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Abstract-Many relational database systems use secondary indexes to reduce the access cost of retrieving 
data in response to a user’s query. However, a secondary index incurs an additional cost due to the update 
maintenance of the index. In some cases, this cost may be greater than the cost to update the desired tuples. 
This paper examines a deferred index update strategy which does an incremental update of the index. The 
approach introduced, which uses a differential file, can reduce the cost of updating a secondary index by 
slightly increasing the cost that will be associated with searching the secondary index. This is true as long 
as the differential file size does not become too large. As such, a model is presented for solving the 
distribution of the size of the differential file. The maximum size of the differential file is oredicted bv 
interpreting this distribution. In addition, the analytical results are compared with simulation results. 
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1. INTRODUCTION 

The advantages of using an index for the retrieval of tuples from a relational database is well known 
[l, 21. The benefit of having indexes is offset by the cost of maintaining the indexes in the face of 
updates. For some updates, the cost of maintaining the index may be greater than the cost of 
updating the desired set of tuples in the relation [3]. In this paper, we describe a strategy for 
updating secondary indexes which can be classified as deferred and incremental. By deferred, we 
mean that the index is not updated when the user’s update statement is executed. Rather, the 
appropriate changes are simply recorded for later update of the index. By incremental, we mean 
that only certain recorded changes will be applied to the index at a given time. We stress that only 
the index updates are deferred and that the tuple updates are performed by the user’s update 
statement. We provide a performance analysis of our method and show that it can reduce the cost 
of updating the index at the slightly increased expense of searching the index. 

As pointed out in [3], the update maintenance cost (i.e. the cost of updating the appropriate 
tuples and indexes) are dependent on the following: the type of scan used to search for the tuples 
to be modified and the type of predicates specified in a user’s update statement. Simple update cost 
formulas are presented in [3]. In general, an update of a relation and its associated indexes is 
performed by first choosing a relation scan method; then retrieving and modifying the desired 
tuples; and finally by modifying the index entry for each modified tuple, if necessary. 

We assume as in [3], that access to a relation in our database is either through a sequential file 
scan or through indexes. We assume that each index is organized as a B + tree, where at the leaf 
pages, each key value is followed by a sorted list of TZDs, i.e. identifiers of the tuples where the 
key value appears. There are two basic methods for retrieving tuples via indexes. One is the 
single-index method [2], where one of the available indexes on the relation is used. For this 
approach, one tuple identifier is selected at a time (from the index) based on the specified selection 
predicate. Afterward, the corresponding tuple is retrieved and checked with the other selection 
predicates, if any. The other approach is the TZD intersection method [3]. With this method, 
multiple indexes are searched and a list of TZDs of qualifying tuples is formed for each index. These 
lists are later intersected and the corresponding tuples are retrieved and checked with any remaining 
selection predicates. In this paper, we consider only the updating cost of the indexes and not the 
updating cost of the tuples. In addition, we assume that the single index method is used. 

At this point, we would like to discuss the index update costs. When evaluating the cost of an 
index update, it is important to distinguish the order in which the leaf pages of the index are 
examined. There are two cases to consider [3]. The first case is when the modification is done on 
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an index following a scan that is unordered with respect to the order of TID groups in the index 
leaves. For our situation, this happens when the modification is done to a secondary index 
following either a sequential file scan or an index scan on some other index. The second case is 
when the modification is done on an index following a scan that is ordered with respect to the TID 
groups in the index leaves. For our situation, this happens when the secondary index is modified 
and only one key value is used or when the index that is modified is used as the scan method. For 
the relational database system, System R [2], the latter case cannot occur since it would lead to 
(possibly) accessing a tuple multiple times. This is due to making changes to the index while it is 
being scanned. Since we use a deferred update strategy, the index which is to be modified can be 
used as the scan method. This is also true in INGRES [4]. 

The cost [3], ~1, in number of I/O accesses, to fetch and update a new leaf page is given as (2 + a). 
The constant 2 is due to one access to read the leaf and one access to rewrite it. The term 2 is the 
number of accesses due to reading intermediate level pages in the index. The value of 1 depends 
on the buffer management policy [I 1. 

