
protocols

Specification and analysis of
the FDDI MAC protocol

using systems of
communicating machines

G M Lundy and I F Akyildiz* use a model to specify FDDI's MAC
protocol, and analyse its safety and 'liveness'

A model designed for the specification of communication
protocols called systems of communicating machines is
used to specify the FDDI token ring protocol, and to
analyse its safety and "liveness' properties. This model
specifies each node as a finite state machine which has a
set of local variables. With each transition is an enabling
predicate and action. The predicates determine whether
transitions may be taken, and actions alter the variable
values as the transition executes. Communication between
nodes is through shared variables. Our contributions
include the specification of the basic FDDI protocol using a
formal description technique; the use of this specification
to analyse the safety and liveness properties of the
network; the extension of the formal model to include the
timing of transitions; and confirmation of the timing
properties of the protocol

Keywords: MAC protocol, FDDI, protocol specification

Fibre Distributed Data Interface (FDDI) is a standard foran
optical fibre network based on the token ring architecture

Department of Computer Science, Naval Postgraduate School, Monterey,
CA 93940-5000, USA
*College of Computing, Georgia Institute of Technology, Atlanta,
GA 30332, USA
Paper received: 5 July 1991; revised paper received: 26 September
1991

0140-3664/92/005286-09 © 1992

which has been under development in recent years. It is
the first major standard for optical fibre high-speed
networks, and is expected to play a major role in future
communications. At I00 Mbit/s its data rate is an order of
magnitude improvement over current local area networks
(LAN)7, 8,1 i, 12.

In this paper the basic FDDI protocol is formally
specified and analysed using a model called systems of
communicating machines. This model was designed for
the purpose of describing and analysing communication
protocols I, 2, and has been used to model several well-
known protocols. Each machine in the network is
specified as a finite state machine augmented with
local variables. Communication between machines is
accomplished through shared variables. Each transition in
the state machine has an enablingpredicate and an action;
these serve to unite the machine, the local variables, and
the shared variables into a cohesive network.

Our primary contributions are in the specification of
FDDI using a formally defined model, and in the analysis
for safety and liveness. To accomplish this, the model
definition was extended to include timing of transitions.

Much work has been carried out in the past decade on
the formal modelling of protocols 3' 6. A number of models
have been suggested, including Communicating Finite
State Machines, Petri Nets, Estelle, LOTOS, and several
others. In this work we have chosen systems of com-
municating machines because it seemed to be an
effective tool for the specification of this protocol,

Butterworth-H einemann Ltd

286 computer communications

protocols

providing flexibility as well as a formal basis for analysis.
In the following section we present the model systems

of communicating machines. The FDDI is then specified
using this model, and our analysis is given.

SYSTEMS OF COMMUNICATING MACHINES

The systems of communicating machines model was
designed as a method for the formal description and
verification of communication protocols 1. It represents an
effort to define a formal system which is useful in the
description of network protocols, in their analysis or
verification for correctness, and also in their conformance
testing 2. It is our belief that this model is a reasonable one
for use in standards as well as for formal verification and
testing; and that protocol implementors will find protocol
specified in this way clear and unambiguous.

The following definition is an extension of the original
definition to allow the explicit modelling of time.

A system of communicating machines is an ordered
pair '4'= (M, V), where:

M = [m 1, m 2 mnl

is a finite set of machines, and:

V = Iv1, v 2 vkl

is a finite set of shared variables, with two designated
subsets Ri and Wi specified each machine mi. The subset
Ri of V is called the set of read access variables for machine
mi, and the subset Wi the set of write access variables for
mi. The integers n and k are the number of elements
(machines and variables) in sets M and V.

Each machine m i C M is defined by a tuple (Si, So, Li, Ni,
q), where:

1 Si is a finite set of states;
2 s o C Si is a designated state called the initial state of mi;
3 L i is a finite set of local variables;
4 Ni is a finite set of transition names. Associated with

each name is a unique triple (p, a, t), where p is an
enabling predicate, a is the action, and t is a time
interval. An action is a partial function:

a : L i X R i --~ Li X Wi

from the values contained in the local variables and
read access variables to the values of the local variables
and write access variables. The time interval t specifies
an upper and lower bound on the time which a
transition may be enabled before occurring. These
limits are expressed in discrete units. If t ime limits are
not specified, then default values of zero and infinity
are assumed.

