be reduced to a sequential model.
A command is called security-preserving (S-PRES) if the command yields a
secure state when given a secure state as input; a command is called sequential-
security-preserving (SS-PRES) if the command yields no nonsecure intermediate
or final state when given a secure initial state as input. Consider, for example, a
command that first yields a nonsecure state and then yields a secure state. In
this case the command is S-PRES, but not SS-PRES. The CPD model reduces
a distributed model to a sequential (SS-PRES) model by proving that if every
command in a given command set satisfies the CPD model reduction conditions
(i.e., nested critical section condition and leastprivilege condition), then concurrent
execution is reducible to sequential execution.

The nested critical section condition stipulates that every command must nest
its critical sections. A critical section is a sequence of operations in a command
that executes sequentially with respect to other interfering commands [8]. In the
CPD model, a critical section’s entry and exit is implemented by a lock, where
the purpose of the lock is to guarantee mutual exclusion. The purpose of the
nested critical section condition is to provide serializability, where the property
of nested critical sections that ensures serializability is two-phase locking.’

Although serializability is a desired attribute in a model, serializability does
not necessarily imply that concurrent model is reducible to a sequential model.
Consider, for example, a simple Generic security model, G model, whose com-
mands are serializable and SS-PRES. The syntax of the model of computation
of the G model provides two operations, a and r, whose semantics are that a
privilege is (a)cquired and (r)eleased, respectively. An example command set of

1 Two-phase locking exists if locks are taken and released in two phases. “In the first phase, locks are
acquired but not released. In the second phase, locks are released but not acquired” 1411.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems * 185

the G model is as follows:

{c,b, x, Y, 2) = al(~)rl(x)al(Y)al(z),

cz(w 4 y, 2) = ~2(~)~2(~)~2(Y)~z(w)~z(~)l.

Command cl accepts four formal parameters, w, x, y, and z, and executes
operations that acquire access to w, release access to x, acquire access to y, and
acquires access to z. Command c2 accepts four parameters and executes five
operations. Consider a state with four resources: (h)ost, (s)ecure printer, (t)ape
drive, and (d)isk drive, and the command invocations ci(t, s, h, cl) and c,(h, s, t,
d) whose operations are instantiated with the actual parameters, respectively, as
follows:2

(i) a~(tb~(sh(hh(d)
(3 r2(h)u2(s)r2(t)u2(h)r2(d).

Further consider an example security predicate that prohibits access to all four
resources simultaneously. Given this security predicate, both of the commands
are SS-PRES if the initial state has no privileges. However, if the commands
are executed concurrently, the following sequence could be executed:

In the sequence,” after the sixth state transition, privileges for all four resources
have been acquired, which is defined by the security predicate as a security
violation. However, after the sequence completes, the final state is the same as
the one produced by command (i) followed by command (ii)-privileges for the
printer and host are acquired, but privileges for the tape and disk are not.

The concurrent history is not secure because there exists a state reachable
from a secure initial state that is not secure. The problem with the command set
is that it does not satisfy the least privilege condition. ‘Subjects should be given
no more privilege than is necessary to enable them to do their jobs. In that way
the damage caused by erroneous or malicious software is limited” [21]. Any
command that acquires new privileges and releases old privileges, in effect, trades
old privileges for new ones. The least privilege condition in the CPD model
stipulates that every transition must release all of its old privileges, before
acquiring any of its new ones. Neither transition in the example above adheres
to this condition.

The scope of this paper concerns demonstrating security for reachable states.
However, there exist aspects of security in privilege-based systems beyond the
scope of this paper. For example, we do not address liveness concerns, which
may arise in a definition of secure auditing, for instance, [48]. Also, we do not
describe transition constraints [21, 30, 371, that is, “constraints that hold for the

’ These sequences are called command histories, and are defined in Section 2.
’ This sequence is called a concurrent history, and is formally defined in Section 2.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

186 * G. S. Benson et al.

Centralized Parallel Distributed

Reference Monitor

Fig. 1. Secure architectures.

relation between secure states, and hence, can be checked only by comparing two
or more states” [30]. An example transition constraint from the Military Message
System model is that “no classification ranking can be downgraded except with
the role of downgrader who has invoked a downgrade operation” [30].

The purpose for providing concurrency is to formally represent a centralized,
a parallel, or a distributed Trusted Computing Base (TCB)-the portion of the
system that maintains the state of privileges. As shown in Figure 1, a centralized
TCB resides on a single processor and may either be sequential or multipro-
grammed. A parallel TCB resides on multiple processors that access a common
clock and storage and communicate via shared memory. A distributed TCB
resides on multiple processors that do not access a common clock or storage and
exchange information via communication lines [42]. The TCB state (i.e., the
collection of privileges) is centralized in the case of a centralized or parallel TCB,
and is distributed in the case of a distributed TCB. Security-relevant facilities in
the TCB execute by concurrently updating the TCB state.

The remainder of this paper is organized as follows. Section 2 defines the CPD
model and proves that the reduction conditions guarantee that a concurrent
command set is reducible to a sequential command set. In other words, Section 2
proves that if every command in a command set both satisfies the reduction
conditions and is SS-PRES, then every state reachable from a secure initial
state is secure. Section 3 evaluates the CPD model with respect to other related
security models. Privilege-based models are compared with others to show that
the CPD model is useful for defining both nondisclosure and integrity for cen-
tralized, parallel, and distributed TCBs. Section 4 gives an example distributed
model that satisfies the reduction conditions. Finally, Section 5 concludes the
paper.

2. CPD MODEL

The CPD model is a general-purpose security model that represents centralized,
parallel, and distributed TCBs, independently of a particular security policy or
environment. This section formally defines the model of computation and a
security predicate.
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems - 187

Table I. Notation

Individuals Sequences

operation set (P.)

Table II. Example Notation

Individuals

Formal a,(w)
Ial(rl(x)l

Actual a,(t)
b(t), rl(s)l

Sequences

a, (w)rl (r)al(y)al (2)
ICI, c21

al(t)r,(sh(hh(d)
Ih, hql

The CPD model is expressed in terms of operations, operation sets, instruc-
tions, instruction sets, commands, command sets, histories, and history sets, as
shown in Table I. The first two rows of Table I list notation for items expressed
in terms of formal parameters, and the latter two rows notation for items
expressed in terms of actual parameters. The first column defines individuals
and the second defines sequences. An operation pn is a parameterized state
transition; a command ck is a sequence of operations; an operation set P, is a set
of operations;4 and a command set C, is a set of commands. An instruction i, is
an operation that has been instantiated with an actual parameter. A history hk
is a sequence of instructions. An instruction set 1, and history set Hj are sets of
instructions and histories, respectively.

For example, consider the G model of Section 1. The first row of the first
column of Table II depicts an operation, with formal parameter w. An instantia-
tion of this operation with actual parameter t is shown in the instruction in the
third row of the first column. An instruction, i,, is normally denoted with the
same subscript as its corresponding operation. The second and fourth rows of
the first column illustrate an operation set and instruction set, respectively. The
first row of the second column denotes a command. When clear from the context,
as an abbreviated notation, a command may be written as ck. The second row of
the second column is an abbreviated notation that represents the following
command set:

lal(w)rl(x)al(y)al(z), rz(w)u2(X)r2(y)a2(w)a2(2)}

\ / \ / v Y

Cl CP

The third row of the second column denotes a history. Although any sequence of
instructions is a history, for clarity, different kinds of histories are denoted with

‘Operation sets and instruction sets are not used in this paper, and are only defined here for
completeness of Table I.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

188 - G. S. Benson et al.

different notations. A command history is the history that corresponds to a
particular command where each instruction is an instantiation of its correspond-
ing operation. A command history is denoted by hk where k is the subscript of
the corresponding command. For example, the third row of the second column
denotes a command history h, . A concurrent history is an interleaving of instruc-
tions from multiple command histories, for example,

Concurrent histories and arbitrary histories are denoted by h, h ‘, h”, and so on.
The fourth row of the second column denotes a history set (denoted by Hi). A
history set, Hi, that contains only command histories is called a command history
set. The notation] ck 1,] C, 1,] hk 1, and] Hk] denote the number of operations in
ck; the number of non-null commands in C,; the number of instructions in hk;
and the number of non-null command histories in Hk, respectively.