An index update may be viewed as consisting of two parts: a delete followed by an insert. For 
example, when a secondary key of a tuple changes value, the TZD for that tuple is removed from 
the TID group for the old-key value and is inserted into the TID group for the new-key value. A 
typical update changes the value of an attribute of a tuple to a constant or to a new value which 
is calculated from some expression. Assume that the new-key value is calculated using the current 
value of the key, E tuples are to be updated and the key value of successive tuples, to be updated, 
is different. For the insert part, this implies that each TZD will be assigned to a different leaf page. 
The I/O cost, for the insertion, is uE. If the new-key value is simply assigned a constant for all the 
updated tuples but the remaining assumptions are the same, then we assume that the TZDs will 
fit on the same leaf page. The I/O cost, for the insertion, for this case is just tl. Now to consider 
the delete part of the update. If we are doing an unordered scan and the successive E TZD deletes 
are done from different leaf pages, then the I/O cost is ME. 

We illustrate a (somewhat) typical update and its associated cost using the formulas presented 
above. We use the following relation: 

EMPLOYEE(NAME,NUMBER,DEPARTMENT,SALARY,TELEPHONE). 

We use an SQL update statement to give a 10% salary increase to employees working in the “Shoe” 
department. The update is shown below: 

UPDATE EMPLOYEE 
SET SALARY = SALARY * 1.1 
WHERE DEPARTMENT = ‘SHOE’ 

Let us assume the following conditions: 

- there is a secondary index on SALARY 
- there is a secondary index on DEPARTMENT which is chosen as the access path 
- the number of tuples to be updated is 50, i.e. E = 50 
- the height of each B-t- tree index is 3, if the root of each index resides in main memory 

then 1 = 1 and thus c1 = 3 

With the above assumptions, the number of page accesses required to perform the update of the 
SALARY index would be 300, i.e. 2aE. Now, let us look at the tuple update cost. The 
DEPARTMENT index is searched to find the TIDs of the qualifying tuples and that this accounts 
for 2 I/OS, as long as the 50 TZDs are on one leaf page. Nex, the 50 qualifying tuples are read and 
rewritten. This costs 100 I/OS, if the tuples are on distinct pages. Thus, the total tuple update cost 
is only 102. This is approx. l/3 of the cost associated with updating the secondary index. From 
this example, the motivation for reducing the update cost of secondary indexes is clear. 

2. PREVIOUS RESEARCH 

In [5], the use of a differential file is proposed. The differential file stores all updates, leaving the 
main file unchanged. For a query, it needs to be decided whether the requested record is in the 
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differential file. If this decision is made incorrectly then the differential file is searched as well as 
the main file and a double access is made. Eventually, the differential file and main file are merged. 
By consolidating changes in this manner, it is possible to reduce backup costs and speed the process 
of database recovery. In [5], they were interested in designing a Bloom filter which would indicate 
whether a given record could be found in the differential file. As the differential file grows, the 
discrimination power of the Bloom filter becomes worse. This causes an increased number of 
unnecessary searches of the differential file and precipitates the file merging. In [6], the differential 
file is studied in the context of backup and recovery. They present an analytical model and a design 
algorithm. In [7], differential files are used to support hypothetical relations. 

In [8,9], the use of a differential file for updating a main file which is organized as a B+ tree 
is presented. In both [8] and [9], the approach is to perform an efficient batch update of the 
tree-structured main file. They both show that sufficient savings (in number of page accesses) can 
be realized if the updates are batched instead of executed individually. Both of their approaches 
apply only to a primary index file. In [8], they are concerned with determining the optimal time 
at which the batch update should take place. In [9], they use a tree structure for the differential 
file and assume that it can reside in main memory. 

Instead of performing a batch update or file reorganization, others [lo] have proposed to do 
incremental updating of the main file. By incremental updating, we mean that one or more of the 
main file records will be updated at various times, i.e. not all records are updated at once. Usually 
an update will be triggered by a query. That is, if some of the retrieved records are ones that need 
to be updated, the!1 the update will take place at that time and the updated records will be rewritten. 

