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One way to show that a system is not secure is to demonstrate that a malicious or mistake-prone 
user or program can break security by causing the system to reach a nonsecure state. A fundamental 
aspect of a security model is a proof that validates that every state reachable from a secure initial 
state is secure. A sequential security model assumes that every command that acts as a state transition 
executes sequentially, while a concurrent security model assumes that multiple commands execute 
concurrently. This paper presents a security model called the Centralized-Parallel-Distributed model 
(CPD model) that defines security for logically, or physically centralized, parallel, and distributed 
systems. The purpose of the CPD model is to define concurrency conditions that guarantee that a 
concurrent system cannot reach a state in which privileges are configured in a nonsecure manner. As 
an example, the conditions are used to construct a representation of a distributed system. 

Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks]: General- 
security and protection; C.2.4 [Computer-Communication Networks]: Distributed Systems- 
distributed applications, network operating systems; D.1.3 [Programming Techniques]: Concurrent 
Programming; D.2.0 [Software Engineering]: General-protection mechanisms; D.4.1 [Operating 
Systems]: Process Management-concurrency, scheduling, synchronization; D.4.6 [Operating Sys- 
tems]: Security and Protection-access controls; F.3.1 [Logics and Meanings of Programs]: 
Specifying and Verifying and Reasoning about Programs-inuariants, specification techniques 

General Terms: Design, Security 
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1. INTRODUCTION 

A security model has two components: a security predicate and a model of 
computation. A security predicate is a Boolean function that is satisfied by a 
state of privileges only if the state is secure. An example security predicate is the 
conjunction of the Bell-La Padula m-property, *-property, and ds-property [ 71, 

The work of I. F. Akyildiz was supported in part by the National Computer Security Center under 
grant MDA 904-90-C-7030. 
Authors’ current addresses: G. S. Benson, Trusted Information Systems, 3060 Washington Road, 
(Rt. 97), Glenwood, MD 21738; I. F. Akyildiz and W. F. Appelbe, College of Computing, Georgia 
Institute of Technology, Atlanta, GA 30332. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1990 ACM 0734-2071/90/0800-0183 $01.50 

ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990, Pages 183-213. 



184 - G. S. Benson et al. 

which describes privileges for accessing information. A model of computation is 
a state machine that moves between states by executing commands from a 
command set, where each command is a sequence of atomic operations. 

This paper presents the Centralized-Parallel-Distributed model (CPD model), 
a privilege-based security model whose state is defined in terms of privileges, 
where a privilege is either a permission to access data (e.g., an access right, or a 
privilege to continue execution, for instance, a synchronization condition). Most 
privilege-based models [7, 12, 26, 271, represent a centralized, sequential system; 
yet, the CPD model provides concurrency and ensures security for every state 
reachable from a secure initial state. If concurrency were not controlled in the 
CPD model, then concurrently executing commands could potentially interleave 
their operations and reach a nonsecure state. For example, multiple invocations 
of a command that trades high-sensitivity-level privileges for low-sensitivity- 
level privileges, if not correctly executed, could potentially erroneously yield an 
intermediate state that grants both high and low sensitivity-level privileges 
simultaneously. 

The purpose of the CPD model is to formally guarantee that the problem of 
proving security for a concurrent model is reducible to the problem of proving 
security for a sequential model, where solutions to the sequential problem are 
well known (e.g., [7, 10, 12, 26, 27, 401). A polynomial time test is presented that 
is satisfied only if a given concurrent model can be reduced to a sequential model. 
A command is called security-preserving (S-PRES) if the command yields a 
secure state when given a secure state as input; a command is called sequential- 
security-preserving (SS-PRES) if the command yields no nonsecure intermediate 
or final state when given a secure initial state as input. Consider, for example, a 
command that first yields a nonsecure state and then yields a secure state. In 
this case the command is S-PRES, but not SS-PRES. The CPD model reduces 
a distributed model to a sequential (SS-PRES) model by proving that if every 
command in a given command set satisfies the CPD model reduction conditions 
(i.e., nested critical section condition and leastprivilege condition), then concurrent 
execution is reducible to sequential execution. 

The nested critical section condition stipulates that every command must nest 
its critical sections. A critical section is a sequence of operations in a command 
that executes sequentially with respect to other interfering commands [8]. In the 
CPD model, a critical section’s entry and exit is implemented by a lock, where 
the purpose of the lock is to guarantee mutual exclusion. The purpose of the 
nested critical section condition is to provide serializability, where the property 
of nested critical sections that ensures serializability is two-phase locking.’ 

Although serializability is a desired attribute in a model, serializability does 
not necessarily imply that concurrent model is reducible to a sequential model. 
Consider, for example, a simple Generic security model, G model, whose com- 
mands are serializable and SS-PRES. The syntax of the model of computation 
of the G model provides two operations, a and r, whose semantics are that a 
privilege is (a)cquired and (r)eleased, respectively. An example command set of 

1 Two-phase locking exists if locks are taken and released in two phases. “In the first phase, locks are 
acquired but not released. In the second phase, locks are released but not acquired” 1411. 
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the G model is as follows: 

{c,b, x, Y, 2) = al(~)rl(x)al(Y)al(z), 

cz(w 4 y, 2) = ~2(~)~2(~)~2(Y)~z(w)~z(~)l. 

Command cl accepts four formal parameters, w, x, y, and z, and executes 
operations that acquire access to w, release access to x, acquire access to y, and 
acquires access to z. Command c2 accepts four parameters and executes five 
operations. Consider a state with four resources: (h)ost, (s)ecure printer, (t)ape 
drive, and (d)isk drive, and the command invocations ci(t, s, h, cl) and c,(h, s, t, 
d) whose operations are instantiated with the actual parameters, respectively, as 
follows:2 

(i) a~(tb~(sh(hh(d) 
(3 r2(h)u2(s)r2(t)u2(h)r2(d). 

Further consider an example security predicate that prohibits access to all four 
resources simultaneously. Given this security predicate, both of the commands 
are SS-PRES if the initial state has no privileges. However, if the commands 
are executed concurrently, the following sequence could be executed: 

In the sequence,” after the sixth state transition, privileges for all four resources 
have been acquired, which is defined by the security predicate as a security 
violation. However, after the sequence completes, the final state is the same as 
the one produced by command (i) followed by command (ii)-privileges for the 
printer and host are acquired, but privileges for the tape and disk are not. 

The concurrent history is not secure because there exists a state reachable 
from a secure initial state that is not secure. The problem with the command set 
is that it does not satisfy the least privilege condition. ‘Subjects should be given 
no more privilege than is necessary to enable them to do their jobs. In that way 
the damage caused by erroneous or malicious software is limited” [21]. Any 
command that acquires new privileges and releases old privileges, in effect, trades 
old privileges for new ones. The least privilege condition in the CPD model 
stipulates that every transition must release all of its old privileges, before 
acquiring any of its new ones. Neither transition in the example above adheres 
to this condition. 

The scope of this paper concerns demonstrating security for reachable states. 
However, there exist aspects of security in privilege-based systems beyond the 
scope of this paper. For example, we do not address liveness concerns, which 
may arise in a definition of secure auditing, for instance, [48]. Also, we do not 
describe transition constraints [21, 30, 371, that is, “constraints that hold for the 

’ These sequences are called command histories, and are defined in Section 2. 
’ This sequence is called a concurrent history, and is formally defined in Section 2. 
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Fig. 1. Secure architectures. 

relation between secure states, and hence, can be checked only by comparing two 
or more states” [30]. An example transition constraint from the Military Message 
System model is that “no classification ranking can be downgraded except with 
the role of downgrader who has invoked a downgrade operation” [30]. 

