
Informafion Systems Vol. 16, No. 3, pp. 345-356, 1991 0306-4379191 $3.00 + 0.00
Printed in Great Britain. All rights reserved Copyright 0 1991 Pergamon Press plc

ANALYSIS OF A DEFERRED AND INCREMENTAL
UPDATE STRATEGY FOR SECONDARY INDEXES

EDWARD OMIECINSKI, WEI LIU and IAN AKYILDIZ

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A.

(Received 22 April 1989; in revised form 18 July 1990; received for publication 21 February 1991)

Abstract-Many relational database systems use secondary indexes to reduce the access cost of retrieving
data in response to a user’s query. However, a secondary index incurs an additional cost due to the update
maintenance of the index. In some cases, this cost may be greater than the cost to update the desired tuples.
This paper examines a deferred index update strategy which does an incremental update of the index. The
approach introduced, which uses a differential file, can reduce the cost of updating a secondary index by
slightly increasing the cost that will be associated with searching the secondary index. This is true as long
as the differential file size does not become too large. As such, a model is presented for solving the
distribution of the size of the differential file. The maximum size of the differential file is oredicted bv
interpreting this distribution. In addition, the analytical results are compared with simulation results.

Key words: Differential file, secondary index, incremental update, relational database

1. INTRODUCTION

The advantages of using an index for the retrieval of tuples from a relational database is well known
[l, 21. The benefit of having indexes is offset by the cost of maintaining the indexes in the face of
updates. For some updates, the cost of maintaining the index may be greater than the cost of
updating the desired set of tuples in the relation [3]. In this paper, we describe a strategy for
updating secondary indexes which can be classified as deferred and incremental. By deferred, we
mean that the index is not updated when the user’s update statement is executed. Rather, the
appropriate changes are simply recorded for later update of the index. By incremental, we mean
that only certain recorded changes will be applied to the index at a given time. We stress that only
the index updates are deferred and that the tuple updates are performed by the user’s update
statement. We provide a performance analysis of our method and show that it can reduce the cost
of updating the index at the slightly increased expense of searching the index.

As pointed out in [3], the update maintenance cost (i.e. the cost of updating the appropriate
tuples and indexes) are dependent on the following: the type of scan used to search for the tuples
to be modified and the type of predicates specified in a user’s update statement. Simple update cost
formulas are presented in [3]. In general, an update of a relation and its associated indexes is
performed by first choosing a relation scan method; then retrieving and modifying the desired
tuples; and finally by modifying the index entry for each modified tuple, if necessary.

We assume as in [3], that access to a relation in our database is either through a sequential file
scan or through indexes. We assume that each index is organized as a B + tree, where at the leaf
pages, each key value is followed by a sorted list of TZDs, i.e. identifiers of the tuples where the
key value appears. There are two basic methods for retrieving tuples via indexes. One is the
single-index method [2], where one of the available indexes on the relation is used. For this
approach, one tuple identifier is selected at a time (from the index) based on the specified selection
predicate. Afterward, the corresponding tuple is retrieved and checked with the other selection
predicates, if any. The other approach is the TZD intersection method [3]. With this method,
multiple indexes are searched and a list of TZDs of qualifying tuples is formed for each index. These
lists are later intersected and the corresponding tuples are retrieved and checked with any remaining
selection predicates. In this paper, we consider only the updating cost of the indexes and not the
updating cost of the tuples. In addition, we assume that the single index method is used.

At this point, we would like to discuss the index update costs. When evaluating the cost of an
index update, it is important to distinguish the order in which the leaf pages of the index are
examined. There are two cases to consider [3]. The first case is when the modification is done on

345

346 EDWARD OMIECINSKI et al.

an index following a scan that is unordered with respect to the order of TID groups in the index
leaves. For our situation, this happens when the modification is done to a secondary index
following either a sequential file scan or an index scan on some other index. The second case is
when the modification is done on an index following a scan that is ordered with respect to the TID
groups in the index leaves. For our situation, this happens when the secondary index is modified
and only one key value is used or when the index that is modified is used as the scan method. For
the relational database system, System R [2], the latter case cannot occur since it would lead to
(possibly) accessing a tuple multiple times. This is due to making changes to the index while it is
being scanned. Since we use a deferred update strategy, the index which is to be modified can be
used as the scan method. This is also true in INGRES [4].

The cost [3], ~1, in number of I/O accesses, to fetch and update a new leaf page is given as (2 + a).
The constant 2 is due to one access to read the leaf and one access to rewrite it. The term 2 is the
number of accesses due to reading intermediate level pages in the index. The value of 1 depends
on the buffer management policy [I 1.