The set of all states is denoted by k’, and the undefined state is denoted by 1.
The symbol .&’ denotes the union of ~6’ and 1.

The set of all atomic operations and instructions are denoted by 9 and \k,
respectively, for example, P, C 9 for any P,, and I, G q for any I,. The
deterministic transition function, 7, defines a transition, as follows:

A behavior is a sequence:

where i, is the ath instruction in the behavior, T(i,, T(i,-1, . . . , T(&, MO))) is the
ath state reached by the behavior, and MO is an initial state. Lamport conjectures
that “the behavior of every discrete system, be it hardware or software, can be
formally represented as such a sequence [behavior]” [29]. Since the transition
function is deterministic, a behavior is uniquely determined by a history and an
initial state. For example, the behavior given above is uniquely determined by
the history, h = i, i2i3, and the initial state MO.

The model of computation consists of a nondeterministic front end and a
deterministic state machine, as shown in Figure 2.

Input into the front end is a command history set, and output from the front
end is a single concurrent history. The front end executes by computing concur-
rent (interleaved) histories (formally defined in Definition 1 of Sect. 2.3) from
the input command history set and nondeterministically choosing for output one
of the computed concurrent histories. Subsequently, the concurrent history is
input into the state machine which sequentially executes the transition function
T. The purpose of the front end is to formally define every concurrent history
that may potentially be executed by the state machine, and the purpose of the
state machine is to represent machine execution.
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems * 189

cl = pllp21

Fig. 2. Example two-command model of computation.

For example, the model of computation shown in Figure 2 corresponds to the
following concurrent program.

cobegin
1.1,

0 %
11,

coend

The command history set H, in the example is {i 1,, i2,, iI,). The set of potential
concurrent histories output by the front end for this command history set is as
follows:

The front end nondeterministically chooses one of the three concurrent histories.
If, for example, the front end chooses concurrent history (i) and the initial state
is MO, then the state machine reaches T(&,, MO), T(&,, T(&~, MO)), and
T(&*, Th,, 7(ill, MO))), respectively.

The purpose of a command set is to represent a set of TCB utilities, and the
purpose of a command history is to represent a particular thread of execution
through the TCB. For example, Figure 2 represents two concurrent threads of
execution, where one thread executes an invocation of the TCB utility represented
by the command history hl, and the other thread executes an invocation of the
TCB utility represented by the command history h,.

A primary difference between the CPD model and sequential models is that
sequential models do not provide synchronization. A CPD model instruction i, is
enabled in state AI, if and only if T(i,, M,) # 1. An enabling condition is a Boolean
function that is satisfied by instruction i, and state M, if and only if iO is enabled
in M,. An enabling condition for each CPD model operation is presented in

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

190 * G. S. Benson et al.

Section 2.2. The CPD model front end nondeterministically chooses a concurrent
history only if the state machine executes enabled instructions.

For example, suppose, in the command history set described above, i2, is not
enabled in T(&,, MO), that is, 7(i2,, 7(il,, MO)) = 1. In this case, concurrent history
(i) cannot be chosen by the front end. The front end does not represent any
implementable system because it predicts the execution of the state machine a
priori. However, by definition, the front end describes all potential execution
histories of an implemented system, provided correct implementation of syn-
chronization, that is, the implemented system does not execute nonenabled
instructions.

2.1 Syntactic Definition

The CPD model consists of:

(i) A set of tokens: Every token has a type. Every type has a class where there
are a bounded number of classes. However, there may be an unbounded
number of tokens of a given type. The type of token tok is denoted by type
(tok); and the class of token tok is denoted by class(tok). The predefined
class lock is used for synchronization. A token whose type is of class lock is
denoted by 1,. Another predefined class is index, which is used for indexing
into the state. A token whose type is of class index may be denoted by row,
col, or x,. Classes that are not predefined have semantics specific to the
represented system. For example, an instantiation-specific class that is
ignored by the security predicate is described in [lo].

(ii) A finite set of commands: A command is of the form:

command ck(tokI :typetok,, . . . , tok,:type,,k,) =
Pl
P2
. . .

PI%

Here, ch is a name and n is a constant. Each formal parameter tokj is a token
of type type,&,. Each pa for a = 1, . . . ,] ck] is one of the following op-
erations, where the indices of pa are sequentially ordered natural numbers
beginning with 1.

enter(tok,row,col)
delete(tok,row,col)
present(tok,row,col)
absent(tok,row,col)

A command is a sequence of operations written as ck = p,, . . . , pICkI which
means command ch is the operation sequence p,, . . . , pl ck,. A state M, is either
the undefined state I or a two-dimensional matrix indexed by tokens of class
index. The operations enter and delete put and remove a token into and from the
M,[row,col] coordinate of the state matrix, respectively. The operations present
and absent determine the existence and nonexistence of tok in the M,[row,col]
coordinate of the state matrix, respectively. The coordinate (a row and column
of the state) referenced in operation pa or instruction i, is denoted by coord (pa)
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems - 191

Table III. Operation and Instruction Components

p. = enter(tok, row, col) 1, = enter(r,, x2, n3)
coord(p.) = [row, col] coord(i,) = [x1, x2]

op(p,J = enter op(i.) = enter
token = tok token(i,,) = r,

or coord (i,), respectively. The kind of operation or instruction (enter, delete,
present, or absent), of pa or i, is denoted by op(pll) and op(t), respectively. The
token of an operation or instruction is denoted by token. Example applications
of the component definitions are presented in Table III. Consider, for example a
system with two hosts, one shared disk and two access rights (read and write).
Only one host may access the disk at a time. A possible model of the system
contains five types: host, disk, read-t, write-t, and mutex-t of classes, index,
index, right, right, and lock, respectively (the class right is specific to this
representation). Assume that two host tokens and one token from each of the
other types are defined. The command set may contain a command ck that
represents a TCB utility that ensures that only one host has disk access at a
time. The command ck provides mutual exclusion by executing the enter and
delete operations on the lock 1, of type mutex-t.

command ck(row:host, col:disk, r,:read-t, r,:write-t) =
enter(&) row,col)

absent(r,, row,col)
enter(r,, row,col)
enter(r*, row,col)
delete(rl, row,col)
delete(r*, row,col)

delete(&) row,col)

The first and last operations in ck reference a lock used to provide mutual
exclusion for the remainder of the command’s operation sequence (the formal
semantics of locks is presented in Section 2.2, below). The second operation
checks that rl is not in the [row,col] coordinate of the state matrix, and the
remaining operations first enter and then delete r, and r2 in the state matrix.

2.2 Semantic Definition

For a given instruction i,, the form of T is given below:

1

I if (M, = I)
di,, M,) = t(i,, Ml else if (enabled(i,, M))

I otherwise

where enabled is a Boolean function (enabled and t are to be defined subse-
quently). In other words, the semantics of T is that if an operation is enabled in
the current state, then 7 returns the result of a state transition t; otherwise, 7
returns the error symbol 1. Note that the semantics of the instructions ensures
that the only state reachable from I is itself.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

192 * G. S. Benson et al.

The CPD model operations are as follows:

(i) enter(tok,row,col)

7(enter(tok,row,col), Mx) =

(t(enter(tok,row,col), M,)
else if (class(tok) # lock V tok @ M,[row,col])

I otherwise

where

V row’,col’ t(enter(tok,row,col), M,)[row’,col’] =

i

M,[row’,col’] if ((row’ # row) V (co]’ # col))
M,[row’,col’] U (tok] otherwise

This operation puts tok in M,[row,col]. If tok is a lock, then the
operation blocks until tok is not in M,[row,col]. This implies
t(enter(tok,row,col), M,) # M, if M, # I and class(tok) = lock.

(ii) delete(tok,row,col)

T(delete(tok,row,col), MI) =

I if M,=l
t (delete(tok,row,col), M,)

else if (class(tok) # lock V tok E M,[row,col])
I otherwise

where

V row’,col’ t(delete(tok,row,col), M,.)[row’,col’] =

M,[row’,col’] if ((row’ # row) V (col’ # Cal))

M,[row’,col’] - (tok] otherwise

This operation removes tok from M,[row,col]. If tok is a lock, then
the operation blocks until tok is in M,[row,col]. This implies
t(delete(tok, row,col), M,) # M, if M, # I and class(tok) = lock.