5 ~i : Si X N i --~ S i is a transition function which is a partial
function from the states and names of mi to the states
of m i.

In the original definition, the time interval was not
included as a part of the transition name. If the time
interval is taken to be [0, oo], then this definition is
equivalent to the original.

Machines model the entities, which in a protocol

system are processes and channels. The shared variables
are the means of communication between the machines.
Intuitively, Ri and Wi are the subsets of V to which mi has
read access and write access. A machine is allowed to
make a transition from one state to another when the
predicate associated with the name for that transition is
true. Upon taking the transition, the action associated
with that name is executed. The action changes the values
of local and/or shared variables, thus allowing other
predicates to become true.

The set Li of local variables specifies a name and a range
for each. As with the shared variables, the range must be a
finite or countable set of values.

Let c(sl, n) = s2 be a transition which is defined on
machine m i (i.e. c is the edge pointing from state sl to state
s2). Transition ~ is enabled if the enabling predicate p
associated with name n is true. The time interval t is
measured from the point at which machine mi is in state Sl
and predicate p is enabled.

Transition r may be executed whenever the following
three statements are true: (1) mi is in state sl; (2) the
predicate p is enabled; and (3) the timing requirement
(interval) is satisfied.

The execution of r is an atomic action in which both
the state change and the action a associated with n occur
simultaneously.

If the following conditions hold, then transition c must
execute within the time interval:

1 A (finite) time interval on a transition is specified.
2 The machine is in a state from which the transition

leads.
3 The transition is enabled throughout the time interval.

It is assumed that time passes at a constant rate within
each machine.

The definition does not assume or require, however,
that time passes (clocks tick) at the same rate from one
machine to the next. However, in modelling protocols it is
generally assumed that the rate of 'ticking' between
clocks in different machines is within a specified margin of
error.

A system state tuple is a tuple, or vector, of all machine
states. For example, if a specified network has three
machines (say 1, 2 and 3), which are currently in states
O, 2 and 4, respectively, then the system state tuple is
(0,2,4).

The global state of a system consists of the system state
tuple, plus the values of all variables.

The system state consists of the system state tuple, plus
an indication (listing) of the enabled outgoing transitions.
Thus a system state provides more knowledge of the
system that a system state tuple, without providing the
complete global state.

These definitions are useful in the analysis of protocols
such as those which appear later in this paper. Further
discussions of the model can be found elsewhere 1' 2

FDDI PROTOCOL SPECIFICATION

The protocol is described briefly in the following sub-
section, and then the formal specification is given.

vol 15 no 5 june 1992 287

protocols

Overview and formats

FDDI is a timed token ring network, i.e. the nodes are
connected in a series of point to point links forming a
cycle; the right to transmit is controlled by passing a token
(special message) from station to station; and the time for
holding the token is strictly controlled, so that every
station is guaranteed the right to transmit a specified
amount of data within a certain time limit.

The standard specifies that two unidirectional rings,
with data flow in opposite directions, will be included.
The second ring provides redundancy in case of failure.
The standard provides for at least three types of station
(single attached, dual attached, and concentrators);
however, for the purpose of the MAC specification in this
work, all nodes will be treated as identical.

Message types: there are two primary types of traffic:
synchronous and asynchronous. Synchronous traffic is
time critical; it must be transmitted within strict time
limits. Examples are voice traffic or real-time data.
Asynchronous traffic does not have strict time constraints.
Upon receiving the token, each station is allowed a
specified time for transmission of the synchronous traffic.
This time is determined when the ring is initialized, and
may vary from station to station. The sum total of
synchronous time allotment for all stations must be less
than the TTRT, the target token rotation time. Thus, the
protocol is able to guarantee every station a minimum
amount of transmission time with a maximum wait
between transmissions.

Asynchronous traffic may only be transmitted when
the token is 'early', or ahead of its target rotation time.

Node structure: each node on the network has functions
which may be divided into three categories: the physical
functions, or physical layer; the media access control
(MAC), which interfaces to the physical; and (SMT) station
management.

The physical layer is further divided into two sublayers
called PHY and PMD (physical medium dependent). The
PHY interfaces with the MAC layer and the PMD; the PMD
interfaces with the medium (fibre).

The physical layer is concerned with the actual
connection of fibre to the station, the transmitting and
receiving hardware, the type of fibre and physical
connectors. It also specifies the encoding of the data
received from the MAC into signals, timing requirements,
etc. The PHY receives symbols from the MAC layer,
encodes and transmits them (through the PMD) to the
PHY at the next station, which decodes them and passes
them to the MAC at that station.