An index update may be viewed as consisting of two parts: a delete followed by an insert. For
example, when a secondary key of a tuple changes value, the TZD for that tuple is removed from
the TID group for the old-key value and is inserted into the TID group for the new-key value. A
typical update changes the value of an attribute of a tuple to a constant or to a new value which
is calculated from some expression. Assume that the new-key value is calculated using the current
value of the key, E tuples are to be updated and the key value of successive tuples, to be updated,
is different. For the insert part, this implies that each TZD will be assigned to a different leaf page.
The I/O cost, for the insertion, is uE. If the new-key value is simply assigned a constant for all the
updated tuples but the remaining assumptions are the same, then we assume that the TZDs will
fit on the same leaf page. The I/O cost, for the insertion, for this case is just tl. Now to consider
the delete part of the update. If we are doing an unordered scan and the successive E TZD deletes
are done from different leaf pages, then the I/O cost is ME.

We illustrate a (somewhat) typical update and its associated cost using the formulas presented
above. We use the following relation:

EMPLOYEE(NAME,NUMBER,DEPARTMENT,SALARY,TELEPHONE).

We use an SQL update statement to give a 10% salary increase to employees working in the “Shoe”
department. The update is shown below:

UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1
WHERE DEPARTMENT = ‘SHOE’

Let us assume the following conditions:

- there is a secondary index on SALARY
- there is a secondary index on DEPARTMENT which is chosen as the access path
- the number of tuples to be updated is 50, i.e. E = 50
- the height of each B-t- tree index is 3, if the root of each index resides in main memory

then 1 = 1 and thus c1 = 3

With the above assumptions, the number of page accesses required to perform the update of the
SALARY index would be 300, i.e. 2aE. Now, let us look at the tuple update cost. The
DEPARTMENT index is searched to find the TIDs of the qualifying tuples and that this accounts
for 2 I/OS, as long as the 50 TZDs are on one leaf page. Nex, the 50 qualifying tuples are read and
rewritten. This costs 100 I/OS, if the tuples are on distinct pages. Thus, the total tuple update cost
is only 102. This is approx. l/3 of the cost associated with updating the secondary index. From
this example, the motivation for reducing the update cost of secondary indexes is clear.

2. PREVIOUS RESEARCH

In [5], the use of a differential file is proposed. The differential file stores all updates, leaving the
main file unchanged. For a query, it needs to be decided whether the requested record is in the

Analysis of an update strategy for secondary indexes 341

differential file. If this decision is made incorrectly then the differential file is searched as well as
the main file and a double access is made. Eventually, the differential file and main file are merged.
By consolidating changes in this manner, it is possible to reduce backup costs and speed the process
of database recovery. In [5], they were interested in designing a Bloom filter which would indicate
whether a given record could be found in the differential file. As the differential file grows, the
discrimination power of the Bloom filter becomes worse. This causes an increased number of
unnecessary searches of the differential file and precipitates the file merging. In [6], the differential
file is studied in the context of backup and recovery. They present an analytical model and a design
algorithm. In [7], differential files are used to support hypothetical relations.

In [8,9], the use of a differential file for updating a main file which is organized as a B+ tree
is presented. In both [8] and [9], the approach is to perform an efficient batch update of the
tree-structured main file. They both show that sufficient savings (in number of page accesses) can
be realized if the updates are batched instead of executed individually. Both of their approaches
apply only to a primary index file. In [8], they are concerned with determining the optimal time
at which the batch update should take place. In [9], they use a tree structure for the differential
file and assume that it can reside in main memory.

Instead of performing a batch update or file reorganization, others [lo] have proposed to do
incremental updating of the main file. By incremental updating, we mean that one or more of the
main file records will be updated at various times, i.e. not all records are updated at once. Usually
an update will be triggered by a query. That is, if some of the retrieved records are ones that need
to be updated, the!1 the update will take place at that time and the updated records will be rewritten.

In [lo], they advocate an incremental update policy when updates involve a set of records and
since the retrieval and update of records overlap, a reduction in I/O costs can be expected. In [lo],
the differential file does not contain the updated records, rather the update procedure. So, when
a record is retrieved, a filtering mechanism determines whether there is an associated update
procedure(s) in the differential file. If there is, then the update is done at that time. This approach
is for the deferred update of the actual tuples and nothing is said about the update of existing
indexes. Also, no analytical model or simulation is provided to substantiate the effectiveness of their
approach.

In [111, an incremental and deferred update strategy is presented for the maintenance of text
indexes. Their emphasis is on concurrency control methods and efficient data structures for the
deferred update information. In particular, they examine the use of a bit vector, a transaction
oriented key-word list and a key-word oriented transaction list as data structures. These data
structures can be used for storing lock information which is used in detecting possible inconsisten-
cies as well as for storing the deferred update information. They also compare the storage needed
for these three data structures in five different environments.