The purpose for providing concurrency is to formally represent a centralized, 
a parallel, or a distributed Trusted Computing Base (TCB)-the portion of the 
system that maintains the state of privileges. As shown in Figure 1, a centralized 
TCB resides on a single processor and may either be sequential or multipro- 
grammed. A parallel TCB resides on multiple processors that access a common 
clock and storage and communicate via shared memory. A distributed TCB 
resides on multiple processors that do not access a common clock or storage and 
exchange information via communication lines [42]. The TCB state (i.e., the 
collection of privileges) is centralized in the case of a centralized or parallel TCB, 
and is distributed in the case of a distributed TCB. Security-relevant facilities in 
the TCB execute by concurrently updating the TCB state. 

The remainder of this paper is organized as follows. Section 2 defines the CPD 
model and proves that the reduction conditions guarantee that a concurrent 
command set is reducible to a sequential command set. In other words, Section 2 
proves that if every command in a command set both satisfies the reduction 
conditions and is SS-PRES, then every state reachable from a secure initial 
state is secure. Section 3 evaluates the CPD model with respect to other related 
security models. Privilege-based models are compared with others to show that 
the CPD model is useful for defining both nondisclosure and integrity for cen- 
tralized, parallel, and distributed TCBs. Section 4 gives an example distributed 
model that satisfies the reduction conditions. Finally, Section 5 concludes the 
paper. 

2. CPD MODEL 

The CPD model is a general-purpose security model that represents centralized, 
parallel, and distributed TCBs, independently of a particular security policy or 
environment. This section formally defines the model of computation and a 
security predicate. 
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990. 
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Table I. Notation 

Individuals Sequences 

operation set (P.) 

Table II. Example Notation 

Individuals 

Formal a,(w) 
Ial( rl(x)l 

Actual a,(t) 
b(t), rl(s)l 

Sequences 

a, (w)rl (r)al(y)al (2) 
ICI, c21 

al(t)r,(sh(hh(d) 
Ih, hql 

The CPD model is expressed in terms of operations, operation sets, instruc- 
tions, instruction sets, commands, command sets, histories, and history sets, as 
shown in Table I. The first two rows of Table I list notation for items expressed 
in terms of formal parameters, and the latter two rows notation for items 
expressed in terms of actual parameters. The first column defines individuals 
and the second defines sequences. An operation pn is a parameterized state 
transition; a command ck is a sequence of operations; an operation set P, is a set 
of operations;4 and a command set C, is a set of commands. An instruction i, is 
an operation that has been instantiated with an actual parameter. A history hk 
is a sequence of instructions. An instruction set 1, and history set Hj are sets of 
instructions and histories, respectively. 

For example, consider the G model of Section 1. The first row of the first 
column of Table II depicts an operation, with formal parameter w. An instantia- 
tion of this operation with actual parameter t is shown in the instruction in the 
third row of the first column. An instruction, i,, is normally denoted with the 
same subscript as its corresponding operation. The second and fourth rows of 
the first column illustrate an operation set and instruction set, respectively. The 
first row of the second column denotes a command. When clear from the context, 
as an abbreviated notation, a command may be written as ck. The second row of 
the second column is an abbreviated notation that represents the following 
command set: 

lal(w)rl(x)al(y)al(z), rz(w)u2(X)r2(y)a2(w)a2(2)} 

\ / \ / v Y 

Cl CP 

The third row of the second column denotes a history. Although any sequence of 
instructions is a history, for clarity, different kinds of histories are denoted with 

‘Operation sets and instruction sets are not used in this paper, and are only defined here for 
completeness of Table I. 
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different notations. A command history is the history that corresponds to a 
particular command where each instruction is an instantiation of its correspond- 
ing operation. A command history is denoted by hk where k is the subscript of 
the corresponding command. For example, the third row of the second column 
denotes a command history h, . A concurrent history is an interleaving of instruc- 
tions from multiple command histories, for example, 

Concurrent histories and arbitrary histories are denoted by h, h ‘, h”, and so on. 
The fourth row of the second column denotes a history set (denoted by Hi). A 
history set, Hi, that contains only command histories is called a command history 
set. The notation ] ck 1, ] C, 1, ] hk 1, and ] Hk ] denote the number of operations in 
ck; the number of non-null commands in C,; the number of instructions in hk; 
and the number of non-null command histories in Hk, respectively. 

The set of all states is denoted by k’, and the undefined state is denoted by 1. 
The symbol .&’ denotes the union of ~6’ and 1. 

The set of all atomic operations and instructions are denoted by 9 and \k, 
respectively, for example, P, C 9 for any P,, and I, G q for any I,. The 
deterministic transition function, 7, defines a transition, as follows: 

A behavior is a sequence: 

where i, is the ath instruction in the behavior, T(i,, T(i,-1, . . . , T(&, MO))) is the 
ath state reached by the behavior, and MO is an initial state. Lamport conjectures 
that “the behavior of every discrete system, be it hardware or software, can be 
formally represented as such a sequence [behavior]” [29]. Since the transition 
function is deterministic, a behavior is uniquely determined by a history and an 
initial state. For example, the behavior given above is uniquely determined by 
the history, h = i, i2i3, and the initial state MO. 

The model of computation consists of a nondeterministic front end and a 
deterministic state machine, as shown in Figure 2. 

Input into the front end is a command history set, and output from the front 
end is a single concurrent history. The front end executes by computing concur- 
rent (interleaved) histories (formally defined in Definition 1 of Sect. 2.3) from 
the input command history set and nondeterministically choosing for output one 
of the computed concurrent histories. Subsequently, the concurrent history is 
input into the state machine which sequentially executes the transition function 
T. The purpose of the front end is to formally define every concurrent history 
that may potentially be executed by the state machine, and the purpose of the 
state machine is to represent machine execution. 
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990. 
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cl = pllp21 

Fig. 2. Example two-command model of computation. 

For example, the model of computation shown in Figure 2 corresponds to the 
following concurrent program. 

cobegin 
1.1, 

0 % 
11, 

coend 

The command history set H, in the example is {i 1,, i2,, iI,). The set of potential 
concurrent histories output by the front end for this command history set is as 
follows: 

The front end nondeterministically chooses one of the three concurrent histories. 
If, for example, the front end chooses concurrent history (i) and the initial state 
is MO, then the state machine reaches T(&,, MO), T(&,, T(&~, MO)), and 
T(&*, Th,, 7(ill, MO))), respectively. 

The purpose of a command set is to represent a set of TCB utilities, and the 
purpose of a command history is to represent a particular thread of execution 
through the TCB. For example, Figure 2 represents two concurrent threads of 
execution, where one thread executes an invocation of the TCB utility represented 
by the command history hl, and the other thread executes an invocation of the 
TCB utility represented by the command history h,. 

A primary difference between the CPD model and sequential models is that 
sequential models do not provide synchronization. A CPD model instruction i, is 
enabled in state AI, if and only if T(i,, M,) # 1. An enabling condition is a Boolean 
function that is satisfied by instruction i, and state M, if and only if iO is enabled 
in M,. An enabling condition for each CPD model operation is presented in 
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Section 2.2. The CPD model front end nondeterministically chooses a concurrent 
history only if the state machine executes enabled instructions. 

For example, suppose, in the command history set described above, i2, is not 
enabled in T(&,, MO), that is, 7(i2,, 7(il,, MO)) = 1. In this case, concurrent history 
(i) cannot be chosen by the front end. The front end does not represent any 
implementable system because it predicts the execution of the state machine a 
priori. However, by definition, the front end describes all potential execution 
histories of an implemented system, provided correct implementation of syn- 
chronization, that is, the implemented system does not execute nonenabled 
instructions. 