In [lo], they advocate an incremental update policy when updates involve a set of records and 
since the retrieval and update of records overlap, a reduction in I/O costs can be expected. In [lo], 
the differential file does not contain the updated records, rather the update procedure. So, when 
a record is retrieved, a filtering mechanism determines whether there is an associated update 
procedure(s) in the differential file. If there is, then the update is done at that time. This approach 
is for the deferred update of the actual tuples and nothing is said about the update of existing 
indexes. Also, no analytical model or simulation is provided to substantiate the effectiveness of their 
approach. 

In [ 111, an incremental and deferred update strategy is presented for the maintenance of text 
indexes. Their emphasis is on concurrency control methods and efficient data structures for the 
deferred update information. In particular, they examine the use of a bit vector, a transaction 
oriented key-word list and a key-word oriented transaction list as data structures. These data 
structures can be used for storing lock information which is used in detecting possible inconsisten- 
cies as well as for storing the deferred update information. They also compare the storage needed 
for these three data structures in five different environments. 

The architecture for integrating a mainframe database system and a large number of workstation 
database systems is presented in [12]. One feature of this system is the deferred index update 
strategy. When a query needs to use an outdated index, it updates it first by batching, sorting and 
merging all updates together [12]. In a similar vein, a deferred view materialization strategy is 
presented in [13] which uses a differential file and updates a materialized view just before data is 
retrieved from it. A performance analysis is also provided in [13]. These two approaches are 
different from what we term incremental because all of the updates in the differential file are 
performed whenever the index or view is accessed. This may be reasonable for materialized views 
but we do not believe that it is for indexes, since one query would shoulder the costs of all the 
updates. 

3. DEFERRED AND INCREMENTAL INDEX UPDATE 

Our deferred and incremental index update approach uses a differential file which grows as 
updates are executed and shrinks as queries are executed. A record in the differential file consists 
of the following attributes: a TZD, the old-key value and the new-key value. It looks similar to a 
record in the database log, which is used for recovery. For our purpose, we assume that the 
differential file is a simple sequential file with an update inplace capability. This is a suffcient file 
structure as long as the differential file can reside in main memory. In addition, a record with a 



348 EDWARD OMIECINSKI et al. 

particular TID value occurs only once in the differential file, no matter how many times the 
corresponding tuple has been updated. We do not need to keep a trace of all changes made to a 
particular tuple’s key value since the update of the tuple has already taken place. We simply need 
to know what TID list currently contains the particular TZD (for deletion) and what TID list should 
now contain the particular TZD (for insertion). We can employ a standard locking protocol to 
insure consistency. 

Alternate differential file structures, such as tree-based or hash-based files are possibilities as well 
as having separate differential files for the deletion part of an update and insertion part of an 
update. These options will be explored in future work. 

The update procedure is simple and is shown below: 

1. Access tuples to be modified (via a single index or file scan). If access is through the 
secondary index, then the query procedure (which follows) must be invoked. 

2. Modify tuples. 
3. For each indexed attribute, of the modified tuples, that has been modified: 

if the TZD for this tuple does not appear in the differential file then write a new record 
to the differential file 

else update the new-key value for an existing record in the differential file 

A naive query procedure, which uses the secondary index as the access method, is shown below. 

1. Follow the appropriate path from the root to a leaf page of the index (the leaf page contains 
key values and their associated TZD lists). 

2. Search the differential file for key values which match the requested key values contained 
on the leaf page. 
2.1. If the old-key value, from a record in the differential file, matches then delete the 

corresponding TID value from the TID list for the key and set the old-key value to 
null. 

2.2. If the new-key value, from a record in the differential file, matches 

then if the old-key value is null 
then 

insert the corresponding TID value in the TID list for the new key and 
set the new-key value to null 

else 
save the TZD value in a temporary TZD list. 

2.3. If both both the new-key value and the old-key value, for a record in the differential 
file are null, then delete that record from the differential file. 

3. If necessary, access the next leaf page and go to Step 2. 
4. Retrieve the tuples for the TID lists which have been found (including the temporary TZD 

list). The TID lists contain any modifications as performed in Step 2. 