The architecture for integrating a mainframe database system and a large number of workstation
database systems is presented in [12]. One feature of this system is the deferred index update
strategy. When a query needs to use an outdated index, it updates it first by batching, sorting and
merging all updates together [12]. In a similar vein, a deferred view materialization strategy is
presented in [13] which uses a differential file and updates a materialized view just before data is
retrieved from it. A performance analysis is also provided in [13]. These two approaches are
different from what we term incremental because all of the updates in the differential file are
performed whenever the index or view is accessed. This may be reasonable for materialized views
but we do not believe that it is for indexes, since one query would shoulder the costs of all the
updates.

3. DEFERRED AND INCREMENTAL INDEX UPDATE

Our deferred and incremental index update approach uses a differential file which grows as
updates are executed and shrinks as queries are executed. A record in the differential file consists
of the following attributes: a TZD, the old-key value and the new-key value. It looks similar to a
record in the database log, which is used for recovery. For our purpose, we assume that the
differential file is a simple sequential file with an update inplace capability. This is a suffcient file
structure as long as the differential file can reside in main memory. In addition, a record with a

348 EDWARD OMIECINSKI et al.

particular TID value occurs only once in the differential file, no matter how many times the
corresponding tuple has been updated. We do not need to keep a trace of all changes made to a
particular tuple’s key value since the update of the tuple has already taken place. We simply need
to know what TID list currently contains the particular TZD (for deletion) and what TID list should
now contain the particular TZD (for insertion). We can employ a standard locking protocol to
insure consistency.

Alternate differential file structures, such as tree-based or hash-based files are possibilities as well
as having separate differential files for the deletion part of an update and insertion part of an
update. These options will be explored in future work.

The update procedure is simple and is shown below:

1. Access tuples to be modified (via a single index or file scan). If access is through the
secondary index, then the query procedure (which follows) must be invoked.

2. Modify tuples.
3. For each indexed attribute, of the modified tuples, that has been modified:

if the TZD for this tuple does not appear in the differential file then write a new record
to the differential file

else update the new-key value for an existing record in the differential file

A naive query procedure, which uses the secondary index as the access method, is shown below.

1. Follow the appropriate path from the root to a leaf page of the index (the leaf page contains
key values and their associated TZD lists).

2. Search the differential file for key values which match the requested key values contained
on the leaf page.
2.1. If the old-key value, from a record in the differential file, matches then delete the

corresponding TID value from the TID list for the key and set the old-key value to
null.

2.2. If the new-key value, from a record in the differential file, matches

then if the old-key value is null
then

insert the corresponding TID value in the TID list for the new key and
set the new-key value to null

else
save the TZD value in a temporary TZD list.

2.3. If both both the new-key value and the old-key value, for a record in the differential
file are null, then delete that record from the differential file.

3. If necessary, access the next leaf page and go to Step 2.
4. Retrieve the tuples for the TID lists which have been found (including the temporary TZD

list). The TID lists contain any modifications as performed in Step 2.

We now present a simple example, which illustrates the query and update procedures. We have
the following relation, PARTS(PART # , CITY, PARTNAME) whose contents is illustrated in
Fig. 1. We have a secondary index on CITY, which is illustrated in Fig. 1. There is also an index

SECONDARY INDEX

CITY TIDLIST

PARTS RELATION

TID PARlv ClTY PARTNAME

Fig. 1. Index a lnd

006 106 1 LONDON 1 WASHER

relation contents.

Analysis of an update strategy for secondary indexes 349

D-IALFILE

TID UPDATEDTUPLE ‘IID OLDKEY NEW KEY

001 101 LONDON NUT 001 NEW YORK LONDON

Fig. 2. Modifications after update is executed.

on PART # , but since its contents will not change we defer from showing it. The differential file
is initially empty.
Assume that the following update is executed:

UPDATE PARTS
SET CITY = ‘LONDON’
WHERE PART # = 101

Since an index on Part # exists, we assume that the query optimizer would utilize the index in
the access plan produced for the update, although this is not mandatory. The desired tuple is
accessed via the PART # index and the tuple is modified, i.e. the CITY value is changed from
NEW YORK to LONDON. Since the index update is deferred, the CITY index is neither searched
nor modified at this time. However, a record is stored in the differential file. The results are
illustrated in Fig. 2.
Now, suppose the following query is executed:

SELECT*
FROM PARTS
WHERE CITY = ‘NEW YORK’