(iii) present(tok,row,col)
This operation blocks if and only if tok B M, [row,col].

T(present(tok,row,col), MJ =

i

..L if M,=l
M, else if tok E M,[row,col]
I otherwise

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems - 193

(iv) absent(tok,row,col)
This operation blocks if and only if tok E M,[row,col].

T(absent(tok,row,col), M,) =

I if M,=l
M, else if tok 4 M,[row,col]
I otherwise

The semantics of an example command is given below.

command ~~(~~:host, l,:disk-lock, L,:request-lock, I,:buff-lock) =
delete(1,, x1, 4)
enter(x,, 6, 7)
enter(l,, 6, x,)
absent(r,, 3, 4)
delete(h, 3, 4)

Command ck accepts four formal parameters (x,, I,, &, &), of types host,
disk-lock, request-lock, and buff-lock, respectively. The class of the host
type is index, and the classes of disk-lock, request-lock, and buff-lock are
lock. The token rl is a constant whose class is right. The command waits until 1,
may be deleted from Mx[xl, 41 (Mx is the current state and M,,, is the resultant
state after a instructions have been executed). Next, index X, is entered into
M,,, [6, 71. The command then waits until l2 may be entered into M,+,[6, x1].
Next, the command waits until rl is not an element of M,+3[3, 41. The command
then waits until & can be deleted from Mxfil [3, 41. Assuming that the command
runs to completion, during which no concurrent commands are executing, the
resultant matrix has three, four, or five changes with respect to the original
matrix, depending on whether or not x1 and rl are in the original matrix.

As the example illustrates, the classes of tokens, index and lock correspond to
indices into the state matrix and synchronization locks, respectively. Other
representation-specific classes, such as right, could potentially represent privi-
leges, degrees of trust, inheritance, or other TCB-specific semantics. The next
section shows how distinct command histories interleave their instruction to
provide concurrency and how lock tokens are used for synchronization.

2.3 Scheduler

Concurrency is defined as an interleaving of the instructions in distinct com-
mands histories. In a sequential environment, each command history is a state
transition. In a parallel or distributed system, however, command histories are
not atomic, so each interleaving of command instructions is a sequence of state
transitions.

Execution of history h is given by the scheduler 7, which sequentially applies
the instructions in the history to the state.

F(h, M,) = M, if Ih(=0
Y(rest(h), T(first(h), Mx)) otherwise

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

194 * G. S. Benson et al.

where if 1 h 1 > 0, the first instruction in h is denoted by first(h), and the
remainder of h is denoted by rest(h), and if 1 h 1 = 0, then first(h) is undefined
and rest(h) = h. For example, for hi = ili2i3, first(h,) = il and rest(hj) = ipi3.

Definition 1. Multiple command histories can be executed concurrently by
interleaving the instructions in the command histories. The set of all possible
concurrent histories generated from a command history set H, is an interleaved
set (iset).

iset = (h 1 is-iset(H,, h)]

where

true if 1 h 1 = 0 A) H,) = 0

is-iset(Hj, h) =
true if 3hk E Hj first(hk) = first(h) A

is-iset(((Hj - (hk]) U Irest(hk rest(h))
false otherwise

In other words, the iset of a command set is a concurrent history set. Iset is
defined recursively, where, for each h in iset, first(h) is equal to the first
instruction in some element hk of Hj. An interleaving contains all the instructions
in the histories and preserves the relative ordering of instructions. For example,
let H, = (ill&+, i12i2,], then

iset = Iil,i2,il,i22, &,il,&,&,, G,il,i&, G,il,&,&,, i&,&2,, i&il,i2, I.

Definition 2. The schedule set (scheduleset) of a command set and an initial
state is the largest subset of the iset in which I is not reached.

scheduleset(Hj, 1M,) = (h E iset 1 F(h, 44,) # I).

For example, if i,, is not enabled in 7(il,, M,), then

scheduleset(Hi,, AI,) = {il,i2,il,i2,, il,il,i2,i22, i,,il,i2,i2,, il,i2,il,i2,}.

While the iset defines all possible concurrent histories, the scheduleset defines
only those concurrent histories that may be chosen by the front end. In other
words, the set difference between the iset and the scheduleset is the set of
histories that execute blocked instructions.

Serializable histories are defined next. The serializability definition is in terms
of the permutation (perm) of a command history set.

Definition 3. The set of permutations of a command history set Hj is called a
perm.

perm(Hj) = (h 1 is-perm(h, Hj)]

where

is-perm(h, Hj)

i

true if 1 h I = 0 A I Hj I = 0
= true else if 3hk, h’ h = hkh’ A hk E Hj A is-perm(h’, Hj - (hk])

false otherwise
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems * 195

where hkhl denotes the history hl appended onto the end of history hk. For
example, let Hj = (h,, h2, hs], then

permW,i,) = lhlh2h3, h&b, h2hlh3, &h&l, hshlh2, h3h2hll.

Definition 4. A command history set Hj is serializable if and only if every
scheduleset history h that does not reach I yields the same final state as if the
commands were executed in some serial order.

serializable(H;) iff
VM, E J&’ Vh E scheduleset(Hj, M,) 3h’ E perm(Hj)
Y(h, M,) = Y(h’, Mx)

For each M, in which scheduleset(Hj, M,) = 0, serializable(Hj) is vacuously
satisfied. Otherwise, for each element of scheduleset(H,, M,), there must exist
some sequential schedule of commands that returns the same final state.

The serializability conditions are satisfied whenever all critical sections are
nested and all instructions in distinct command histories that reference common
coordinates are in shared critical sections. A critical section is a mutually exclusive
sequence of instructions. Distinct instructions that reference common coordi-
nates are called interfering instructions, and distinct histories that contain
interfering instructions are called interfering histories.

Definitions 5-7 reference histories and instructions, but may also be applied
to commands and operations. As ancillary functions last and start define the last
instruction, and all but the last instruction in a history, respectively. Both last
and start are undefined for the null history and are defined in terms of reuerse,
the instructions of a history in reverse order.

where

last(h) = first(reverse(h))
start(h) = reverse(rest(reverse(h)))

reverse(h) =
h if Ihl =0
reverse(rest(h))first(h) otherwise

The ancillary function get-lock extracts all the instructions from a history that
reference locks.

get-lock(h) =
i

h if IhJ =0
first(h)glock(rest(h)) else if class(first(h)) = lock
get-lock(rest(h)) otherwise

Definition 5. A history h is nested if and only if all critical sections are nested.

nest(h) = true if is-nest(get-lock)(h))
false otherwise

where

true if (coord(first(h)) = coord(last(h))) A

is-nest(h) =
(op(first(h)) = enter A op(last(h)) = delete) A
is-nest(rest(start(h)))

false otherwise
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

196 - G. S. Benson et al.

Definition 6. The critical sections (crit) of an instruction in a history is a set.
Each element of crit is a locked coordinate.

crit(h, i,) = is-crit(h, i,, 0)

is-crit(h, i,, S) =

0 if Ih(=0
S else if first(h) = iQ A

class(first(h)) # lock
S U {coord(first(h))) else if first(h) = i, A

class(first(h)) = lock A
op(first(h)) = enter

is-crit(rest(h), iGI, S) else if class(first(h)) # lock
is-crit(rest(h), i,, S U {coord(first(h))J) else if op(first(h)) = enter
is-crit(rest(h), i,, S - {coord(first(h)))) else if op(first(h)) = delete

For example, consider the history h, given in the following, with critical sections
marked by the braces.

h = ili2i3i3i5
-i-i

Here,

crit(h, iI) = crit(h, i2) = crit(h, is) =]coord(i,))
crit(h, is) = crit(h, i4) = (coord(il), coord(&){

Definition 7. A command history set has proper critical sections (PCS) if every
pair of interfering instructions from distinct command histories have a common
critical section.

true if nest(H,) A Vhk, hL E H, h, # hi =$

pCS(Hj) =
V(i,, ib) E interfere(hk, hl)

((crit(hk, i,) fl crit(hl, &)) # 0)
false otherwise

where

interfere(h, h’) = {(ia, ib) 1 ia E in(h) A ih E in(h’) A coord(i,) = coord(&))

and

in(h) =
0 if (hl =0
in(rest(h)) U jfirst(h)) otherwise

Nested critical sections provide dynamic two-phase locking: “Lock each entity
accessed by the transaction immediately before the corresponding action; release
all locks immediately following the last step of the transaction” [41]. The theorem
that dynamic two-phase locking ensures serializability is given by Papadimitriou
in [41], and is utilized in our model.