We now present a simple example, which illustrates the query and update procedures. We have 
the following relation, PARTS(PART # , CITY, PARTNAME) whose contents is illustrated in 
Fig. 1. We have a secondary index on CITY, which is illustrated in Fig. 1. There is also an index 

SECONDARY INDEX 

CITY TIDLIST 

PARTS RELATION 

TID PARlv ClTY PARTNAME 

Fig. 1. Index a lnd 

006 106 1 LONDON 1 WASHER 

relation contents. 
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D-IALFILE 

TID UPDATEDTUPLE ‘IID OLDKEY NEW KEY 

001 101 LONDON NUT 001 NEW YORK LONDON 

Fig. 2. Modifications after update is executed. 

on PART # , but since its contents will not change we defer from showing it. The differential file 
is initially empty. 
Assume that the following update is executed: 

UPDATE PARTS 
SET CITY = ‘LONDON’ 
WHERE PART # = 101 

Since an index on Part # exists, we assume that the query optimizer would utilize the index in 
the access plan produced for the update, although this is not mandatory. The desired tuple is 
accessed via the PART # index and the tuple is modified, i.e. the CITY value is changed from 
NEW YORK to LONDON. Since the index update is deferred, the CITY index is neither searched 
nor modified at this time. However, a record is stored in the differential file. The results are 
illustrated in Fig. 2. 
Now, suppose the following query is executed: 

SELECT* 
FROM PARTS 
WHERE CITY = ‘NEW YORK’ 

For the preceding query, a typical query optimizer would use the CITY index as the access path. 
That is, the TID list for NEW YORK would be retrieved. In addition, the differential file would 
be searched. In this case, the old key value for a record in the differential file matches the desired 
value. As indicated in Step 2.1 of the query procedure, the TID value i.e. 001, would be deleted 
from the TID list for NEW YORK. The remaining TID values would be used to retrieve the desired 
tuples. In addition, the old key value corresponding to TID value 001, in the differential file would 
be set to null. This is shown in Fig. 3. 
Now, suppose the following query is executed: 

SELECT* 
FROM PARIS 
WHERE CITY = ‘LONDON’ 

Once again, we assume that the access path chosen by the query optimizer is the CITY index. 
As such, the TID list for LONDON is accessed. The differential file is searched and the desired 
key value is matched with the new key value for a record in the differential file. As described in 
Step 2.2 of the query procedure, the TZD value, i.e. 001, is inserted into the TZD list for LONDON 
and the new key value in the differential file record is set to null. Since both the old key and new 
key values are null, the differential file record is deleted, i.e. the deferred update has been completed. 
The end result is shown in Fig. 4. 

We should note that if the execution order of the above two queries were commuted, then the 
differential file would still contain a record for the tuple whose TZD value is 001. The old key value 
for that differential file record would be null but the new key value would still be LONDON. This 

SECONDARY INDEX DIFFERENTIAL- 

Fig. 3. Modifications after NEW YORK query is executed. 
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SECONDARY INDEX 

F 
Fig. 4. Modifications after LONDON query is executed. 

can be seen from Step 2.2 of the query procedure. The reason for doing this will be explained 
shortly. Hence, to have that record deleted from the differential file, another LONDON query 
would have to be executed. 

The query procedure can be improved by reducing the number of scans of the differential file. 
By using buffer space efficiently, a group of leaf pages can be read into the buffer and one scan 
of the differential file can be made for each group. From the above search algorithm, one can see 
that if a record from the differential file satisfies only Step 2.1, then the TZD from that record will 
be deleted from the index. If a record from the differential file satisfies only the first if-condition 
of Step 2.2, then the TZD will be used for record retrieval but not for index modification, at this 
time. We do this so that only one record in the differential file is needed per tuple, regardless of 
the number of key value changes that have taken place on any given tuple. This is proven in 
Theorem 1. Thus, the maximum differential file size, in records, is equal to the relation size in 
records (tuples). Although, a record in the differential file should be much smaller than the tuple 
size. Remember, that the actual tuple update has taken place, it is just the index update which is 
deferred. 

Only, when Steps 2.1 and 2.2 are done for a given record in the differential file will the update 
be complete. Hence, a particular TZD will occur in the index at most one time and possibly be 
absent from the index during the deferred update. This is shown by Lemma 1, whose proof appears 
in the Appendix. Also, there is no inconsistency since the differential file is searched before records 
are retrieved. 

Lemma I 

According to the search and update algorithm, a given TZD in the differential file, e.g. TZD i, 
will appear in 0 or 1 TZD lists in the index. 