For the preceding query, a typical query optimizer would use the CITY index as the access path.
That is, the TID list for NEW YORK would be retrieved. In addition, the differential file would
be searched. In this case, the old key value for a record in the differential file matches the desired
value. As indicated in Step 2.1 of the query procedure, the TID value i.e. 001, would be deleted
from the TID list for NEW YORK. The remaining TID values would be used to retrieve the desired
tuples. In addition, the old key value corresponding to TID value 001, in the differential file would
be set to null. This is shown in Fig. 3.
Now, suppose the following query is executed:

SELECT*
FROM PARIS
WHERE CITY = ‘LONDON’

Once again, we assume that the access path chosen by the query optimizer is the CITY index.
As such, the TID list for LONDON is accessed. The differential file is searched and the desired
key value is matched with the new key value for a record in the differential file. As described in
Step 2.2 of the query procedure, the TZD value, i.e. 001, is inserted into the TZD list for LONDON
and the new key value in the differential file record is set to null. Since both the old key and new
key values are null, the differential file record is deleted, i.e. the deferred update has been completed.
The end result is shown in Fig. 4.

We should note that if the execution order of the above two queries were commuted, then the
differential file would still contain a record for the tuple whose TZD value is 001. The old key value
for that differential file record would be null but the new key value would still be LONDON. This

SECONDARY INDEX DIFFERENTIAL-

Fig. 3. Modifications after NEW YORK query is executed.

350 EDWARD OMIECINSKI et al.

SECONDARY INDEX

F
Fig. 4. Modifications after LONDON query is executed.

can be seen from Step 2.2 of the query procedure. The reason for doing this will be explained
shortly. Hence, to have that record deleted from the differential file, another LONDON query
would have to be executed.

The query procedure can be improved by reducing the number of scans of the differential file.
By using buffer space efficiently, a group of leaf pages can be read into the buffer and one scan
of the differential file can be made for each group. From the above search algorithm, one can see
that if a record from the differential file satisfies only Step 2.1, then the TZD from that record will
be deleted from the index. If a record from the differential file satisfies only the first if-condition
of Step 2.2, then the TZD will be used for record retrieval but not for index modification, at this
time. We do this so that only one record in the differential file is needed per tuple, regardless of
the number of key value changes that have taken place on any given tuple. This is proven in
Theorem 1. Thus, the maximum differential file size, in records, is equal to the relation size in
records (tuples). Although, a record in the differential file should be much smaller than the tuple
size. Remember, that the actual tuple update has taken place, it is just the index update which is
deferred.

Only, when Steps 2.1 and 2.2 are done for a given record in the differential file will the update
be complete. Hence, a particular TZD will occur in the index at most one time and possibly be
absent from the index during the deferred update. This is shown by Lemma 1, whose proof appears
in the Appendix. Also, there is no inconsistency since the differential file is searched before records
are retrieved.

Lemma I

According to the search and update algorithm, a given TZD in the differential file, e.g. TZD i,
will appear in 0 or 1 TZD lists in the index.

Before we present Theorem 1, whose proof appears in the Appendix, we first want to give the
following definition of a consistent view of a relation (file). A consistent view is defined in the
context of a search for a particular key.

DeJinition

If the TZDs retrieved by searching the index and differential file correspond to the tuples in the
relation that contain the desired search key, then we say that there is a consistent view of the
relation (file).

Theorem 1

The deferred update scheme presents a consistent view of the relation, regardless of the number
of updates.

We should note that if the second if-condition was not included in Step 2.2 of the search, i.e.
checking if the old-key value is 0 before modifying the new-key value, then an inconsistent view
could arise. Consider the following record in the differential file: TZD = 1001, old-key = Chicago
and new -key = Miami. Let us search for the key value equal to Miami. Suppose, we set the new -key
equal to 0 in the differential file and insert TZD 1001 in the Miami TZD list. Now TZD 1001 occurs
in two TZD lists. Now, suppose there is an update for TZD 1001 such that the key value should
be changed to Atlanta. For a subsequent search for the key value equal to Miami, TZD 1001 would
still be retrieved since it appears in the Miami TZD list, although the key value in the corresponding
tuple is Atlanta. We would not know that TZD 1001 should be deleted from that list. Hence, an

Analysis of an update strategy for secondary indexes 351

inconsistent view of the relation is seen. An alternative which avoids this problem is to keep a
differential file record for each individual update associated with a ?YD. However, the size (in
records) of the differential file could possibly become a great deal larger than the number of records
in the relation, i.e. our worst case situation.