2.1 Syntactic Definition 

The CPD model consists of: 

(i) A set of tokens: Every token has a type. Every type has a class where there 
are a bounded number of classes. However, there may be an unbounded 
number of tokens of a given type. The type of token tok is denoted by type 
(tok); and the class of token tok is denoted by class(tok). The predefined 
class lock is used for synchronization. A token whose type is of class lock is 
denoted by 1,. Another predefined class is index, which is used for indexing 
into the state. A token whose type is of class index may be denoted by row, 
col, or x,. Classes that are not predefined have semantics specific to the 
represented system. For example, an instantiation-specific class that is 
ignored by the security predicate is described in [lo]. 

(ii) A finite set of commands: A command is of the form: 

command ck(tokI :typetok,, . . . , tok,:type,,k,) = 
Pl 
P2 
. . . 

PI% 

Here, ch is a name and n is a constant. Each formal parameter tokj is a token 
of type type,&,. Each pa for a = 1, . . . , ] ck ] is one of the following op- 
erations, where the indices of pa are sequentially ordered natural numbers 
beginning with 1. 

enter(tok,row,col) 
delete(tok,row,col) 
present(tok,row,col) 
absent(tok,row,col) 

A command is a sequence of operations written as ck = p,, . . . , pICkI which 
means command ch is the operation sequence p,, . . . , pl ck,. A state M, is either 
the undefined state I or a two-dimensional matrix indexed by tokens of class 
index. The operations enter and delete put and remove a token into and from the 
M,[row,col] coordinate of the state matrix, respectively. The operations present 
and absent determine the existence and nonexistence of tok in the M,[row,col] 
coordinate of the state matrix, respectively. The coordinate (a row and column 
of the state) referenced in operation pa or instruction i, is denoted by coord (pa) 
ACM Transactions on Computer Systems, Vol. 8, No. 3, August 1990. 
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Table III. Operation and Instruction Components 

p. = enter(tok, row, col) 1, = enter(r,, x2, n3) 
coord(p.) = [row, col] coord(i,) = [x1, x2] 

op(p,J = enter op(i.) = enter 
token = tok token(i,,) = r, 

or coord (i,), respectively. The kind of operation or instruction (enter, delete, 
present, or absent), of pa or i, is denoted by op(pll) and op(t), respectively. The 
token of an operation or instruction is denoted by token. Example applications 
of the component definitions are presented in Table III. Consider, for example a 
system with two hosts, one shared disk and two access rights (read and write). 
Only one host may access the disk at a time. A possible model of the system 
contains five types: host, disk, read-t, write-t, and mutex-t of classes, index, 
index, right, right, and lock, respectively (the class right is specific to this 
representation). Assume that two host tokens and one token from each of the 
other types are defined. The command set may contain a command ck that 
represents a TCB utility that ensures that only one host has disk access at a 
time. The command ck provides mutual exclusion by executing the enter and 
delete operations on the lock 1, of type mutex-t. 

command ck(row:host, col:disk, r,:read-t, r,:write-t) = 
enter(&) row,col) 

absent(r,, row,col) 
enter(r,, row,col) 
enter(r*, row,col) 
delete( rl, row,col) 
delete(r*, row,col) 

delete(&) row,col) 

The first and last operations in ck reference a lock used to provide mutual 
exclusion for the remainder of the command’s operation sequence (the formal 
semantics of locks is presented in Section 2.2, below). The second operation 
checks that rl is not in the [row,col] coordinate of the state matrix, and the 
remaining operations first enter and then delete r, and r2 in the state matrix. 

2.2 Semantic Definition 

For a given instruction i,, the form of T is given below: 

1 

I if (M, = I) 
di,, M,) = t(i,, Ml else if (enabled(i,, M)) 

I otherwise 

where enabled is a Boolean function (enabled and t are to be defined subse- 
quently). In other words, the semantics of T is that if an operation is enabled in 
the current state, then 7 returns the result of a state transition t; otherwise, 7 
returns the error symbol 1. Note that the semantics of the instructions ensures 
that the only state reachable from I is itself. 
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The CPD model operations are as follows: 

(i) enter(tok,row,col) 

7(enter(tok,row,col), Mx) = 

(t(enter(tok,row,col), M,) 
else if (class(tok) # lock V tok @ M,[row,col]) 

I otherwise 

where 

V row’,col’ t(enter(tok,row,col), M,)[row’,col’] = 

i 

M,[row’,col’] if ((row’ # row) V (co]’ # col)) 
M,[row’,col’] U (tok] otherwise 

This operation puts tok in M,[row,col]. If tok is a lock, then the 
operation blocks until tok is not in M,[row,col]. This implies 
t(enter(tok,row,col), M,) # M, if M, # I and class(tok) = lock. 

(ii) delete(tok,row,col) 

T(delete(tok,row,col), MI) = 

I if M,=l 
t (delete(tok,row,col), M,) 

else if (class(tok) # lock V tok E M,[row,col]) 
I otherwise 

where 

V row’,col’ t(delete(tok,row,col), M,.)[row’,col’] = 

M,[row’,col’] if ((row’ # row) V (col’ # Cal)) 

M,[row’,col’] - (tok] otherwise 

This operation removes tok from M,[row,col]. If tok is a lock, then 
the operation blocks until tok is in M,[row,col]. This implies 
t(delete(tok, row,col), M,) # M, if M, # I and class(tok) = lock. 

(iii) present(tok,row,col) 
This operation blocks if and only if tok B M, [row,col]. 

T(present(tok,row,col), MJ = 

i 

..L if M,=l 
M, else if tok E M,[row,col] 
I otherwise 
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(iv) absent(tok,row,col) 
This operation blocks if and only if tok E M,[row,col]. 

T(absent(tok,row,col), M,) = 

I if M,=l 
M, else if tok 4 M,[row,col] 
I otherwise 

The semantics of an example command is given below. 

command ~~(~~:host, l,:disk-lock, L,:request-lock, I,:buff-lock) = 
delete( 1,, x1, 4) 
enter(x,, 6, 7) 
enter(l,, 6, x,) 
absent(r,, 3, 4) 
delete(h, 3, 4) 

Command ck accepts four formal parameters (x,, I,, &, &), of types host, 
disk-lock, request-lock, and buff-lock, respectively. The class of the host 
type is index, and the classes of disk-lock, request-lock, and buff-lock are 
lock. The token rl is a constant whose class is right. The command waits until 1, 
may be deleted from Mx[xl, 41 (Mx is the current state and M,,, is the resultant 
state after a instructions have been executed). Next, index X, is entered into 
M,,, [6, 71. The command then waits until l2 may be entered into M,+,[6, x1]. 
Next, the command waits until rl is not an element of M,+3[3, 41. The command 
then waits until & can be deleted from Mxfil [3, 41. Assuming that the command 
runs to completion, during which no concurrent commands are executing, the 
resultant matrix has three, four, or five changes with respect to the original 
matrix, depending on whether or not x1 and rl are in the original matrix. 

As the example illustrates, the classes of tokens, index and lock correspond to 
indices into the state matrix and synchronization locks, respectively. Other 
representation-specific classes, such as right, could potentially represent privi- 
leges, degrees of trust, inheritance, or other TCB-specific semantics. The next 
section shows how distinct command histories interleave their instruction to 
provide concurrency and how lock tokens are used for synchronization. 

2.3 Scheduler 

Concurrency is defined as an interleaving of the instructions in distinct com- 
mands histories. In a sequential environment, each command history is a state 
transition. In a parallel or distributed system, however, command histories are 
not atomic, so each interleaving of command instructions is a sequence of state 
transitions. 

Execution of history h is given by the scheduler 7, which sequentially applies 
the instructions in the history to the state. 

F(h, M,) = M, if Ih( =0 
Y(rest(h), T(first(h), Mx)) otherwise 
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where if 1 h 1 > 0, the first instruction in h is denoted by first(h), and the 
remainder of h is denoted by rest(h), and if 1 h 1 = 0, then first(h) is undefined 
and rest(h) = h. For example, for hi = ili2i3, first(h,) = il and rest(hj) = ipi3. 