THEOREM 1. If a command history set Hj is PCS, then the command history set
is serializable.

PCS (Hj) - serializable(Hj).

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems - 197

A polynomial time validation algorithm that tests if the conditions of Theo-
rem 1 are satisfied is straightforward and, for brevity, its details are omitted here.

In general, the number of possible states that result from interleaved executions
is factorial in the number of operations in a given set of commands. The
1 iset 1 is the upper bound of the number of different schedules because
iset is all possible interleavings of the commands. Any algorithm that verifies
security by checking every schedule must, as an upper bound, check 1 iset 1
different schedules.

Definition 8. The size(Hj) is the total number of operations in the commands
in Hj.

size(H,) gf C I hk I
h@‘,

The (iset 1 is given by the following formula:”

I iSSt(Hj) I =
(SiZe(Hj))!

rI h@I,(I hk I!) .

Since the formula is exponential in size(Cj), in many cases it may not be practical
to validate security by enumerating every element of iset. The formula for size(&)
is analogous.

Since a polynomial time algorithm exists that ensures serializability, the
security of results of concurrent execution for two-phase loacking can be verified
in polynomial time. If we assume security for sequential execution is ensured,
security for the results of concurrent execution is ensured. Section 2.4 presents
a polynomial time algorithm for demonstrating security for intermediate states
of concurrent execution.

2.4 Principle of Least Privileges

The definition of serializability (Definition 4) does not distinguish between
S-PRES commands and SS-PRES commands because serializability considers
only the final state.

The security predicate sp is a function that maps each state into a Boolean
value:

sp 14 --, Boolean.

The purpose of a security predicate is to formalize a security policy. The intuition
is sp(M,) is satisfied if and only if M, is “secure” according to some given security
policy.

Not every policy defined in terms of states is a security policy. For example,
every reasonable security policy describes a state with no privileges as secure.
Below, three sp-assumptions are defined that restrict arbitrary security policies
by restricting the definition of allowable sp functions. The sp-assumptions assume

’ Consider size(H,) balls numbered between 1 and size(H,) inclusive, and 1 H, 1 boxes, where boxk
holds hk balls. The formula (multinomial [15]) is the number of ways to put the balls in the boxes.
Each configuration of balls in boxes corresponds to a member of iset. For example, suppose ball 1
and ball 3 are in box 5, and ball 2 is in box 6. This configuration corresponds to an iset where the
first three instructions are p15, p16, ~2~ such that pa, is the ath instruction in ck.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

198 - G. S. Benson et al.

that the initial state, M,, is empty, that is M[row,col] = 0 for each row,col, and
sp(M,,). Sp-assumption 1 is defined in terms of Definitions 9, 10, 11, and 12,
given below.

Definition 9. The initial sequence (initseq) of a history h is the history set that
consists of all subsequences of instructions beginning with the first instruction
in the history.

where

initseq(h) = {h’] is-initseq(h’, h)J

true if (h’(=O

is-initseq(h ‘, h) = true else if ((first(h’) = first(h)) A
is-initseq(rest(h’), rest(h)))

false otherwise

For example,

initseq(h) is the set:6

h = iliz&

(null, iI, iliz, ili2i3).

As abbreviated notations, the initiset and initperm combine iset and perm with
initseq, respectively.

Definition 10. The initial list (initiset) and initial perm (initperm) of a com-
mand history set are the respective sets of every initial sequence of an iset and
perm, respectively.

initiset(Hj) = {h’] 3h E iset h’ E initseq(h)j
initperm(H,) = (h’] 3h E perm(H,)h’ E initseq(h)]

The set of reachable states is the set of states that can be reached through
some interleaved execution.

Definition. 11. The set of reachable states from M, is every state reachable by
an initiset.

reachable(Hj, MX) = (MY] 3h E initiset(Hj)Y(h, M,) = MYI.

A token is called a privilege if the token is not a lock, for example, tok is a
privilege if class(tok) # lock. A state My is a privileged subset of a state M,,
denoted by My E M,, if, the set of privileges in each coordinate of M,, is a subset
of its corresponding coordinate in M,. I is in the privileged subset of every state.

My c M, iff
M,=IV
Vrow,col,tok class(tok) # lock A tok E M,[row,col] + tok E M,[row,col].

For example, consider states M, and M, presented in Table IV. From the
definition of privileged subset, My c M,, but M, g M,,.

61hl =O=+h=null.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems * 199

Table IV. Notation

MS MY

col, col, col, col,

row, lh, rl, r2t 0 row h t 1121

row* b-31 Ir4t row2 II,) {r,)

Definition 12. The privsub of M, is the set of all privileged subsets of M,.

privsub(M,) = (My (My c M,].

In the following, three sp-assumptions are presented which restrict the class
of possible functions that map &’ to (true, false).

sp-assumption 1. Every reachable subset of a reachable state is secure.

VM,, My E reachable(Hj, MO) sp(M,) A My c M, j sp(M,).

sp-assumption 2. The error state is secure.

sp(l) = true.

sp-assumption 3. The security predicate ignores locks.

VM,, tok,row,col sp(M,) A class(tok) = lock +J sp(enter(tok,row,col)).

Sp-assumption 1 formalizes the statement that loss of privileges should not
imply less security. For example, if a user looses access to a file, then the result
state should not be less secure than the initial state.

Sp-assumption 2 defines the error state as secure. Since the error state cannot
be reached without violating the instruction definitions (the error state can only
be reached by executing a blocked instruction), sp-assumption 2 does not con-
strain any reasonable security policy.

Sp-assumption 3 ensures that locks and access privileges cannot be confused
by the security predicate.

Definition 13 represents a secure command history set.

Definition 13. A command history set Hj is secure (security) if every state
reachable by the command history set from a secure initial state M, is secure.

security(Hj) iff VM, E reachable(H,, MO) sp(M,).

Definitions 14-16 formally define the principle of least privileges,

Definition 14. The begin and end of a history h are the instruction sequences
up to the first enter instruction that does not reference a lock and the remaining
instructions, respectively.

Vh 3h’, h” h = h’h” A is-begin A is-end(h”)

such that

h’ = begin(h) and h” = end(h)
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

200 * G. S. Benson et al.

where

isbegin

true if lh’l = 0
true =

i

else if (op(first(h ‘)) # enter V class(first(h ‘)) = lock) A
is-begin(rest(h’))

false otherwise

and

is-end(h “)

I
true if lh”(= 0

=-

1
true else if op(first(h”)) = enter A class(first(h”)) # lock
false otherwise

For example, let h = enter(l,, 1, 2)delete(r,, 1, 2)enter(r2, 1, 2). In this example,

begin(h) = enter(Z,, 1, 2)delete(rl, 1, 2)
end(h) = enter(ra, 1, 2)

Definition 15. A command history h, is least privileged (leapriv) if all delete
instructions that do not reference locks precede all enter instructions that do not
reference locks.

leapriv(hk) = is-leapriv(end(hk))

is-leapriv(h ‘)

true if jh’l =0
true = else if l(op(first(h’)) = delete A class(first(h’)) # lock) A

is-leapriv(rest(h’))
false otherwise

Definition 16. A command history set is a least privileged set (leaprivset) if
every command history is least privileged.

leaprivset(H;) iff Vhk E Hj leapriv(hk).

Definition 16 is the formal definition of a least privileged command set. The
conditions of Section 2.3 (Definition 7) when combined with Definition 16 provide
security for all reachable states, provided all commands are ss-pres, defined as
follows.

Definition 17. A history set is ss-pres if every state reachable from the secure
initial state via sequential execution is secure.

ss-press iff Vh E initperm(Hj) sp(h, MO).

2.5 Theorem for Security in Centralized, Parallel, and Distributed Systems

This section presents and proves Theorem 2, a general-purpose security theorem
for centralized, parallel, and distributed systems.
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems 201

The proof strategy is to show that each reachable state is either I or a subset
of some state reachable through sequential execution. Then, security is estab-
lished by applying the sp-assumptions.