The usefulness of our incremental and deferred index update approach hinges on the size of the
differential file. If the differential file is small enough to reside in main memory, then there is a small
penalty associated with searching the differential file, The searching consumes CPU time but no
I/O time. Again, the differential file will be searched for each query which does an index scan of
the associated secondary index. For the actual update cost, we no longer include the cost to search
the index since the index search is done by the query. However, the additional overhead of writing
a leaf page(s) back to secondary storage, i.e. updating the TfL) lists, is attributed to the query.
Overall, we save the double search of the index, i.e. there is no need for the update procedure to
search the index for the old key value nor for the new key value.

Since the differential file size is important, in the following section, we develop an analytical
model to determine the likelihood that the differential file reaches a particular size. Also, in a
subsequent section, we compare the analytical model with results from our simulations.

4. ANALYTICAL MODEL OF DIFFERENTIAL FILE SIZE

The performance analysis of database systems has become an important research topic in the
last decade. Analytical models are used in describing the system’s behaviour and predicting the
performance 16, 14, 151. Executing transactions against a database system can be viewed as a
stochastic process. As such, a direct and inexpensive way to predict performance measures is with
an analytical model. In the context of our problem, we develop an analytical model which describes
the size of the differential file. With an update transaction for the differential file, some population,
i.e. number of records, arrives and with a search transaction, some population departs. If the arrival
rate does not exceed the departure rate, then the differential file will enter an equilibrium (steady)
state. The analytical model is solved iteratively and the iteration converges if the system is in an
equilibrium (steady) state. In case of a non-equilibrium state, i.e. the arrival rate is greater than
the departure rate, the differential file will not stabilize. This situation can be detected in the
iteration by observing that the current dist~bution is centered on the maximum size. We can
conclude that in this case, the records will eventually a~umulate to reach the upper limit of the
size of the differential file, i.e. one record for each record in the relation. We assume that the relation
itself is in an equilibrium state, i.e. the number of tuples in the relation is fixed, since we do not
consider insertions nor deletions in our model. Incorporating insertions and deletions in an area
of future work.

Let us denote P[size = S] as the probability that the differential file size is s, for s = 0, 1, . . . , Sm,
and P[i-+s] as the probability that the size of the differential file before the transaction is i, and
after the transaction it is s. According to our update and search scheme, a record in the differential
file contains three fields: the TID, the old-key value and the new-key value. For a single update,
a new record will be added to the differential file if and only if the TID of the record being updated
is not contained in any of the existing differential file records. For a search transaction (single key
or range of keys), if the oId-key ualue for a differential file record is matched, then this value is
set to @ and the indexed file is modified. A match on the new-key value will result in the record
being deleted if and only if the old-key value in that record is a. Therefore, P[i+s] is determined
by the number of records with the old-key value of 0.

To characterize the above phenomenon, we use P[empty Is] to denote the proportion of records
with an empty old-key value when the differential file contains s records. It is obvious that for each
record in the differential file of size s, the probability that its old-key value is empty is also
PIempty Is]. The search transaction is treated as if it consisted of two steps. First, when the old-key
zulue is matched, it is set to @. This results in P[empty Is] being changed to a new value, N(s,j),
where j = 1 denotes a single key search and j = 2, . . . , Rmx denotes a range search consisting of
two keys through R,,, keys. The variable R,,, denotes the maximum number of keys in a range
query. The calculation of N&j) will be given later. The second step is to match the new-key value.
It should be noted that P[empty is] changes from transaction to transaction. For example, when

352 EDWARD OMIECINSKI et al.

one record is added to an empty differential file, then P[empty 1 l] = 0. After a search P[empty 1 l]
will become either 1 or remain 0, depending on whether the old-key value is matched or not.
Another consideration is, that if P[size = s] = 0, then P[empty Is] is undefined. In other words, if
the differential file has not reached a size of s, then it is meaningless to consider that case. The above
two considerations direct us in the calculation of P”)[empry Is] where t denotes that t transactions
have been processed. We use PC’- ‘)[empry Is’] for all stages s’ that can reach s. That is, the
differential file can change from a state having s’ records to a state having s records. Also,
PC’ - “[empty 1 s ‘1 is undefined if PC’ - “[size = s ‘1 = 0.

Next, we develop an iteration model to calculate P[size = s] based on P[empry Is]. After
computing the distribution for the size of the differential file, we can compute the maximum size
of the differential file after t transactions have been processed. This parameter is crucial in
determining whether there exists enough main memory to contain the whole differential file and
thus speed up the update and search transactions considerably. The maximum size can be predicted
from the size distribution as follows. It should be the first value following the average size with
probability less than l/t. For example, if P[size = s] = 10w6, then it means that it is unlikely that
the size s will be reached once within 100,000 transactions since the probability is 1/106.