Definition 1. Multiple command histories can be executed concurrently by 
interleaving the instructions in the command histories. The set of all possible 
concurrent histories generated from a command history set H, is an interleaved 
set (iset). 

iset = (h 1 is-iset(H,, h)] 

where 

true if 1 h 1 = 0 A ) H, ) = 0 

is-iset(Hj, h) = 
true if 3hk E Hj first(hk) = first(h) A 

is-iset(((Hj - (hk]) U Irest(hk rest(h)) 
false otherwise 

In other words, the iset of a command set is a concurrent history set. Iset is 
defined recursively, where, for each h in iset, first(h) is equal to the first 
instruction in some element hk of Hj. An interleaving contains all the instructions 
in the histories and preserves the relative ordering of instructions. For example, 
let H, = (ill&+, i12i2,], then 

iset = Iil,i2,il,i22, &,il,&,&,, G,il,i&, G,il,&,&,, i&,&2,, i&il,i2, I. 

Definition 2. The schedule set (scheduleset) of a command set and an initial 
state is the largest subset of the iset in which I is not reached. 

scheduleset(Hj, 1M,) = (h E iset 1 F(h, 44,) # I). 

For example, if i,, is not enabled in 7(il,, M,), then 

scheduleset(Hi,, AI,) = {il,i2,il,i2,, il,il,i2,i22, i,,il,i2,i2,, il,i2,il,i2,}. 

While the iset defines all possible concurrent histories, the scheduleset defines 
only those concurrent histories that may be chosen by the front end. In other 
words, the set difference between the iset and the scheduleset is the set of 
histories that execute blocked instructions. 

Serializable histories are defined next. The serializability definition is in terms 
of the permutation (perm) of a command history set. 

Definition 3. The set of permutations of a command history set Hj is called a 
perm. 

perm(Hj) = (h 1 is-perm(h, Hj)] 

where 

is-perm(h, Hj) 

i 

true if 1 h I = 0 A I Hj I = 0 
= true else if 3hk, h’ h = hkh’ A hk E Hj A is-perm(h’, Hj - (hk]) 

false otherwise 
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where hkhl denotes the history hl appended onto the end of history hk. For 
example, let Hj = (h,, h2, hs], then 

permW,i,) = lhlh2h3, h&b, h2hlh3, &h&l, hshlh2, h3h2hll. 

Definition 4. A command history set Hj is serializable if and only if every 
scheduleset history h that does not reach I yields the same final state as if the 
commands were executed in some serial order. 

serializable(H;) iff 
VM, E J&’ Vh E scheduleset(Hj, M,) 3h’ E perm(Hj) 
Y(h, M,) = Y(h’, Mx) 

For each M, in which scheduleset(Hj, M,) = 0, serializable(Hj) is vacuously 
satisfied. Otherwise, for each element of scheduleset(H,, M,), there must exist 
some sequential schedule of commands that returns the same final state. 

The serializability conditions are satisfied whenever all critical sections are 
nested and all instructions in distinct command histories that reference common 
coordinates are in shared critical sections. A critical section is a mutually exclusive 
sequence of instructions. Distinct instructions that reference common coordi- 
nates are called interfering instructions, and distinct histories that contain 
interfering instructions are called interfering histories. 

Definitions 5-7 reference histories and instructions, but may also be applied 
to commands and operations. As ancillary functions last and start define the last 
instruction, and all but the last instruction in a history, respectively. Both last 
and start are undefined for the null history and are defined in terms of reuerse, 
the instructions of a history in reverse order. 

where 

last(h) = first(reverse(h)) 
start(h) = reverse(rest(reverse(h))) 

reverse(h) = 
h if Ihl =0 
reverse(rest(h))first(h) otherwise 

The ancillary function get-lock extracts all the instructions from a history that 
reference locks. 

get-lock(h) = 
i 

h if IhJ =0 
first(h)glock(rest(h)) else if class(first(h)) = lock 
get-lock(rest(h)) otherwise 

Definition 5. A history h is nested if and only if all critical sections are nested. 

nest(h) = true if is-nest(get-lock)(h)) 
false otherwise 

where 

true if (coord(first(h)) = coord(last(h))) A 

is-nest(h) = 
(op(first(h)) = enter A op(last(h)) = delete) A 
is-nest(rest(start(h))) 

false otherwise 
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Definition 6. The critical sections (crit) of an instruction in a history is a set. 
Each element of crit is a locked coordinate. 

crit(h, i,) = is-crit(h, i,, 0) 

is-crit(h, i,, S) = 

0 if Ih( =0 
S else if first(h) = iQ A 

class(first(h)) # lock 
S U {coord(first(h))) else if first(h) = i, A 

class(first(h)) = lock A 
op(first(h)) = enter 

is-crit(rest(h), iGI, S) else if class(first(h)) # lock 
is-crit(rest(h), i,, S U {coord(first(h))J) else if op(first(h)) = enter 
is-crit(rest(h), i,, S - {coord(first(h)))) else if op(first(h)) = delete 

For example, consider the history h, given in the following, with critical sections 
marked by the braces. 

h = ili2i3i3i5 
-i-i 

Here, 

crit(h, iI) = crit(h, i2) = crit(h, is) = ]coord(i,)) 
crit(h, is) = crit(h, i4) = (coord(il), coord(&){ 

Definition 7. A command history set has proper critical sections (PCS) if every 
pair of interfering instructions from distinct command histories have a common 
critical section. 

true if nest(H,) A Vhk, hL E H, h, # hi =$ 

pCS(Hj) = 
V(i,, ib) E interfere(hk, hl) 

((crit(hk, i,) fl crit(hl, &)) # 0) 
false otherwise 

where 

interfere(h, h’) = {(ia, ib) 1 ia E in(h) A ih E in(h’) A coord(i,) = coord(&)) 

and 

in(h) = 
0 if (hl =0 
in(rest(h)) U jfirst(h)) otherwise 

Nested critical sections provide dynamic two-phase locking: “Lock each entity 
accessed by the transaction immediately before the corresponding action; release 
all locks immediately following the last step of the transaction” [41]. The theorem 
that dynamic two-phase locking ensures serializability is given by Papadimitriou 
in [41], and is utilized in our model. 

THEOREM 1. If a command history set Hj is PCS, then the command history set 
is serializable. 

PCS (Hj) - serializable(Hj). 
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A polynomial time validation algorithm that tests if the conditions of Theo- 
rem 1 are satisfied is straightforward and, for brevity, its details are omitted here. 

In general, the number of possible states that result from interleaved executions 
is factorial in the number of operations in a given set of commands. The 
1 iset 1 is the upper bound of the number of different schedules because 
iset is all possible interleavings of the commands. Any algorithm that verifies 
security by checking every schedule must, as an upper bound, check 1 iset 1 
different schedules. 

Definition 8. The size(Hj) is the total number of operations in the commands 
in Hj. 

size(H,) gf C I hk I 
h@‘, 

The ( iset 1 is given by the following formula:” 

I iSSt(Hj) I = 
(SiZe(Hj))! 

rI h@I,( I hk I!) . 

Since the formula is exponential in size(Cj), in many cases it may not be practical 
to validate security by enumerating every element of iset. The formula for size(&) 
is analogous. 

Since a polynomial time algorithm exists that ensures serializability, the 
security of results of concurrent execution for two-phase loacking can be verified 
in polynomial time. If we assume security for sequential execution is ensured, 
security for the results of concurrent execution is ensured. Section 2.4 presents 
a polynomial time algorithm for demonstrating security for intermediate states 
of concurrent execution. 