Before we present Theorem 1, whose proof appears in the Appendix, we first want to give the 
following definition of a consistent view of a relation (file). A consistent view is defined in the 
context of a search for a particular key. 

DeJinition 

If the TZDs retrieved by searching the index and differential file correspond to the tuples in the 
relation that contain the desired search key, then we say that there is a consistent view of the 
relation (file). 

Theorem 1 

The deferred update scheme presents a consistent view of the relation, regardless of the number 
of updates. 

We should note that if the second if-condition was not included in Step 2.2 of the search, i.e. 
checking if the old-key value is 0 before modifying the new-key value, then an inconsistent view 
could arise. Consider the following record in the differential file: TZD = 1001, old-key = Chicago 
and new -key = Miami. Let us search for the key value equal to Miami. Suppose, we set the new -key 
equal to 0 in the differential file and insert TZD 1001 in the Miami TZD list. Now TZD 1001 occurs 
in two TZD lists. Now, suppose there is an update for TZD 1001 such that the key value should 
be changed to Atlanta. For a subsequent search for the key value equal to Miami, TZD 1001 would 
still be retrieved since it appears in the Miami TZD list, although the key value in the corresponding 
tuple is Atlanta. We would not know that TZD 1001 should be deleted from that list. Hence, an 
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inconsistent view of the relation is seen. An alternative which avoids this problem is to keep a 
differential file record for each individual update associated with a ?YD. However, the size (in 
records) of the differential file could possibly become a great deal larger than the number of records 
in the relation, i.e. our worst case situation. 

The usefulness of our incremental and deferred index update approach hinges on the size of the 
differential file. If the differential file is small enough to reside in main memory, then there is a small 
penalty associated with searching the differential file, The searching consumes CPU time but no 
I/O time. Again, the differential file will be searched for each query which does an index scan of 
the associated secondary index. For the actual update cost, we no longer include the cost to search 
the index since the index search is done by the query. However, the additional overhead of writing 
a leaf page(s) back to secondary storage, i.e. updating the TfL) lists, is attributed to the query. 
Overall, we save the double search of the index, i.e. there is no need for the update procedure to 
search the index for the old key value nor for the new key value. 

Since the differential file size is important, in the following section, we develop an analytical 
model to determine the likelihood that the differential file reaches a particular size. Also, in a 
subsequent section, we compare the analytical model with results from our simulations. 

4. ANALYTICAL MODEL OF DIFFERENTIAL FILE SIZE 

The performance analysis of database systems has become an important research topic in the 
last decade. Analytical models are used in describing the system’s behaviour and predicting the 
performance 16, 14, 151. Executing transactions against a database system can be viewed as a 
stochastic process. As such, a direct and inexpensive way to predict performance measures is with 
an analytical model. In the context of our problem, we develop an analytical model which describes 
the size of the differential file. With an update transaction for the differential file, some population, 
i.e. number of records, arrives and with a search transaction, some population departs. If the arrival 
rate does not exceed the departure rate, then the differential file will enter an equilibrium (steady) 
state. The analytical model is solved iteratively and the iteration converges if the system is in an 
equilibrium (steady) state. In case of a non-equilibrium state, i.e. the arrival rate is greater than 
the departure rate, the differential file will not stabilize. This situation can be detected in the 
iteration by observing that the current dist~bution is centered on the maximum size. We can 
conclude that in this case, the records will eventually a~umulate to reach the upper limit of the 
size of the differential file, i.e. one record for each record in the relation. We assume that the relation 
itself is in an equilibrium state, i.e. the number of tuples in the relation is fixed, since we do not 
consider insertions nor deletions in our model. Incorporating insertions and deletions in an area 
of future work. 

Let us denote P[size = S] as the probability that the differential file size is s, for s = 0, 1, . . . , Sm, 
and P[i-+s] as the probability that the size of the differential file before the transaction is i, and 
after the transaction it is s. According to our update and search scheme, a record in the differential 
file contains three fields: the TID, the old-key value and the new-key value. For a single update, 
a new record will be added to the differential file if and only if the TID of the record being updated 
is not contained in any of the existing differential file records. For a search transaction (single key 
or range of keys), if the oId-key ualue for a differential file record is matched, then this value is 
set to @ and the indexed file is modified. A match on the new-key value will result in the record 
being deleted if and only if the old-key value in that record is a. Therefore, P[i+s] is determined 
by the number of records with the old-key value of 0. 