We use the following notation in our model:

Prob[up] = probability of an update
Prob[ss] = probability of a single key search
Prob[rs] = probability of a range search

S,,,,, = maximum size (in records)
R max = maximum number of keys in range search
K mox = number of distinct key values in the relation

Initially, we set P(“)[size = 0] = 1 and P(‘)[size = i] = 0, for i = 1, . . . , SMX. All P”‘[empty Is] are
undefined for s = 1, . . . , Sm,. Iterate over equations (l-5), i.e. I = 1, . . . , ceil, until the difference
between the average size of the differential file in two successive iterations is less than an epsilon
(6 = 10P4) value.

The probability that after t transactions, the differential file size is s, is the sum of the product
of the following two probabilities: the probability that the differential file was of size i after t - 1
transactions and the probability that the next transaction causes a transition into a file size of s
records. This is shown in equation (1):

P(‘)[&e = s] = ‘r PC’- “[size = i] * p(‘- ‘)[i+s],
(1)

i=O

where PC’-“[i-s] is computed by equation (4).
P(‘)[empty Is], in equation (2), is defined in a somewhat similar manner, except now, we have to

take into account Q(‘- ‘) [i-s] for every i-value that can lead us to a state with s records. Q’[i-s],
as will be defined in equation (5), is the proportion of records whose old-key value is 12/ for a
differential file that has i records after t - 1 transactions and has s records after t transactions:

P(‘)[empty) s] = undefined, if P”‘[size = s] = 0, CW

Gfl,
1 PC’-“[size = i] *PC’-‘)[i+s] * Q(‘-‘)[i+s]

P(‘)[empty Is] = i=”

;g

9 (2b)
PC’- “[size =j] - PC’- “[j-b,]

where Q(‘- ‘) [i-s] is defined in equation (5).
The following equation yields the new proportion of records with an old-key value of 0. This

is relative to the differential file size and the number of keys which appear in a search request. This
formula will be used in defining Q’[i-s] as shown shortly.

IV”- “(s,j) = PC’- “[empty (s] + (1 - PC’- ‘fempty 1 s]) - & ,

fors=l,... , S,,, such that PC'- “[size = s] > 0 and j = 1, . . . , R,,.

Analysis of an update strategy for secondary indexes 353

Equations (4a-d) depict the four possibilities for a transition in the differential file size. Formula
(a) indicates that we have an update for a new TZD, hence, the file size is increased by one record.
Formula (b) indicates that we could have an update on an existing record in the differential file
or a query (single key or range) that matches records which have a non-empty old-key value.
Formula (c) represents the case where there is a search that matches the new-key value for 6 records
which have an empty old-key value. So, those records can be deleted:

P” - ‘)[.s --+s + l] = Prob[up] *
(>

1 - & , (if P(’ - “[size = f] > O),
may

PC’-“Is-s]=Prob[up]~+Prob[ss] 1 -NC’-‘I(& l).g- s
max (mx >

KIWX
+ Prob [rs] * C

1
----“-i 1-N’f-l’(s,j).$-

j=2 Rmox- ('1

)
nlax

(if PC’- “[size = s] > 0), (4b)

P(‘-ys-+s -6]=Prob[ss]~ N(‘- ys, 1) * -!- 1 -NC’-‘)(s, I,.$-
s-6

K rnax mn.r

6

>(
1 _N’f-l+&i

s-6

K mar

(if P(‘- “[size = s] > 0 and for 6 = 1, . . . , s) (4c)

PC’-“[i+“j] = 0 for all other cases. (44

,4gain, we consider the possible state transitions for the differential file in equations (5a-e).
Except, that here we calculate the proportion of records in the differential file whose old-key value
is 0. The value for Q(‘- ‘)[i+j] depends on the proportion of records whose old-key-value matches
a search key, as shown in formulas (b) and (c).

Q@- “[O-*0] is not defined and is never used, (54

Q(‘-‘)[O_, 1] = 0 (5b)

Q(‘+“fs-+s] = Prob[up] * P”-“[empty is] + prob[ss] * N(‘-lf(s, I>

+ Prob[rs] * ‘r
1

_____ NC’- ‘)(s, j),
j=2km,- 1

(if PC’-. l)[size = s] > 0), (5c)

Q(t-‘)[S-+.$ -6]=
Prob [ss] s*N(‘-‘I(& l)-6

Prob [ss] + Prob [rs] S-6

Prob [rs] &YX
+ .x2.- s * N”-“(s,j)-6

Prob [ssf + prob[rs] j=2 R,, - 1 s-6)

(if P(‘-“[size =s] > 0),

p- ‘)[s--+s’] = 0, for all other cases.