2.4 Principle of Least Privileges 

The definition of serializability (Definition 4) does not distinguish between 
S-PRES commands and SS-PRES commands because serializability considers 
only the final state. 

The security predicate sp is a function that maps each state into a Boolean 
value: 

sp 14 --, Boolean. 

The purpose of a security predicate is to formalize a security policy. The intuition 
is sp(M,) is satisfied if and only if M, is “secure” according to some given security 
policy. 

Not every policy defined in terms of states is a security policy. For example, 
every reasonable security policy describes a state with no privileges as secure. 
Below, three sp-assumptions are defined that restrict arbitrary security policies 
by restricting the definition of allowable sp functions. The sp-assumptions assume 

’ Consider size(H,) balls numbered between 1 and size(H,) inclusive, and 1 H, 1 boxes, where boxk 
holds hk balls. The formula (multinomial [15]) is the number of ways to put the balls in the boxes. 
Each configuration of balls in boxes corresponds to a member of iset. For example, suppose ball 1 
and ball 3 are in box 5, and ball 2 is in box 6. This configuration corresponds to an iset where the 
first three instructions are p15, p16, ~2~ such that pa, is the ath instruction in ck. 
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that the initial state, M,, is empty, that is M[row,col] = 0 for each row,col, and 
sp(M,,). Sp-assumption 1 is defined in terms of Definitions 9, 10, 11, and 12, 
given below. 

Definition 9. The initial sequence (initseq) of a history h is the history set that 
consists of all subsequences of instructions beginning with the first instruction 
in the history. 

where 

initseq(h) = {h’ ] is-initseq(h’, h)J 

true if (h’(=O 

is-initseq(h ‘, h) = true else if ((first(h’) = first(h)) A 
is-initseq(rest(h’), rest(h))) 

false otherwise 

For example, 

initseq(h) is the set:6 

h = iliz& 

(null, iI, iliz, ili2i3). 

As abbreviated notations, the initiset and initperm combine iset and perm with 
initseq, respectively. 

Definition 10. The initial list (initiset) and initial perm (initperm) of a com- 
mand history set are the respective sets of every initial sequence of an iset and 
perm, respectively. 

initiset(Hj) = {h’ ] 3h E iset h’ E initseq(h)j 
initperm(H,) = (h’ ] 3h E perm(H,)h’ E initseq(h)] 

The set of reachable states is the set of states that can be reached through 
some interleaved execution. 

Definition. 11. The set of reachable states from M, is every state reachable by 
an initiset. 

reachable(Hj, MX) = (MY ] 3h E initiset(Hj)Y(h, M,) = MYI. 

A token is called a privilege if the token is not a lock, for example, tok is a 
privilege if class(tok) # lock. A state My is a privileged subset of a state M,, 
denoted by My E M,, if, the set of privileges in each coordinate of M,, is a subset 
of its corresponding coordinate in M,. I is in the privileged subset of every state. 

My c M, iff 
M,=IV 
Vrow,col,tok class(tok) # lock A tok E M,[row,col] + tok E M,[row,col]. 

For example, consider states M, and M, presented in Table IV. From the 
definition of privileged subset, My c M,, but M, g M,,. 

61hl =O=+h=null. 
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Table IV. Notation 

MS MY 

col, col, col, col, 

row, lh, rl, r2t 0 row h t 1121 

row* b-31 Ir4t row2 II,) {r,) 

Definition 12. The privsub of M, is the set of all privileged subsets of M,. 

privsub(M,) = (My ( My c M,]. 

In the following, three sp-assumptions are presented which restrict the class 
of possible functions that map &’ to (true, false). 

sp-assumption 1. Every reachable subset of a reachable state is secure. 

VM,, My E reachable(Hj, MO) sp(M,) A My c M, j sp(M,). 

sp-assumption 2. The error state is secure. 

sp(l) = true. 

sp-assumption 3. The security predicate ignores locks. 

VM,, tok,row,col sp(M,) A class(tok) = lock +J sp(enter(tok,row,col)). 

Sp-assumption 1 formalizes the statement that loss of privileges should not 
imply less security. For example, if a user looses access to a file, then the result 
state should not be less secure than the initial state. 

Sp-assumption 2 defines the error state as secure. Since the error state cannot 
be reached without violating the instruction definitions (the error state can only 
be reached by executing a blocked instruction), sp-assumption 2 does not con- 
strain any reasonable security policy. 

Sp-assumption 3 ensures that locks and access privileges cannot be confused 
by the security predicate. 

Definition 13 represents a secure command history set. 

Definition 13. A command history set Hj is secure (security) if every state 
reachable by the command history set from a secure initial state M, is secure. 

security(Hj) iff VM, E reachable(H,, MO) sp(M,). 

Definitions 14-16 formally define the principle of least privileges, 

Definition 14. The begin and end of a history h are the instruction sequences 
up to the first enter instruction that does not reference a lock and the remaining 
instructions, respectively. 

Vh 3h’, h” h = h’h” A is-begin A is-end(h”) 

such that 

h’ = begin(h) and h” = end(h) 
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where 

isbegin 

true if lh’l = 0 
true = 

i 

else if (op(first(h ‘)) # enter V class(first(h ‘)) = lock) A 
is-begin(rest(h’)) 

false otherwise 

and 

is-end(h “) 

I 
true if lh”( = 0 

=- 

1 
true else if op(first(h”)) = enter A class(first(h”)) # lock 
false otherwise 

For example, let h = enter(l,, 1, 2)delete(r,, 1, 2)enter(r2, 1, 2). In this example, 

begin(h) = enter(Z,, 1, 2)delete(rl, 1, 2) 
end(h) = enter(ra, 1, 2) 

Definition 15. A command history h, is least privileged (leapriv) if all delete 
instructions that do not reference locks precede all enter instructions that do not 
reference locks. 

leapriv(hk) = is-leapriv(end(hk)) 

is-leapriv(h ‘) 

true if jh’l =0 
true = else if l(op(first(h’)) = delete A class(first(h’)) # lock) A 

is-leapriv(rest(h’)) 
false otherwise 

Definition 16. A command history set is a least privileged set (leaprivset) if 
every command history is least privileged. 

leaprivset(H;) iff Vhk E Hj leapriv(hk). 

Definition 16 is the formal definition of a least privileged command set. The 
conditions of Section 2.3 (Definition 7) when combined with Definition 16 provide 
security for all reachable states, provided all commands are ss-pres, defined as 
follows. 

Definition 17. A history set is ss-pres if every state reachable from the secure 
initial state via sequential execution is secure. 

ss-press iff Vh E initperm(Hj) sp(h, MO). 

2.5 Theorem for Security in Centralized, Parallel, and Distributed Systems 

This section presents and proves Theorem 2, a general-purpose security theorem 
for centralized, parallel, and distributed systems. 
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The proof strategy is to show that each reachable state is either I or a subset 
of some state reachable through sequential execution. Then, security is estab- 
lished by applying the sp-assumptions. 

Definition 18. The reachable sequential set (reach-seq) is the set of final states 
reachable through sequential execution. 

reach-seq(Hj, M,) = {MYI 3H, C H, 3h E perm(H,)M, = .F(h, M,)}. 

For example, 

reach-seq((h, hl, M,) 
= WI,, Y(h,, n/i,), .B(hz, Mx), Y(h,hp, Mx), Y(hA, &)I. 