Definition 18. The reachable sequential set (reach-seq) is the set of final states
reachable through sequential execution.

reach-seq(Hj, M,) = {MYI 3H, C H, 3h E perm(H,)M, = .F(h, M,)}.

For example,

reach-seq((h, hl, M,)
= WI,, Y(h,, n/i,), .B(hz, Mx), Y(h,hp, Mx), Y(hA, &)I.

Definition 19. The sub-reach-seq is the set of states that are reachable subsets
of reachable sequential states.

sub-reach-seq(Hj, M,) = {I) U is-sub-reach-seq(Hj, M,)

where

is-sub-reach-seq(Hj, n/i,)
= (MY E reachable(Hj, M,) 1 3M, E reach-seq(Hj, M,)M, E priv-sub(M

For example, sub-reach-seq((hl, h2), M,) is

MY E reachable(Hj, M,)) MY = I V M, E U
M,Ereach-seq(lh,,h,l,M,)

Definition 20. A command history set is ss-sub if every intermediate state
reached through sequential execution is a subset of some final state reached
through sequential execution.

ss-sub(H,, M,)

i

true
=

if Vh E init-perm(Hj)Y(h, M,) E sub-reach-seq(Hj, M,)
false otherwise

LEMMA 1. If M, c MY, then for any history h, Y(h, Ml) c Y(h, My).

PROOF. If 1 h 1 = 0, then Lemma 1 is obvious. Otherwise, assume, by induction,
Lemma 1 for all but the last instruction, i, ,, , of h. By considering each possible
kind of operation, that is, enter, delete, present, and absent, it is easy to see that
Lemma 1 is satisfied after i,, executes. q

Definition 21. The not subset (not-sub) of a command history set is the set of
interleaved histories that reach a state that is not a subset of a state reachable
through sequential execution.

not-sub(Hj, M,)
= {hEiset(Hj,M,) 1 !lh’Einitseq(h)Y(h’,M,)@sub-reach-seq(Hj,M,)).

As an ancillary function, Lemma 2 references incomplete, the number of command
histories that have not completed execution.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

202 * G. S. Benson et al.

Definition 22. Incomplete denotes the number of command histories that have
not yet completed execution.

incomplete(Hj, h) = 1 Hj) - comp(Hj, h)

comdff,, h)

0 if IhJ=O

=
l+comp(Hj-hh,rest(h)) elseif 3hhEH, first(h,)=first(h) A) h,) =1
comp(((H,- hk) U irest(h , rest(h)) elseif 3h,EH, first(hk) = first(h) A 1 hk 1 > 1
0 otherwise

For example, let Hj = (h,, hp, h3), where h, = i,,, h, = i,,iz2, and h, = il,i2,i3,. Let
h be defined as follows:

h = i,,i,,i,,i,,.

Here, incomplete(Hj, h) = 2 because h, has completed execution, but h, has not
yet executed ip, and h, has not yet executed iaa and iS3.

LEMMA 2. The nested critical section condition and the least privilege condition
ensure that the set of reachable states that are not subsets of states reachable
through sequential executions is the empty set.

VA4, E A’pcs(Hj) A leaprio * 1 not-sub(Hj, h/i,) 1 = 0.

PROOF. Suppose not. Let h E not-sub(Hj, M,). Let h’ be the shortest initial
sequence of h that yields a state that is not a privileged subset of a state reached
through sequential execution. In other words:

(i) h’ E initseq(h)
(ii) F(h’, M,) $ sub-reach-seq(Hj, MX)

(iii) Vh” E initseq(h’)Y(h”, M,) 4 sub-reach-seq(Hj, MX) + h” = h’

Let ii, = last(h’), and hk E H, be the history that contains ii,. Let i, = first(hk)
and i, = last(hk). Let h” be the sequence of instructions in h between i, and ib
inclusive, and hrv be the sequence in h after ii, and up to and including ic, as
shown in the following.

h= i, . . . i, . . . ib . . . i, . . . ilh,

-,+ w,i

h “’ h”

Since ib is at the end of the shortest initial sequence that yields a nonprivileged
subset state, op(&) = enter and class(&) # lock. The remainder of the proof has
two cases, depending on the form of hk.

Case I. In hk, at least one instruction enters a lock after ib.

In other words, in hV’, shown below,

h, = . . . i, . . .
--

hY h “I

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems - 203

there exists at least one enter lock instruction. Thus, from the definition of nest
(Definition 5), no delete lock instruction precedes ib, that is, in h”. Thus, from
the definition of nest, there exists histories, h”” E iset(and h”“’ E
initseq(h “I’) such that instructions of hk are not interleaved before ib in h “‘I, and
h ““I yields the same final state as h ‘. Formally,

(i) h”” E iset
(ii) h “I” E initseq(h “‘I)

(iii) Y(h”“‘, Mx) = 9-(h’, Mx)
(iv) 3 h IXh “‘1’ = htxh “ib

From Lemma 1, if Y(hIX, M,) E sub-reach-seq(Hj, M,), then Y(hIXhk, M,)
E sub-reach-seq(Hj, Mx). However, this is a contradiction because F(htXhk,
M,) = Y(h’, M,). As a result, assume F(hrX, n/l,) @ sub-reach-seq(Hj, M,).
Note that hIx has no instructions from h,. Thus, 1 not-sub(Hj - (hh), M,) 1 # 0.
So, by induction on 1 Hj 1, it can be shown that Case I is proved.

Case II. In hk, no instruction enters a lock after i,.

From the definition of nest, there exists a history hX such that

(i) hX E iset
(ii) Y(hX, M,) = Y(h) M,)

(iii) Jhx’hX = h’hV’hX’

If F(h ‘h “‘, M,) # I, then from the definition of leapriv, (hh has no instruction
after ib that deletes a token that is not a lock),

Y(h’h”‘, Mx) @ sub-reach-seq(Hj, M,).

In other words, after hk completes, the resultant state is not a subset of a state
reached through sequential execution. The remainder of the proof is by induction
on incomplete(Hj, h).

If Y(h’h “‘I, M,) = I, then some present or absent instruction executes after
ib, when the present or absent instruction is not enabled. However, it can be
shown that such an instruction is unnecessary. 0

THEOREM 2. If every history in a command history set satisfies the proper
critical section, the least privilege, and the ss-pres condition, then every state
reachable from the secure initial state is secure.

pcs(H,) A leapriv(Hj) A ss-pres(H,) =+ security(Hj).

PROOF. Suppose not for h E initiset(H,). If Y(h, MO) = I, then from
sp-assumption 2, there is a contradiction and, as a result, Theorem 2 is
proved. Otherwise, assume Y(h, MO) # 1. From Lemma 2, there exists an
h’ E initperm(H,) such that .F(h, MO) E Y(h’, MO). From the definition
of ss-pres, sp(Y(h ‘, MO)). Thus, from sp-assumption 1, sp-assumption 3,
and ss-pres, sp(Y(h, MO)). 0

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

204 * G. S. Benson et al.

3. EVALUATION

The purpose of a security model is to bridge the semantic gap between a security
policy and a specification, as shown in Figure 3 (this section considers only the
formal development path of system definition [21]). A policy is informal, while a
specification is formal. A policy reflects administrative decisions, while a speci-
fication reflects the behavior of an implementation. Furthermore, a policy does
not define a system state. However, a specification defines execution on an
abstract model of computation and is expressed in terms of states and state
transitions. Finally, a policy is architecture-independent, while a specification
defines a particular implementation. For example, the military security policy
[2] does not define the number of nodes in a network, while a specification of a
particular system that enforces the military security policy may define this
characteristic.

A security model has characteristics of both policies and specifications.
First, a model is formal. It would otherwise be difficult, if not impossible [39],
to verify a specification with respect to a model. Second, a model defines states.
Otherwise, a model would not reflect the discrete nature of computing resources.
Third, a model is architecture-independent. Otherwise, a model would be overly
specific.

This section evaluates the CPD model by presenting a taxonomy of security
models (Sect. 3.1) and a comparison of the CPD model with other related
security models (Sect. 3.2).