5. COMPARISON OF ANALYTICAL AND SIMULATION RESULTS

In order to validate our analytical model, we simulated the system. The goal of our simulation
is to keep track of the differential file size after each individual transaction as well as the maximum
and average sizes. We divide transactions into two classes: update and search. The search class is
further divided into single key search and range search. The update class can be divided into four
types. However, it appears to be difficult to devise an analytical model which would take into
account all four types. Our approach is to develop a model for the most straightforward type of
update and then to later make additions to our model to handle one additional class at a time.

354 EDWARD OMIECINSKI et al.

Table I. Results for analytical model and simulation

Maximum file size

Update (%) Query (%) Simulation Model % Difference

10 90 29 33 13.79
20 80 57 60 5.26
30 70 84 90 7.14
40 60 119 137 15.13
50 50 157 179 14.01

Hence, our preliminary analytical model handles only one type of update, i.e. updating a key value
for a single tuple (TZD), and since we are interested in comparing the results of the simulation with
the analytical model, we only run the simulation for this one type of update.

The simulation is transaction driven where transactions are randomly generated. We have a
parameter for the percentage of updates (or the percentage of searches). From Table 1, we see that
the percentage of transactions that are updates vary from 10 to 15%. For a given update, a TZD
is chosen randomly. For searches, we have an additional parameter for the percentage of single-key
searches (or the percentage of range key searches). To generate a range key search we randomly
choose a number between some minimum and maximum range, e.g. 2-10 consecutive keys. In the
simulation we held the percentage of range and single key transactions constant, i.e. 50% range
and 50% single. The relation consists of 5000 tuples with 200 distinct key values. Each simulation
was run for 400,000 transactions.

The results of the simulation and the analytical model are shown in Table 1. In the fourth row,
we see that the model differs from the simulation by approx. 15% for the maximum differential
file size. This is the largest difference exhibited between the results of the simulation and the
analytical model. In the second row, we see that the model differs from the simulation by only 5%.
So, we see that our analytical model is a good predictor of the maximum size of the differential
file.

In Fig. 5, we show the change in the maximum differential file size as the number of transactions
processed increases, for the five different simulations. The maximum differential file size is shown
as a percentage of the number of tuples in the relation. We see for the simulation run with only
10% updates that the maximum differential file size is approx. 0.5% of the number of tuples in
the relation, i.e. 29 records in the differential file 5000 tuples in the relation. For the largest
percentage of updates, 50%, the maximum differential file size reaches approx. 3.1% of the number
of tuples in the relation. In addition, the size of the differential file record is expected to be much
smaller than the size of a tuple, e.g. l/4 the size. Thus, the overall space used by the differential

--JO percent updates
-,A0 percent updates
--‘30 percent updates

5 2.50

E
I..._..._..._..._.,._..._..._,,,_.,._,,,_,,,_

,... _..._..._,,,_.:
“d
* 2.00
w

E 0.50
4

. r’ ,.. .,..............................

4 04TiTF-- 150 200 250 300 350 400
Number of Transactions (in 1000 unita)

Fig. 5. Maximum differential file size vs transactions processed.

Analysis of an update strategy for secondary indexes 355

file would be reduced accordingly. Hence, with increasing amounts of main memory becoming
available, the differential file would require only a modest amount of memory. By storing the
differential file in main memory, we would not be penalized for any secondary storage accesses
when searching the differential file.

6. CONCLUSIONS

In this paper, we have proposed a deferred and incremental index update strategy which uses
a differential file. The performance of our scheme is relative to the size of the differential file. As
such, we have devised an analytical model to predict the maximum differential file size as well as
a simulation model to yield the maximum size. We have shown that the maximum size is not very
large and that our simulation and analytical model results are close. As a point of future work,
we need to extend our analytic model so that all four classes of updates can be modeled instead
of just the current single TZD update.