Definition 19. The sub-reach-seq is the set of states that are reachable subsets 
of reachable sequential states. 

sub-reach-seq(Hj, M,) = {I) U is-sub-reach-seq(Hj, M,) 

where 

is-sub-reach-seq(Hj, n/i,) 
= (MY E reachable(Hj, M,) 1 3M, E reach-seq(Hj, M,)M, E priv-sub(M 

For example, sub-reach-seq((hl, h2), M,) is 

MY E reachable(Hj, M,) ) MY = I V M, E U 
M,Ereach-seq(lh,,h,l,M,) 

Definition 20. A command history set is ss-sub if every intermediate state 
reached through sequential execution is a subset of some final state reached 
through sequential execution. 

ss-sub(H,, M,) 

i 

true 
= 

if Vh E init-perm(Hj)Y(h, M,) E sub-reach-seq(Hj, M,) 
false otherwise 

LEMMA 1. If M, c MY, then for any history h, Y(h, Ml) c Y(h, My). 

PROOF. If 1 h 1 = 0, then Lemma 1 is obvious. Otherwise, assume, by induction, 
Lemma 1 for all but the last instruction, i, ,, , of h. By considering each possible 
kind of operation, that is, enter, delete, present, and absent, it is easy to see that 
Lemma 1 is satisfied after i,, executes. q 

Definition 21. The not subset (not-sub) of a command history set is the set of 
interleaved histories that reach a state that is not a subset of a state reachable 
through sequential execution. 

not-sub(Hj, M,) 
= {hEiset(Hj,M,) 1 !lh’Einitseq(h)Y(h’,M,)@sub-reach-seq(Hj,M,)). 

As an ancillary function, Lemma 2 references incomplete, the number of command 
histories that have not completed execution. 
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Definition 22. Incomplete denotes the number of command histories that have 
not yet completed execution. 

incomplete(Hj, h) = 1 Hj ) - comp(Hj, h) 

comdff,, h) 

0 if IhJ=O 

= 
l+comp(Hj-hh,rest(h)) elseif 3hhEH, first(h,)=first(h) A ) h,) =1 
comp(((H,- hk) U irest(h , rest(h)) elseif 3h,EH, first(hk) = first(h) A 1 hk 1 > 1 
0 otherwise 

For example, let Hj = (h,, hp, h3), where h, = i,,, h, = i,,iz2, and h, = il,i2,i3,. Let 
h be defined as follows: 

h = i,,i,,i,,i,,. 

Here, incomplete(Hj, h) = 2 because h, has completed execution, but h, has not 
yet executed ip, and h, has not yet executed iaa and iS3. 

LEMMA 2. The nested critical section condition and the least privilege condition 
ensure that the set of reachable states that are not subsets of states reachable 
through sequential executions is the empty set. 

VA4, E A’pcs(Hj) A leaprio * 1 not-sub(Hj, h/i,) 1 = 0. 

PROOF. Suppose not. Let h E not-sub(Hj, M,). Let h’ be the shortest initial 
sequence of h that yields a state that is not a privileged subset of a state reached 
through sequential execution. In other words: 

(i) h’ E initseq(h) 
(ii) F(h’, M,) $ sub-reach-seq(Hj, MX) 

(iii) Vh” E initseq(h’)Y(h”, M,) 4 sub-reach-seq(Hj, MX) + h” = h’ 

Let ii, = last(h’), and hk E H, be the history that contains ii,. Let i, = first(hk) 
and i, = last(hk). Let h” be the sequence of instructions in h between i, and ib 
inclusive, and hrv be the sequence in h after ii, and up to and including ic, as 
shown in the following. 

h= i, . . . i, . . . ib . . . i, . . . ilh, 

-,+ w,i 

h “’ h” 

Since ib is at the end of the shortest initial sequence that yields a nonprivileged 
subset state, op(&) = enter and class(&) # lock. The remainder of the proof has 
two cases, depending on the form of hk. 

Case I. In hk, at least one instruction enters a lock after ib. 

In other words, in hV’, shown below, 

h, = . . . i, . . . 
-- 

hY h “I 
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there exists at least one enter lock instruction. Thus, from the definition of nest 
(Definition 5), no delete lock instruction precedes ib, that is, in h”. Thus, from 
the definition of nest, there exists histories, h”” E iset( and h”“’ E 
initseq(h “I’) such that instructions of hk are not interleaved before ib in h “‘I, and 
h ““I yields the same final state as h ‘. Formally, 

(i) h”” E iset 
(ii) h “I” E initseq(h “‘I) 

(iii) Y(h”“‘, Mx) = 9-(h’, Mx) 
(iv) 3 h IXh “‘1’ = htxh “ib 

From Lemma 1, if Y(hIX, M,) E sub-reach-seq(Hj, M,), then Y(hIXhk, M,) 
E sub-reach-seq(Hj, Mx). However, this is a contradiction because F(htXhk, 
M,) = Y(h’, M,). As a result, assume F(hrX, n/l,) @ sub-reach-seq(Hj, M,). 
Note that hIx has no instructions from h,. Thus, 1 not-sub(Hj - (hh), M,) 1 # 0. 
So, by induction on 1 Hj 1, it can be shown that Case I is proved. 

Case II. In hk, no instruction enters a lock after i,. 

From the definition of nest, there exists a history hX such that 

(i) hX E iset 
(ii) Y(hX, M,) = Y(h) M,) 

(iii) Jhx’hX = h’hV’hX’ 

If F(h ‘h “‘, M,) # I, then from the definition of leapriv, (hh has no instruction 
after ib that deletes a token that is not a lock), 

Y(h’h”‘, Mx) @ sub-reach-seq(Hj, M,). 

In other words, after hk completes, the resultant state is not a subset of a state 
reached through sequential execution. The remainder of the proof is by induction 
on incomplete(Hj, h). 

If Y(h’h “‘I, M,) = I, then some present or absent instruction executes after 
ib, when the present or absent instruction is not enabled. However, it can be 
shown that such an instruction is unnecessary. 0 

THEOREM 2. If every history in a command history set satisfies the proper 
critical section, the least privilege, and the ss-pres condition, then every state 
reachable from the secure initial state is secure. 

pcs(H,) A leapriv(Hj) A ss-pres(H,) =+ security(Hj). 

PROOF. Suppose not for h E initiset(H,). If Y(h, MO) = I, then from 
sp-assumption 2, there is a contradiction and, as a result, Theorem 2 is 
proved. Otherwise, assume Y(h, MO) # 1. From Lemma 2, there exists an 
h’ E initperm(H,) such that .F(h, MO) E Y(h’, MO). From the definition 
of ss-pres, sp(Y(h ‘, MO)). Thus, from sp-assumption 1, sp-assumption 3, 
and ss-pres, sp(Y(h, MO)). 0 
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3. EVALUATION 

The purpose of a security model is to bridge the semantic gap between a security 
policy and a specification, as shown in Figure 3 (this section considers only the 
formal development path of system definition [21]). A policy is informal, while a 
specification is formal. A policy reflects administrative decisions, while a speci- 
fication reflects the behavior of an implementation. Furthermore, a policy does 
not define a system state. However, a specification defines execution on an 
abstract model of computation and is expressed in terms of states and state 
transitions. Finally, a policy is architecture-independent, while a specification 
defines a particular implementation. For example, the military security policy 
[2] does not define the number of nodes in a network, while a specification of a 
particular system that enforces the military security policy may define this 
characteristic. 

A security model has characteristics of both policies and specifications. 
First, a model is formal. It would otherwise be difficult, if not impossible [39], 
to verify a specification with respect to a model. Second, a model defines states. 
Otherwise, a model would not reflect the discrete nature of computing resources. 
Third, a model is architecture-independent. Otherwise, a model would be overly 
specific. 

This section evaluates the CPD model by presenting a taxonomy of security 
models (Sect. 3.1) and a comparison of the CPD model with other related 
security models (Sect. 3.2). 