3.1 Security Model Taxonomy

The taxonomy describes different types of security problems and their corre-
sponding models. The purpose of many different kinds of system models, such
as security models, deadlock models, and fault-tolerance models, is to analyze
and prove predicates. A state machine model’s predicate divides states into
“good” states (e.g., secure states, deadlock-free states, k-resources-available
states, and “bad” states, e.g., nonsecure states, deadlocked states, not-k-resources-
available states). The purpose of a state machine model is either to prove a safety
property, that is, that “something (presumably bad) will not happen” [29], a
liueness property, that “something (presumably good) will eventually happen”
[29], or some combination of safety and liveness properties.

The first division of the security model taxonomy divides security models
according to safety and liveness.7 The safety category contains all security
models that define safety properties but not liveness properties, and the liveness
category contains security models that define a combination of safety and
liveness properties.

The security policies that can be expressed by safety models are nondisclosure
and integrity policies:

-Nondisclosure. “The assets of a computing system are accessible only by
authorized parties” [431.

7 Security model taxonomies are controversial. For example, at the highest layer, other taxonomies
divide security models into the classes: nondisclosure, integrity, and denial of seruice.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems - 205

Security policy Security model Specification

Formal No
State definition No

Architecture definition No

Yes
Yes
No

Yes
Yes
Yes

Fig. 3. Policy-specification semantic gap.

-Integrity. “Assets can be modified only by authorized parties” [43]. Assets may
only be modified in an authorized manner.

These are safety policies because they both define security for systems that
prohibit a user or program from acquiring unauthorized access to an item. The
security policies that can be expressed by liveness models are nondenial of service
policies.

-Nondenial of Service. “Assets are available to authorized parties. An authorized
party should not be prevented from accessing those objects to which he or she
or it has legitimate access” [43].

Nondenial of service is a liveness policy because it defines security for systems
that assure that an authorized user or program will eventually obtain access to a
desired item. The CPD model is a safety model and, as a result, the taxonomy of
liveness models is outside the scope of this paper.

The safety category is divided into privilege-based models and information-
flow models. The distinction between the two classes is that the state in a
privilege-based model is defined solely in terms of privileges, while the state in
an information-based model includes the values of information storage units.

Privilege-based models include access control models (e.g., [7, 261) and other
models that define both access control and synchronization (e.g., the CPD model
and [6]). In a privilege-based model, access rights, such as read and write, are
considered privileges to access information; and synchronization primitives, such
as locks, are considered “privileges” to continue execution. Privilege-based
models have been used to express nondisclosure [3, 4, 7, 9, 12, 401 and integrity
[6, 11, 31, 331.

In an information flow model, “information is transmitted along an object
when variety in the events engaged by a source user can be conveyed to a
destination user as a result of their interaction with the object” [19]. Here,
“interaction with an object” changes the object’s value (e.g., the value of a
collections of bits, a file, or an encrypted message). The taxonomy divides
information flow models into two categories: noninterference and deducibility.
A noninterference model (e.g., [23, 25, 35, 36, 44, 451) provides information flow
restrictions that may potentially prohibit one user from knowing that another
user is on the system. A deducibility model (e.g., [17,501) may potentially prohibit
one user from deducing “anything about the sequence of inputs made by a second
user” [36]. Determining the difference between these categories is an open
research problem. Currently, the difference depends upon the precise definition
of interference, and the presence of determinism in the model of computation.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

206 - G. S. Benson et al.

3.2 Security Model Comparison

This section evaluates the CPD model in terms of the three evaluation metrics.
The first metric, distribution (Sect. 3.2.1) describes a model’s ability to represent
security in a distributed system. The second metric (Sect. 3.2.2) describes a
model’s ability to accurately represent a design specification. The third metric,
policy (Sect. 3.2.3) describes a model’s flexibility to represent different types of
security policies.

3.2.1 Distribution. Historically, most secure systems (e.g., [l, 16, 20, 46, 471)
implement a centralized or possibly a parallel TCB, and security models for these
systems (e.g., [7, 111) typically prohibit concurrency. Some new systems (e.g.,
[13, 181) however, are currently being designed with distributed TCBs. Currently,
there exist many noninterference models (e.g., [22, 36, 44, 45]), but only a few
privilege-based models (e.g., CPD model and [lo, 401) that define security for
distributed systems. No privilege-based model, however, other than the CPD
model, provides concurrency yet guarantees that every state reachable from a
secure initial state is secure.

Since the CPD model provides concurrency and references a global state, it is
relatively easy to see that it can represent a centralized TCB. The CPD model
may also represent a parallel or distributed TCB because the CPD model accounts
for concurrency (e.g., Sect. 4 presents a representation of a distributed system
with a shared printer resource). As a result, the CPD model can be used to
represent all three types of architectures.

Five aspects of the CPD model that are used to define distribution may require
further motivation.

(i) The CPD model prohibits feedback from affecting the input command set.
(ii) The CPD model defines sequential instruction execution, but not sequential

history execution.
(iii) Some behaviors defined secure in the CPD model could potentially deadlock.
(iv) The CPD model does not contain the operations create or destroy.
(v) For some TCBs, sp-assumption 1 appears too restrictive.

In some models [36,44] a user can query the state and use the result of the query
to define the next input. The CPD model prohibits this type of feedback because
the entire command set is input into it at initialization time. The input command
set is defined in the CPD model as a free variable, which implies that any input
that could potentially arise through feedback is a possible interpretation of the
free variable.

Another aspect is the apparent lack of sequencing between commands. In some
situations, a user may wish to designate that command history, hk, execute before
a second designated command history, hl. In this case, explicit synchronization
is required in the definitions of the respective commands. For example, the
respective commands may be defined such that the ninth operation in hl blocks
until the third operation in hk executes. “The result of this policy [for command
ordering] is that the desired policy is hidden within the program [commands],
rather than being stated as an explicit rule that the system can then enforce”
1141.
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990

Security in Centralized, Parallel, and Distributed Systems 207

Security Models

Safety/ YLivenesr

/\
Privilege-Based Information-Flow Nondenial of Service

Noninterfeqence Deducibility

Fig. 4. Security model taxonomy.

The third aspect is deadlocks. Security and deadlock avoidance are two differ-
ent safety properties, where the set of secure deadlock-free behaviors is the set
of all behaviors that satisfy both a CPD model security predicate and a deadlock-
avoidance predicate. As a result, security and deadlock avoidance can be treated
separately, where the CPD model neither helps nor hinders identifying deadlocks
and a given deadlock-avoidance model neither helps nor hinders identifying
nonsecure states.

The fourth aspect is the apparent lack of create or destroy subject and object
operations. In other security models (e.g., [7, 12, 26, 27]), explicit create and
destroy operations increment or decrement the list of subjects and objects. These
operations can be represented in the CPD model as moving a subject or object
off a free list onto an active list, and off an active list onto a destroyed list,
respectively. Since the CPD model uses an unbounded size matrix as its state,
the alternative representation can be explicitly coded in the state by index tokens
that represent the free list, the active list, and the destroyed list, respectively [9].

The fifth aspect is the apparent over-restrictiveness of sp-assumption 1.
Upon close examination, sp-assumption 1 is defined only over reachable states.
As a result, every security model that reaches only secure states satisfies
sp-assumption 1. In other words,

St?CWity(Hj) * sp-assumption 1.

3.2.2 Design. This section argues that a privilege-based model, such as the
CPD model, can be used to provide a good specification correctness criterion for
a system that enforces a safety security policy. A security model is associated
with two mappings, as shown in Figure 5, which indicates that the security model
enforces the security policy, and the system specification enforces the security
model. Since a security policy is informal, the mapping from a security policy to
a security model is consequently informal [39]. However, the mapping from a
specification to a security model may be formal [24, 28, 32, 381.

As shown in the taxonomy of Figure 4, there are two categories of safety
models: privilege-based and information flow. The primary advantage of a
privilege-based model is that it may be easier to justify the mapping between the
specification and the model, while the primary advantage of an information-flow
model is that it may be easier to justify the mapping from the security model to
the policy. The former potential advantage exists because a privilege-based model,

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

208 - G. S. Benson et al.