To characterize the above phenomenon, we use P[empty Is] to denote the proportion of records 
with an empty old-key value when the differential file contains s records. It is obvious that for each 
record in the differential file of size s, the probability that its old-key value is empty is also 
PIempty Is]. The search transaction is treated as if it consisted of two steps. First, when the old-key 
zulue is matched, it is set to @. This results in P[empty Is] being changed to a new value, N(s,j), 
where j = 1 denotes a single key search and j = 2, . . . , Rmx denotes a range search consisting of 
two keys through R,,, keys. The variable R,,, denotes the maximum number of keys in a range 
query. The calculation of N&j) will be given later. The second step is to match the new-key value. 
It should be noted that P[empty is] changes from transaction to transaction. For example, when 
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one record is added to an empty differential file, then P[empty 1 l] = 0. After a search P[empty 1 l] 
will become either 1 or remain 0, depending on whether the old-key value is matched or not. 
Another consideration is, that if P[size = s] = 0, then P[empty Is] is undefined. In other words, if 
the differential file has not reached a size of s, then it is meaningless to consider that case. The above 
two considerations direct us in the calculation of P”)[empry Is] where t denotes that t transactions 
have been processed. We use PC’- ‘)[empry Is’] for all stages s’ that can reach s. That is, the 
differential file can change from a state having s’ records to a state having s records. Also, 
PC’ - “[empty 1 s ‘1 is undefined if PC’ - “[size = s ‘1 = 0. 

Next, we develop an iteration model to calculate P[size = s] based on P[empry Is]. After 
computing the distribution for the size of the differential file, we can compute the maximum size 
of the differential file after t transactions have been processed. This parameter is crucial in 
determining whether there exists enough main memory to contain the whole differential file and 
thus speed up the update and search transactions considerably. The maximum size can be predicted 
from the size distribution as follows. It should be the first value following the average size with 
probability less than l/t. For example, if P[size = s] = 10w6, then it means that it is unlikely that 
the size s will be reached once within 100,000 transactions since the probability is 1/106. 

We use the following notation in our model: 

Prob[up] = probability of an update 
Prob[ss] = probability of a single key search 
Prob[rs] = probability of a range search 

S,,,,, = maximum size (in records) 
R max = maximum number of keys in range search 
K mox = number of distinct key values in the relation 

Initially, we set P(“)[size = 0] = 1 and P(‘)[size = i] = 0, for i = 1, . . . , SMX. All P”‘[empty Is] are 
undefined for s = 1, . . . , Sm,. Iterate over equations (l-5), i.e. I = 1, . . . , ceil, until the difference 
between the average size of the differential file in two successive iterations is less than an epsilon 
(6 = 10P4) value. 

The probability that after t transactions, the differential file size is s, is the sum of the product 
of the following two probabilities: the probability that the differential file was of size i after t - 1 
transactions and the probability that the next transaction causes a transition into a file size of s 
records. This is shown in equation (1): 

P(‘)[&e = s] = ‘r PC’- “[size = i] * p(‘- ‘)[i+s], 
(1) 

i=O 

where PC’-“[i-s] is computed by equation (4). 
P(‘)[empty Is], in equation (2), is defined in a somewhat similar manner, except now, we have to 

take into account Q(‘- ‘) [i-s] for every i-value that can lead us to a state with s records. Q’[i-s], 
as will be defined in equation (5), is the proportion of records whose old-key value is 12/ for a 
differential file that has i records after t - 1 transactions and has s records after t transactions: 

P(‘)[empty ) s] = undefined, if P”‘[size = s] = 0, CW 

Gfl, 
1 PC’-“[size = i] *PC’-‘)[i+s] * Q(‘-‘)[i+s] 

P(‘)[empty Is] = i=” 

;g 

9 (2b) 
PC’- “[size =j] - PC’- “[j-b,] 

where Q(‘- ‘) [i-s] is defined in equation (5). 
The following equation yields the new proportion of records with an old-key value of 0. This 

is relative to the differential file size and the number of keys which appear in a search request. This 
formula will be used in defining Q’[i-s] as shown shortly. 