3.1 Security Model Taxonomy 

The taxonomy describes different types of security problems and their corre- 
sponding models. The purpose of many different kinds of system models, such 
as security models, deadlock models, and fault-tolerance models, is to analyze 
and prove predicates. A state machine model’s predicate divides states into 
“good” states (e.g., secure states, deadlock-free states, k-resources-available 
states, and “bad” states, e.g., nonsecure states, deadlocked states, not-k-resources- 
available states). The purpose of a state machine model is either to prove a safety 
property, that is, that “something (presumably bad) will not happen” [29], a 
liueness property, that “something (presumably good) will eventually happen” 
[29], or some combination of safety and liveness properties. 

The first division of the security model taxonomy divides security models 
according to safety and liveness.7 The safety category contains all security 
models that define safety properties but not liveness properties, and the liveness 
category contains security models that define a combination of safety and 
liveness properties. 

The security policies that can be expressed by safety models are nondisclosure 
and integrity policies: 

-Nondisclosure. “The assets of a computing system are accessible only by 
authorized parties” [ 431. 

7 Security model taxonomies are controversial. For example, at the highest layer, other taxonomies 
divide security models into the classes: nondisclosure, integrity, and denial of seruice. 
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Security policy Security model Specification 

Formal No 
State definition No 

Architecture definition No 

Yes 
Yes 
No 

Yes 
Yes 
Yes 

Fig. 3. Policy-specification semantic gap. 

-Integrity. “Assets can be modified only by authorized parties” [43]. Assets may 
only be modified in an authorized manner. 

These are safety policies because they both define security for systems that 
prohibit a user or program from acquiring unauthorized access to an item. The 
security policies that can be expressed by liveness models are nondenial of service 
policies. 

-Nondenial of Service. “Assets are available to authorized parties. An authorized 
party should not be prevented from accessing those objects to which he or she 
or it has legitimate access” [43]. 

Nondenial of service is a liveness policy because it defines security for systems 
that assure that an authorized user or program will eventually obtain access to a 
desired item. The CPD model is a safety model and, as a result, the taxonomy of 
liveness models is outside the scope of this paper. 

The safety category is divided into privilege-based models and information- 
flow models. The distinction between the two classes is that the state in a 
privilege-based model is defined solely in terms of privileges, while the state in 
an information-based model includes the values of information storage units. 

Privilege-based models include access control models (e.g., [7, 261) and other 
models that define both access control and synchronization (e.g., the CPD model 
and [6]). In a privilege-based model, access rights, such as read and write, are 
considered privileges to access information; and synchronization primitives, such 
as locks, are considered “privileges” to continue execution. Privilege-based 
models have been used to express nondisclosure [3, 4, 7, 9, 12, 401 and integrity 
[6, 11, 31, 331. 

In an information flow model, “information is transmitted along an object 
when variety in the events engaged by a source user can be conveyed to a 
destination user as a result of their interaction with the object” [19]. Here, 
“interaction with an object” changes the object’s value (e.g., the value of a 
collections of bits, a file, or an encrypted message). The taxonomy divides 
information flow models into two categories: noninterference and deducibility. 
A noninterference model (e.g., [23, 25, 35, 36, 44, 451) provides information flow 
restrictions that may potentially prohibit one user from knowing that another 
user is on the system. A deducibility model (e.g., [ 17,501) may potentially prohibit 
one user from deducing “anything about the sequence of inputs made by a second 
user” [36]. Determining the difference between these categories is an open 
research problem. Currently, the difference depends upon the precise definition 
of interference, and the presence of determinism in the model of computation. 
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3.2 Security Model Comparison 

This section evaluates the CPD model in terms of the three evaluation metrics. 
The first metric, distribution (Sect. 3.2.1) describes a model’s ability to represent 
security in a distributed system. The second metric (Sect. 3.2.2) describes a 
model’s ability to accurately represent a design specification. The third metric, 
policy (Sect. 3.2.3) describes a model’s flexibility to represent different types of 
security policies. 

3.2.1 Distribution. Historically, most secure systems (e.g., [l, 16, 20, 46, 471) 
implement a centralized or possibly a parallel TCB, and security models for these 
systems (e.g., [7, 111) typically prohibit concurrency. Some new systems (e.g., 
[13, 181) however, are currently being designed with distributed TCBs. Currently, 
there exist many noninterference models (e.g., [22, 36, 44, 45]), but only a few 
privilege-based models (e.g., CPD model and [lo, 401) that define security for 
distributed systems. No privilege-based model, however, other than the CPD 
model, provides concurrency yet guarantees that every state reachable from a 
secure initial state is secure. 

Since the CPD model provides concurrency and references a global state, it is 
relatively easy to see that it can represent a centralized TCB. The CPD model 
may also represent a parallel or distributed TCB because the CPD model accounts 
for concurrency (e.g., Sect. 4 presents a representation of a distributed system 
with a shared printer resource). As a result, the CPD model can be used to 
represent all three types of architectures. 

Five aspects of the CPD model that are used to define distribution may require 
further motivation. 

(i) The CPD model prohibits feedback from affecting the input command set. 
(ii) The CPD model defines sequential instruction execution, but not sequential 

history execution. 
(iii) Some behaviors defined secure in the CPD model could potentially deadlock. 
(iv) The CPD model does not contain the operations create or destroy. 
(v) For some TCBs, sp-assumption 1 appears too restrictive. 

In some models [36,44] a user can query the state and use the result of the query 
to define the next input. The CPD model prohibits this type of feedback because 
the entire command set is input into it at initialization time. The input command 
set is defined in the CPD model as a free variable, which implies that any input 
that could potentially arise through feedback is a possible interpretation of the 
free variable. 

Another aspect is the apparent lack of sequencing between commands. In some 
situations, a user may wish to designate that command history, hk, execute before 
a second designated command history, hl. In this case, explicit synchronization 
is required in the definitions of the respective commands. For example, the 
respective commands may be defined such that the ninth operation in hl blocks 
until the third operation in hk executes. “The result of this policy [for command 
ordering] is that the desired policy is hidden within the program [commands], 
rather than being stated as an explicit rule that the system can then enforce” 
1141. 
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Security Models 

Safety/ YLivenesr 

/\ 
Privilege-Based Information-Flow Nondenial of Service 

Noninterfeqence Deducibility 

Fig. 4. Security model taxonomy. 

The third aspect is deadlocks. Security and deadlock avoidance are two differ- 
ent safety properties, where the set of secure deadlock-free behaviors is the set 
of all behaviors that satisfy both a CPD model security predicate and a deadlock- 
avoidance predicate. As a result, security and deadlock avoidance can be treated 
separately, where the CPD model neither helps nor hinders identifying deadlocks 
and a given deadlock-avoidance model neither helps nor hinders identifying 
nonsecure states. 

The fourth aspect is the apparent lack of create or destroy subject and object 
operations. In other security models (e.g., [7, 12, 26, 27]), explicit create and 
destroy operations increment or decrement the list of subjects and objects. These 
operations can be represented in the CPD model as moving a subject or object 
off a free list onto an active list, and off an active list onto a destroyed list, 
respectively. Since the CPD model uses an unbounded size matrix as its state, 
the alternative representation can be explicitly coded in the state by index tokens 
that represent the free list, the active list, and the destroyed list, respectively [9]. 

The fifth aspect is the apparent over-restrictiveness of sp-assumption 1. 
Upon close examination, sp-assumption 1 is defined only over reachable states. 
As a result, every security model that reaches only secure states satisfies 
sp-assumption 1. In other words, 

St?CWity(Hj) * sp-assumption 1. 

3.2.2 Design. This section argues that a privilege-based model, such as the 
CPD model, can be used to provide a good specification correctness criterion for 
a system that enforces a safety security policy. A security model is associated 
with two mappings, as shown in Figure 5, which indicates that the security model 
enforces the security policy, and the system specification enforces the security 
model. Since a security policy is informal, the mapping from a security policy to 
a security model is consequently informal [39]. However, the mapping from a 
specification to a security model may be formal [24, 28, 32, 381. 