PI
121

[31
141

PI

PI

[71
PI

191

PO1
[Ill

[I21
(131
1141

iI51

REFERENCES

G. Sacco. Index Access with a finite buffer. VLDB Conf. Proc. 301-309 (i987).
P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T. Price. Access path selection in a relational database
management system. SZGMOD Conf: Proc. ACM. pp. 23-34 (1979).
M. Schkolnick and P. Tiberio. Estimating the cost of updates in a relational database. ACM TODS 10, 163- 179 (1985).
M. Stonebraker, E. Wong, P. Kreps and G. Held. The design and implementation of INGRES. ACM TODS 1, I89 --222
(1976).
D. Severance and G. Lohman. Differential files: their application to the maintenance of large databases. ACM TO&S
1, 256-267 (1976).
H. Aghili and D. Severance. A practical guide to the design of differential files for recovery of on-line databases. ACM
TODS 7, 540.-565 (1982)
J. Woodfill and M. Stonebraker. An implementation of hypothetical relations. VLDB ConJ Proc. pp. 1577166. (1983).
S. Lang, J. Driscoll and J. Jou. Improving the differential file technique via batch operations for tree structured file
organizations. Data Engineering C&j Fr&. IEEE, pp. 524-532 (1986).
J. Scrivastava and C. Ramamoorthy. Efficient algorithms for maintenance of large database indexes. Dara Engineering
Conf Proc. IEEE, pp. 402-408 (1988).
S. Cammarata. Deferring updates in a relational database system. VLDB Conj Proc., pp. 286-292 (1981).
P. Dadam, V. Lum, U. Praedel and G. Schlageter. Selective deferred index maintenance and concurrency control in
integrated information systems. VLDB Conf. Proc., pp. 1422149 (1985).
N. Roussopoulos and H. Kang. Principles and techniques in the design of ADMS i IEEE Compur. 19, 19-25 (1986).
E. Hanson. A nerformance analysis of view materialization strategies. SZGMOD Co& Proc. ACM. DD. 440-453 (1987).
K. Kinsley add C. Hughes. Evaluating database update schemes: a methodology-and its appli&on to distributive
systems. IEEE TSE 14, 1081-1089 (1988).
S. Lavenberg. Computer Systems Performance ~~~deling handbook. Prentice-Hall, Englewood Cliffs, NJ (1983).

APPENDIX

Lemma I

According to the search and update algorithm, a given TZD in the differential tile, e.g. TZLf i, will appear in 0 or 1 TZD
lists in the index.

Proof

(By induction on the number of transactions.)
Basis. Before any transaction, TZD i appears in a single TZD list. This is trivially true since the tuple corresponding to

TID i has one value associated with the key. In addition, the differential file is empty.
I~zducf~on. Assume that after j - 1 transactions, TZD i appears in 0 or 1 TID lists. We will show that afterj transactions,

TfD i will appear in 0 or 1 TZD lists.
Case I. TZD i appears in 1 TZD list after j - I transactions. If the jth transaction is an update, then it does not change

any TZD list. If the jth transaction is a search then it might match the old-key, value or the new-key, value. A search for
the old-key, value propagates a deletion of TZD i from the TZD list for old-key, and old-key, is set to 0 for the differential
file record. Thus, TZD i now appears in 0 TZD lists. A search for the new-key, value does not cause a change in any ‘ZZD
list. So, TZD i would still appear in 1 TZD list. Although, TZD i would be returned with the TfD list for new-key,.

Case ZZ. TZD i appears in 0 TZD lists after j - 1 transactions. Once again, only a search can cause a modification to a
TZD list. The jth transaction cannot be a search for the old-key, value since the old-@>, value indicates which TZD list,
TZD i is currently contained in and for this case ofd-key, is equal to 0. Hence, TZD i will still appear in 0 TZD lists. Therefore,
the search must be for the new-key, value (if it applies to TZD i). The search propagates an insertion of TZD i into the
TZD list for new-key, and new-key,, in the differential file record, is set to 0. Hence, TZD i now appears in 1 TZD list.

Thus. after .j transactions TZD i will appear in 0 or 1 TID lists 0

356 EDWARD OMIECINSKI et al.

Theorem I

The deferred update scheme presents a consistent view of the relation, regardless of the number of updates.

Proof

(By induction on the number of updates.)
Basis. If there is only 1 update for any particular TID, e.g. TID i, then Lemma 1 shows that subsequent searches yield

a consistent view of the relation with respect to TID i. This applies for every TZD that matches the search key.
Induction. Assume that after j - 1 updates, a search gives a consistent view of the relation. We will show that after j

updates, a search will give a consistent view. We will look at the update associated with 1 TZD but the same argument
can be used for multiple TZDs. After j - 1 updates, a given record for TID i in the differential file will satisfy one of the
following:

(a) old-key, # Qr and new-key, # 0
(b) old-key, = 0 and new -key, # 0.

In either of the above situations, the jth update would require changing new-key, to the value specified in the jth update.
The new-key, value indicates where TZD i should be inserted. It does not matter that we overwrite a previous update’s value
in a record in the differential file. Since the TZD has not been stored in that TID list, there is no modification to do. In
addition, we want to reflect the fact that TID i is now associated with this new value since the corresponding tuple in the
relation already has this value stored. Thus, when a subsequent search is done for this new value, the TIDs in the index
and differential file will correspond to the tuples that contain this new value. 0