I Sscllrity Pohy
c

Fig. 5. Security model mappings.
I Security Model I

but not an information-flow model, can ignore internal TCB state variables
without affecting the model’s formalism. As a result, privilege-based models have
advantages in systems that permit some “legal covert channels.” Consider, for
example, a system that contains a large number of sensitivity levels (e.g., 264) in
which it is not practical to allow the scheduler to allocate a fixed time slice to
each sensitivity level. The system contains a covert channel because low-sensi-
tivity-level users may obtain information about high-sensitivity-level users by
monitoring the system load average. The difference between the two categories
of models, with respect to this example, is that security for internal TCB variables
is not affected by changes in access permissions, but internal TCB variables are
conduits for transmitting information.

The primary advantage of an information-flow model compared with a
privilege-based one is that an information-based model is a superior representa-
tion of a security policy. In particular, in a privilege-based model “it is not clear
what possibilities for security violations through covert channels still exist in the
actual system” [49], while in an information-flow model, covert channels may be
prohibited. Consider for example, a policy that is defined in terms of information
values, for example, the Clark-Wilson model [14]. In this case the policy has an
application-independent portion that can be represented by a privilege-based
model and an application-dependent portion that cannot be represented by a
privilege-based model. Here, the application-dependent portion requires that
transformation procedures be certified to cause transitions between valid object
states. Since a privilege-based model cannot define the information values, no
privilege-based model security predicate can distinguish a valid from an invalid
information value.

3.2.3 Policy. Since the CPD model is a privilege-based safety model, it cannot
be used to define a nondenial of service policy. However, it can implement a
distributed version of many privilege-based security models (e.g., [7, 11, 26, 27,
401). Since the CPD model does not define a specific instance of a security
predicate, as in the case of [7, 11, 30, 341, it can be used to formalize a variety
of different security policies. For example, the CPD model may represent a
distributed version of the Bell-La Padula model [lo] and a multilevel secure
file system [5].

4. A DISTRIBUTED SYSTEM EXAMPLE

This section presents an example application of the CPD model-a representa-
tion of a distributed system. The example depicts a system with three nodes, two
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems 209

communication link 2 I I I

I I I

communication link 1

Fig. 6. Example distributed system.

communication link 2

xiy

r,w

communication link 1

r,w r.w

Fig. 7. Nonsecure distributed system.

communication links, and one shared disk, as shown in Figure 6. Communication
link 1 (comml) connects all three nodes, communication link 2 (comm,) connects
node, and node2, and the disk connects node2 and nodes. Each node is connected
to its own local memory.

A security policy for the distributed system defines privileges for communica-
tion and memory access. For example, consider a security policy that restricts
access to the shared disk.

The distributed system is secure unless node, and node3 have simultaneous
write access to the shared disk.

An example nonsecure configuration of privileges is shown in Figure 7 (nonsecure
privileges are circled). The figure shows that all three nodes have (r)ead and
(W)rite access to comml . Also, node* has (r)ead and (w)rite access to commz and
node2 has (W)rite access to commp. However, the distributed system is not secure
because both nodea and node3 have (w)rite access to the shared disk.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

210 * G. S. Benson et al.

comml commp disk node, mem node2 mem node, mem

node, 0 a a
node? 01 a N a
node, a CY 01

Fig. 8. Initial state.

The CPD model can represent this distributed system by defining states where
the rows represent nodes and the columns represent memory, communication
links, and the disk. The initial state, M,,’ (shown in Figure 8) defines the system
architecture, where the token (Y denotes a hardware link. For example, since
there exists a link between node, and comm2, (Y E Mo[nodea, comma]. However,
since there does not exist a link between nodea and comma, (Y @ MO [nodea,
comm,].

The formalism for the security predicate (Sect. 2.4) is defined in the following.

sp(M,) iff
M,=IV
13row,, row2
q w E MX[rowl, disk]
(Y, w E MX[rowp, disk]

The initial state MO (Sect. 2.4) is secure because w is not in any coordinate. Also,
the security predicate satisfies all three sp-assumptions:

-sp-assumption 1. The distributed system can transition to a nonsecure state
by gaining (as opposed to losing) a hardware connection or write privilege.

-sp-assumption 2. The disjunction in sp ensures that the error state is secure.
-sp-assumption 3. The security predicate does not reference a token of class

lock.

Depending on the system being modeled, there exist many potential command
sets. So this section adds a new command, ck, to a previously existing command
set, Cj, forming Cj U {ck), where it is assumed that Cj satisfies the conditions of
Theorem 2, that is, every instantiation Hj of Cj satisfies pcs (Definition 7),
leapriuset (Definition 16), and ss-pres (Definition 17). An example new command,
ck, is defined in the following:

command ck(n:node, c:comm, d:disk) =
enter(&) n, d)

present(cu, n, d)
enter(l,, n, c)

present(cY, n, c)
delete(w, n, c)

delete(l,, n, c)
enter(r, n, d)

delete(l,, n, d)

s For brevity, unused rows and columns are not shown in Figure 8.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems - 211

Command ck deletes w from the [n, c] coordinate and enters r to the [n, d]
coordinate. Provided every command in Cj follows the convention that a coordi-
nate is locked before it is referenced, pcs(H, U (hk)), for each instantiation. Since
c, executes its delete privilege operation, delete(w, n, c), before its enter privilege
operation, enter(r, n, cl), every instantiation of cj satisfies leapriv. Finally, since
cj enters neither o(nor w, cj satisfies ss-pres. As a result, since (i) the security
predicate satisfies all three sp-assumptions, (ii) sp(M,), and (iii) every instan-
tiation of (Cj U (ckl) satisfies all three conditions of Theorem 2, for each
instantiation,

security(Hj u {hk]).

The example shown in this section is relatively simple because it contains only
a few simple nodes and communication devices. Each command represents a
single thread of execution and may only modify the state in a single row or
column. In general, there may be multiple active entities (subjects) on each node,
multiple slots on the communication media, and multiple partitions on the disk.
A CPD model representation of the more complex distributed system contains a
row corresponding to each active entity and a column corresponding to each
passive entity. A security predicate could potentially distinguish between entities
on each node. For example, a security predicate may permit a trusted subject
residing on node2 access to the disk, but prohibit an untrusted subject on the
same node from accessing the same disk. A detailed example of a CPD model
representation of a nontrivial distributed file system is described in [9].

5. CONCLUSION

The contribution of this paper is a formal protection model for centralized,
parallel, and distributed systems. In general, parallel and distributed systems are
difficult to model because of the complicated interactions of concurrent execu-
tions. This problem is solved by proving Theorem 2, which demonstrates condi-
tions for ensuring security for parallel and distributed systems. The conditions
are relatively easy to validate.

In future research, the CPD model will be used as a fundamental building
block of a composability model. Composability will show that if a countable
number of command history sets satisfy their respective local security predicates,
then the composition command history set satisfies the composition security
predicate. The approach is to define a set of composition operators that guarantee
composability. One composition operator will use the CPD model results to prove
that the conditions of Theorem 2 and the sp-assumptions guarantee composabil-
ity. Further research will define classes of composable safety properties that are
applicable to nonserializable systems.

ACKNOWLEDGMENTS

The referees made valuable comments on earlier drafts of this paper. Tim
Redmond and Charles Pfleeger also provided many useful insights.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

212 * G. S. Benson et al

REFERENCES

1. System Overview Gemini Trusted Multiple Microcomputer Base (version 0). Carmel, Calif., 0 ed.,
May 1985.

2. Trusted Computer Systems Evaluation Criteria. Tech. Rep. DOD 5200.28-STD, National Com-
puter Security Center, Fort Meade, Md., Dec. 1985.

3. AKYILDIZ, I., AND BENSON, G. Security models of distributed systems. In Proceedings of the 4th
International Symposium on Computer and Information Sciences, A. Dogac and E. Gelenbe, Eds.
(Cesme, Turkey, Oct. 1989). Vol. 2, 1225-1235.

4. AKYILDIZ, I., AND BENSON, G. A security level reclassifier for a local area network. In Proceed-
ings of the European Symposium on Research in Computer Security (Toulouse, Oct. 1990). AFCET.

5. AKYILDIZ, I., BENSON, G., AND APPELBE, W. A multilevel secure file server for a local area
network. Tech. Rep. GIT-ICS-89/27, Georgia Institute of Technology, Atlanta, Aug. 1989.