As shown in the taxonomy of Figure 4, there are two categories of safety 
models: privilege-based and information flow. The primary advantage of a 
privilege-based model is that it may be easier to justify the mapping between the 
specification and the model, while the primary advantage of an information-flow 
model is that it may be easier to justify the mapping from the security model to 
the policy. The former potential advantage exists because a privilege-based model, 
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but not an information-flow model, can ignore internal TCB state variables 
without affecting the model’s formalism. As a result, privilege-based models have 
advantages in systems that permit some “legal covert channels.” Consider, for 
example, a system that contains a large number of sensitivity levels (e.g., 264) in 
which it is not practical to allow the scheduler to allocate a fixed time slice to 
each sensitivity level. The system contains a covert channel because low-sensi- 
tivity-level users may obtain information about high-sensitivity-level users by 
monitoring the system load average. The difference between the two categories 
of models, with respect to this example, is that security for internal TCB variables 
is not affected by changes in access permissions, but internal TCB variables are 
conduits for transmitting information. 

The primary advantage of an information-flow model compared with a 
privilege-based one is that an information-based model is a superior representa- 
tion of a security policy. In particular, in a privilege-based model “it is not clear 
what possibilities for security violations through covert channels still exist in the 
actual system” [49], while in an information-flow model, covert channels may be 
prohibited. Consider for example, a policy that is defined in terms of information 
values, for example, the Clark-Wilson model [14]. In this case the policy has an 
application-independent portion that can be represented by a privilege-based 
model and an application-dependent portion that cannot be represented by a 
privilege-based model. Here, the application-dependent portion requires that 
transformation procedures be certified to cause transitions between valid object 
states. Since a privilege-based model cannot define the information values, no 
privilege-based model security predicate can distinguish a valid from an invalid 
information value. 

3.2.3 Policy. Since the CPD model is a privilege-based safety model, it cannot 
be used to define a nondenial of service policy. However, it can implement a 
distributed version of many privilege-based security models (e.g., [7, 11, 26, 27, 
401). Since the CPD model does not define a specific instance of a security 
predicate, as in the case of [7, 11, 30, 341, it can be used to formalize a variety 
of different security policies. For example, the CPD model may represent a 
distributed version of the Bell-La Padula model [lo] and a multilevel secure 
file system [5]. 

4. A DISTRIBUTED SYSTEM EXAMPLE 

This section presents an example application of the CPD model-a representa- 
tion of a distributed system. The example depicts a system with three nodes, two 
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communication link 2 I I I 

I I I 

communication link 1 

Fig. 6. Example distributed system. 

communication link 2 

xiy 

r,w 

communication link 1 

r,w r.w 

Fig. 7. Nonsecure distributed system. 

communication links, and one shared disk, as shown in Figure 6. Communication 
link 1 (comml) connects all three nodes, communication link 2 (comm,) connects 
node, and node2, and the disk connects node2 and nodes. Each node is connected 
to its own local memory. 

A security policy for the distributed system defines privileges for communica- 
tion and memory access. For example, consider a security policy that restricts 
access to the shared disk. 

The distributed system is secure unless node, and node3 have simultaneous 
write access to the shared disk. 

An example nonsecure configuration of privileges is shown in Figure 7 (nonsecure 
privileges are circled). The figure shows that all three nodes have (r)ead and 
(W )rite access to comml . Also, node* has (r)ead and (w )rite access to commz and 
node2 has (W )rite access to commp. However, the distributed system is not secure 
because both nodea and node3 have (w )rite access to the shared disk. 
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comml commp disk node, mem node2 mem node, mem 

node, 0 a a 
node? 01 a N a 
node, a CY 01 

Fig. 8. Initial state. 

The CPD model can represent this distributed system by defining states where 
the rows represent nodes and the columns represent memory, communication 
links, and the disk. The initial state, M,,’ (shown in Figure 8) defines the system 
architecture, where the token (Y denotes a hardware link. For example, since 
there exists a link between node, and comm2, (Y E Mo[nodea, comma]. However, 
since there does not exist a link between nodea and comma, (Y @ MO [nodea, 
comm,]. 

The formalism for the security predicate (Sect. 2.4) is defined in the following. 

sp(M,) iff 
M,=IV 
13row,, row2 
q w E MX[rowl, disk] 
(Y, w E MX[rowp, disk] 

The initial state MO (Sect. 2.4) is secure because w is not in any coordinate. Also, 
the security predicate satisfies all three sp-assumptions: 

-sp-assumption 1. The distributed system can transition to a nonsecure state 
by gaining (as opposed to losing) a hardware connection or write privilege. 

-sp-assumption 2. The disjunction in sp ensures that the error state is secure. 
-sp-assumption 3. The security predicate does not reference a token of class 

lock. 

Depending on the system being modeled, there exist many potential command 
sets. So this section adds a new command, ck, to a previously existing command 
set, Cj, forming Cj U {ck), where it is assumed that Cj satisfies the conditions of 
Theorem 2, that is, every instantiation Hj of Cj satisfies pcs (Definition 7), 
leapriuset (Definition 16), and ss-pres (Definition 17). An example new command, 
ck, is defined in the following: 

command ck(n:node, c:comm, d:disk) = 
enter(&) n, d) 

present(cu, n, d) 
enter(l,, n, c) 

present(cY, n, c) 
delete(w, n, c) 

delete(l,, n, c) 
enter(r, n, d) 

delete(l,, n, d) 

s For brevity, unused rows and columns are not shown in Figure 8. 
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Command ck deletes w from the [n, c] coordinate and enters r to the [n, d] 
coordinate. Provided every command in Cj follows the convention that a coordi- 
nate is locked before it is referenced, pcs(H, U (hk)), for each instantiation. Since 
c, executes its delete privilege operation, delete(w, n, c), before its enter privilege 
operation, enter(r, n, cl), every instantiation of cj satisfies leapriv. Finally, since 
cj enters neither o( nor w, cj satisfies ss-pres. As a result, since (i) the security 
predicate satisfies all three sp-assumptions, (ii) sp(M,), and (iii) every instan- 
tiation of (Cj U (ckl) satisfies all three conditions of Theorem 2, for each 
instantiation, 

security(Hj u {hk]). 

The example shown in this section is relatively simple because it contains only 
a few simple nodes and communication devices. Each command represents a 
single thread of execution and may only modify the state in a single row or 
column. In general, there may be multiple active entities (subjects) on each node, 
multiple slots on the communication media, and multiple partitions on the disk. 
A CPD model representation of the more complex distributed system contains a 
row corresponding to each active entity and a column corresponding to each 
passive entity. A security predicate could potentially distinguish between entities 
on each node. For example, a security predicate may permit a trusted subject 
residing on node2 access to the disk, but prohibit an untrusted subject on the 
same node from accessing the same disk. A detailed example of a CPD model 
representation of a nontrivial distributed file system is described in [9]. 

5. CONCLUSION 

The contribution of this paper is a formal protection model for centralized, 
parallel, and distributed systems. In general, parallel and distributed systems are 
difficult to model because of the complicated interactions of concurrent execu- 
tions. This problem is solved by proving Theorem 2, which demonstrates condi- 
tions for ensuring security for parallel and distributed systems. The conditions 
are relatively easy to validate. 

In future research, the CPD model will be used as a fundamental building 
block of a composability model. Composability will show that if a countable 
number of command history sets satisfy their respective local security predicates, 
then the composition command history set satisfies the composition security 
predicate. The approach is to define a set of composition operators that guarantee 
composability. One composition operator will use the CPD model results to prove 
that the conditions of Theorem 2 and the sp-assumptions guarantee composabil- 
ity. Further research will define classes of composable safety properties that are 
applicable to nonserializable systems. 
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