IV”- “(s,j) = PC’- “[empty (s] + (1 - PC’- ‘fempty 1 s]) - & , 

fors=l,... , S,,, such that PC'- “[size = s] > 0 and j = 1, . . . , R,,. 
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Equations (4a-d) depict the four possibilities for a transition in the differential file size. Formula 
(a) indicates that we have an update for a new TZD, hence, the file size is increased by one record. 
Formula (b) indicates that we could have an update on an existing record in the differential file 
or a query (single key or range) that matches records which have a non-empty old-key value. 
Formula (c) represents the case where there is a search that matches the new-key value for 6 records 
which have an empty old-key value. So, those records can be deleted: 
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PC’-“[i+“j] = 0 for all other cases. (44 

,4gain, we consider the possible state transitions for the differential file in equations (5a-e). 
Except, that here we calculate the proportion of records in the differential file whose old-key value 
is 0. The value for Q(‘- ‘)[i+j] depends on the proportion of records whose old-key-value matches 
a search key, as shown in formulas (b) and (c). 

Q@- “[O-*0] is not defined and is never used, (54 

Q(‘-‘)[O_, 1] = 0 (5b) 

Q(‘+“fs-+s] = Prob[up] * P”-“[empty is] + prob[ss] * N(‘-lf(s, I> 

+ Prob[rs] * ‘r 
1 
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(if PC’-. l)[size = s] > 0), (5c) 
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Prob [ss] + Prob [rs] S-6 
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+ .x2.- s * N”-“(s,j)-6 

Prob [ssf + prob[rs] j=2 R,, - 1 s-6 ) 

(if P(‘-“[size =s] > 0), 

p- ‘)[s--+s’] = 0, for all other cases. 

5. COMPARISON OF ANALYTICAL AND SIMULATION RESULTS 

In order to validate our analytical model, we simulated the system. The goal of our simulation 
is to keep track of the differential file size after each individual transaction as well as the maximum 
and average sizes. We divide transactions into two classes: update and search. The search class is 
further divided into single key search and range search. The update class can be divided into four 
types. However, it appears to be difficult to devise an analytical model which would take into 
account all four types. Our approach is to develop a model for the most straightforward type of 
update and then to later make additions to our model to handle one additional class at a time. 
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Table I. Results for analytical model and simulation 

Maximum file size 

Update (%) Query (%) Simulation Model % Difference 

10 90 29 33 13.79 
20 80 57 60 5.26 
30 70 84 90 7.14 
40 60 119 137 15.13 
50 50 157 179 14.01 

Hence, our preliminary analytical model handles only one type of update, i.e. updating a key value 
for a single tuple (TZD), and since we are interested in comparing the results of the simulation with 
the analytical model, we only run the simulation for this one type of update. 

The simulation is transaction driven where transactions are randomly generated. We have a 
parameter for the percentage of updates (or the percentage of searches). From Table 1, we see that 
the percentage of transactions that are updates vary from 10 to 15%. For a given update, a TZD 
is chosen randomly. For searches, we have an additional parameter for the percentage of single-key 
searches (or the percentage of range key searches). To generate a range key search we randomly 
choose a number between some minimum and maximum range, e.g. 2-10 consecutive keys. In the 
simulation we held the percentage of range and single key transactions constant, i.e. 50% range 
and 50% single. The relation consists of 5000 tuples with 200 distinct key values. Each simulation 
was run for 400,000 transactions. 

The results of the simulation and the analytical model are shown in Table 1. In the fourth row, 
we see that the model differs from the simulation by approx. 15% for the maximum differential 
file size. This is the largest difference exhibited between the results of the simulation and the 
analytical model. In the second row, we see that the model differs from the simulation by only 5%. 
So, we see that our analytical model is a good predictor of the maximum size of the differential 
file. 