6. BADGER, L. A model for specifying multi-granularity integrity policies. In Proceedings of the
1989 IEEE Symposium on Security and Privacy (Oakland, Calif., May 1989). 269-277.

7. BELL, D., AND LAPADULA, L. Secure computer system unified exposition and multics interpre-
tation. Tech. Rep. MTR-2997, MITRE Corp., Bedford, Mass., July 1975.

8. BEN-ARI, M. Principles of Concurrent Programming. Prentice-Hall, Englewood Cliffs, N.J.,
1982.

9. BENSON, G. A formal protection model of security in distributed systems. Ph.D. dissertation,
Georgia Institute of Technology, Atlanta, Aug. 1989.

10. BENSON, G., APPELBE, B., AND AKYILDIZ, I. The hierarchical model of distributed system
security. In 1989 IEEE Symposium on Security and Privacy (Oakland, Calif., May 1989).
194-203.

11. BIBA, K. Integrity considerations for secure computer systems. Tech. Rep. TR-3153, MITRE
Corp., Bedford, Mass., April 1977.

12. BISHOP, M. Practical take-grant systems: Do they exist? Ph.D. dissertation, Purdue Univ.,
West Lafayette, In., May 1984.

13. BRANSTAD, M., TAJALLI, H., MAYER, F., AND DALVA, D. Access mediation in a message passing
kernel. In Proceedings of the 1989 IEEE Symposium on Security and Privacy (Oakland, Calif.,
May 1989). 66-72.

14. CLARK, D., AND WILSON, D. A comparison of commercial and military computer security
policies. In Proceedings of the 1987 IEEE Symposium on Security and Privacy (Oakland, Calif.,
April 1987). 184-194.

15. COHEN, D. Basic Techniques of Combinatorial Theory. John Wiley, New York, 1978.
16. COHEN, E., AND JEFFERSON, D. Protection in the Hydra operating system. In Proceedings of

the 5th SOSP (Nov. 1975). 141-160.
17. DENNING, D. A lattice model of secure information flow. In Commun. ACM 27, 5 (May 1976),

236-243.
18. WONG, R., ET AL. The SDOS system: A secure distributed operating system prototype. In 12th

National Computer Security Conference (Baltimore, Md., Oct. 1989). National Institute of
Standards and Technology, 1989, 172-183.

19. FOLEY, S. A universal theory of information flow. In Proceedings of the 1987 IEEE Symposium
on Security and Privacy (Oakland, Calif., May 1987). 116-121.

20. FRAIM, L. SCOMP: A solution to the multilevel security problem. IEEE Comput. 16, 7
(July 1983), 26-34.

21. GASSER, M. Building a Secure Computer System. Van Nostrand Reinhold, New York, 1988.
22. GLASGOW, J., AND MACEWEN, G. Reasoning about knowledge in multilevel secure distributed

systems. In Proceedings of the 1988 IEEE Symposium on Security and Privacy (Oakland, Calif.,
1988), 122-128.

23. GOGUEN, J., AND MESEGUER, J. Security policies and security models. In Proceedings of the
1982 IEEE Symposium on Security and Privacy (Oakland, Calif., 1982). 11-20.

24. GOOD, D., DIVITO, B., AND SMITH, M. Using the Gypsy methodology. Tech. Rep., Computa-
tional Logic Inc., Austin, Tex., 1988.

25. HAIGH, J., AND YOUNG, W. Extending the noninterference version of MLS for SAT. In IEEE
Trans. Softw. Eng. (Feb. 1987), 141-150.

26. HARRISON, M., RUZZO, W., AND ULLMAN, J. Protection in operating systems. In Commun.
ACM 17, 8 (Aug. 1976), 461-471.

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

Security in Centralized, Parallel, and Distributed Systems l 213

27. JONES, A., LIPTON, R., AND SNYDER, L. A linear time algorithm for deciding security. In
Proceedings of the 17th Annual Symposium on Foundations of Computer Science, 1976.

28. KEMMERER, R. FDM-a specification and verification methodology. In Proceedings of the 3rd
Seminar on the DOD Computer Security Initiative Program (Gaithersburg, Md., Nov. 1980). NBS.

29. LAMPORT, L. A formal basis for the specification of concurrent systems. In Distributed Operating
Systems: Theory and Practice, Vol. F28, Y. Paker et al., Eds., NATO Advanced Study Institute,
Springer-Verlag, Berlin, 1987, 4-46.

30. LANDWEHR, C., HEITMEYER, C., AND MCLEAN, J. A security model for military message
systems. ACM Trans. Comput. Syst., ACM (Aug. 1984), 198-222.

31. LEE, T. Using mandatory integrity to enforce “commercial” security. In 2988 IEEE Symposium
on Security and Priuacy (Oakland, Calif., April 1988). 140-146.

32. LEVITT, K., ROBINSON, L., AND SILVERBERG, B. The HDM handbook. Tech. Rep., Computer
Science Lab., SRI International, Menlo Park, Calif., June 1979. Vols. 1-3.

33. LIPNER, S. Non-discretionary controls for commercial applications. In Proceedings of the 1982
IEEE Symposium on Security and Privacy (Oakland, Calif., April 1982). 2-10.

34. Lu, W., AND SUNDARESHAN, M. A model for multilevel security in computer networks. In
Infocom (New Orleans, La., April 1988). 1095-1104.

35. MACEWEN, G., POON, V., AND GLASGOW, J. A model for multilevel security based on operator
nets. In 1987 IEEE Symposium on Security and Privacy (Oakland, Calif., April 1987). 150-160.

36. MCCULLOUGH, D. Noninterference and the composability of security properties. In Proceedings
of the 2988 IEEE Symposium on Security and Priuacy (Oakland, Calif., 1988), 177-186.

37. MCLEAN, J. Reasoning about security models. In Proceedings of the 1987 IEEE Symposium on
Security and Privacy (Oakland, Calif., 1987), 123-131.

38. MILLEN, J. Operating system security verification. Tech. Rep. M79-223, MITRE Corp., Bedford,
Mass., Sept. 1979.

39. DE MILLO, R., LIPTON, R., AND PERLIS, A. Social processes and proofs of theorems and
programs. Commun. ACM 20,5 (May 1979), 271-280.

40. MINSKY, N. Selective and locally controlled transport of privileges. ACM Trans. Program. Larzg,
Syst. (Oct. 1984), 573-602.

41. PAPADIMITRIOU, C. The Theory of Database Concurrency Control. Computer Science Press,
Rockville, Md., 1986.

42. PETERSON, J., AND SILBERSCHATZ, A. Operating System Concepts, 2nd ed. Addison-Wesley,
Reading, Mass., 1985.

43. PFLEEGER, C. Security in Computing. Prentice-Hall, Englewood Cliffs, N.J., 1989.
44. RUSHBY, J. Proof of separability: A verification technique for a class of security kernels. In

Proceedings if the 5th International Symposium on Programming. Springer-Verlag, Berlin, 1982,
352-362.

45. RUSHBY, J. Security policies for distributed systems. Unpublished draft, SRI International,
Sept. 1988.

46. SAYDJARI, 0. S., BECKMAN, J., AND LEAMAN, J. Locking computers securely. In Proceedings of

the 20th DOD/NBS Computer Security Conference (Gaithersburg, Md., Sept. 1987). 129-140.
47. SCHROEDER, M., AND SALTZER, J. The MULTICS kernel design project. In Proceedings of the

6th ACM Symposium on Operating Systems Principles (Nov. 1977). 57-65.
48. SEIDEN, K., AND MELANSON, J. The auditing facility for a vmm security kernel. In Proceedings

of the 1990 IEEE Symposium on Research in Security and Privacy (Oakland, Calif., May 1990).
262-277.

49. SUTHERLAND, I. Relating Bell-LaPadula-style security models to information models. In Pro-
ceedings of the Computer Security Foundations Workshop (Franconia, N.H., June 1988), 112-126.

50. SUTHERLAND, I., PERLO, S., AND VARADARAJAN, R. Deducibility security with dynamic level.
In Proceedings of the Computer Security Foundations Workshop II (Franconia, N.H., June 1989).
IEEE, New York, 1989, 3-8.

Received March 1988; revised January 1990; accepted July 1990

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990.