In Fig. 5, we show the change in the maximum differential file size as the number of transactions 
processed increases, for the five different simulations. The maximum differential file size is shown 
as a percentage of the number of tuples in the relation. We see for the simulation run with only 
10% updates that the maximum differential file size is approx. 0.5% of the number of tuples in 
the relation, i.e. 29 records in the differential file 5000 tuples in the relation. For the largest 
percentage of updates, 50%, the maximum differential file size reaches approx. 3.1% of the number 
of tuples in the relation. In addition, the size of the differential file record is expected to be much 
smaller than the size of a tuple, e.g. l/4 the size. Thus, the overall space used by the differential 
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Fig. 5. Maximum differential file size vs transactions processed. 
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file would be reduced accordingly. Hence, with increasing amounts of main memory becoming 
available, the differential file would require only a modest amount of memory. By storing the 
differential file in main memory, we would not be penalized for any secondary storage accesses 
when searching the differential file. 

6. CONCLUSIONS 

In this paper, we have proposed a deferred and incremental index update strategy which uses 
a differential file. The performance of our scheme is relative to the size of the differential file. As 
such, we have devised an analytical model to predict the maximum differential file size as well as 
a simulation model to yield the maximum size. We have shown that the maximum size is not very 
large and that our simulation and analytical model results are close. As a point of future work, 
we need to extend our analytic model so that all four classes of updates can be modeled instead 
of just the current single TZD update. 
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APPENDIX 

Lemma I 

According to the search and update algorithm, a given TZD in the differential tile, e.g. TZLf i, will appear in 0 or 1 TZD 
lists in the index. 

Proof 

(By induction on the number of transactions.) 
Basis. Before any transaction, TZD i appears in a single TZD list. This is trivially true since the tuple corresponding to 

TID i has one value associated with the key. In addition, the differential file is empty. 
I~zducf~on. Assume that after j - 1 transactions, TZD i appears in 0 or 1 TID lists. We will show that afterj transactions, 

TfD i will appear in 0 or 1 TZD lists. 
Case I. TZD i appears in 1 TZD list after j - I transactions. If the jth transaction is an update, then it does not change 

any TZD list. If the jth transaction is a search then it might match the old-key, value or the new-key, value. A search for 
the old-key, value propagates a deletion of TZD i from the TZD list for old-key, and old-key, is set to 0 for the differential 
file record. Thus, TZD i now appears in 0 TZD lists. A search for the new-key, value does not cause a change in any ‘ZZD 
list. So, TZD i would still appear in 1 TZD list. Although, TZD i would be returned with the TfD list for new-key,. 

Case ZZ. TZD i appears in 0 TZD lists after j - 1 transactions. Once again, only a search can cause a modification to a 
TZD list. The jth transaction cannot be a search for the old-key, value since the old-@>, value indicates which TZD list, 
TZD i is currently contained in and for this case ofd-key, is equal to 0. Hence, TZD i will still appear in 0 TZD lists. Therefore, 
the search must be for the new-key, value (if it applies to TZD i). The search propagates an insertion of TZD i into the 
TZD list for new-key, and new-key,, in the differential file record, is set to 0. Hence, TZD i now appears in 1 TZD list. 

Thus. after .j transactions TZD i will appear in 0 or 1 TID lists 0 



356 EDWARD OMIECINSKI et al. 

Theorem I 

The deferred update scheme presents a consistent view of the relation, regardless of the number of updates. 

Proof 

(By induction on the number of updates.) 
Basis. If there is only 1 update for any particular TID, e.g. TID i, then Lemma 1 shows that subsequent searches yield 

a consistent view of the relation with respect to TID i. This applies for every TZD that matches the search key. 
Induction. Assume that after j - 1 updates, a search gives a consistent view of the relation. We will show that after j 

updates, a search will give a consistent view. We will look at the update associated with 1 TZD but the same argument 
can be used for multiple TZDs. After j - 1 updates, a given record for TID i in the differential file will satisfy one of the 
following: 

(a) old-key, # Qr and new-key, # 0 
(b) old-key, = 0 and new -key, # 0. 

In either of the above situations, the jth update would require changing new-key, to the value specified in the jth update. 
The new-key, value indicates where TZD i should be inserted. It does not matter that we overwrite a previous update’s value 
in a record in the differential file. Since the TZD has not been stored in that TID list, there is no modification to do. In 
addition, we want to reflect the fact that TID i is now associated with this new value since the corresponding tuple in the 
relation already has this value stored. Thus, when a subsequent search is done for this new value, the TIDs in the index 
and differential file will correspond to the tuples that contain this new value. 0 