The medium access control layer implements the
timed token ring protocol. One the sending side, it
receives a message (sequence of characters) to transmit as
input. It encodes these into symbols - characters of data
or special control symbols - and groups the symbols into
messages (frames) for transmission. The frames are passed
to the PHY, symbol by symbol, for transmission. The
receiving part of the MAC receives symbols from PHY, and
regroups them into messages. The data in these frames

are then passed on to the application. The MAC is also
responsible for token passing, which controls the right to
transmit on the medium. Figure 1 shows the relationship
between PHY, MAC and the user or application.

The station management layer is concerned with
network initialization, recovery from ring failures, and
other control functions.

The complete FDDI standard includes a document for
the PMD, PHY, MAC and station management layers.

The specification and analysis of this paper is con-
cemed with the medium access control (MAC) layer. The
physical layer (PHY and PMD) is also modelled; this is
necessary because of the interface between the two
layers. However, the physical part of our specification is
an abstraction of the actual physical layer, meant to retain
key properties (for our purposes) and eliminate
unnecessary details.

The set of symbols consists of data values from 0
through 15, and some special control symbols. Each
symbol is coded a five-bit string. The symbol set used in
this paper is:

{I,J,K,T,0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,FI.

The symbol l is the 'idle' symbol; and the symbols J, K and
T are used as delimiters. The data symbols are from 0 to 15
(decimal), where 'A' through 'F' represent the (decimal)
data values 10 through 15. The FDDI standard has four
additional control symbols (Quiet, Halt, Set and Reset)
which were not included in this specification.

Token Format: the token consists of four fields: preamble
(PA), starting delimiter (SD), frame control (FC) and ending
delimiter (ED). Table 1 depicts the fields used and their
values. The preamble in the FDDI standard has a variable
number of '1' symbols; the originating station transmits 16
'1' symbols, and other stations may shorten it or lengthen it
to meet physical layer clocking requirements. However, in
this paper, for the sake of brevity, a single '1' symbol is
used as a preamble. When written as symbols, the token
consists of the seven symbol sequence [I,J,K,0,0,T,T].

USER

J Message
MAC

Symbols

PHY

S/gr~ls \
Fibre cable

Figure 1. FDDI structure of the layer

288 computer communications

protocols

Table 1. Token and frame fields

Name Ab Values

Preamble PA I
Starting delimiter SD JK
Frame control FC O0(token)

01 (synch. frame)
02(asynch. frame)

Destination address DA
Source address SA
Information INFO sequence of data

symbols
Frame check sequence FCS (error code)
Ending delimiter ED T
Frame status FS 0 or 1

Frame format: a data frame consists of the following
fields:

[PA,SD, FC,DA,SA, I N FO,FCS,ED, FS].

The additional fields are destination and source addresses
(DA,SA); information (INFO); frame check sequence
(FCS); and frame status (FS). The FC field indicates
whether the frame is a token or (data) frame. Table 1
shows which symbols are used in each field.

Formal specif icat ion

The specification of the FDDI network formally as a
system of communicating machines consists of (1) the
specification of the network stations, (2) the shared
variables through which they communicate, and (3) the
designated initial state of the system.

Structure and shared variables
The overall structure of the network and the relation
between each machine and the shared variables is shown
in Figure 2. Each machine shares one variable with its
upstream neighbour. This variable is of the type buffer,
where buffer is specified by:

type buffer: array[1 .. MFL + 1] of symbol;

where symbol may be any of the symbol values listed in
the previous subsection, or the empty value, denoted
by 'a' . The value of 'MFL' is the maximum frame length.
(The maximum frame length in the standard is 9000
symbols, which is 4500 bytes.) Each machine refers to the
incoming shared variable as inbuf, and the outgoings as
outbuf .

I 11 I1.
Figure 2. Modelling the token ring network: shared
variables and stations

To the MAC protocol machine, the shared variables
inbuf and outbuf model the physical layer and trans-
mission medium. The variable is an array of symbols; the
length or number of elements in the array is equal to more
than the maximum message length. The array elements
are also allowed to be empty.

Specification of the network stations
The station specification, or MAC protocol machine,
consists of the finite state machine given in Figure 3; the
local variables in Table 2; the predicate action in Table 3;
and the two timers, TRT and THT, shown in Figures 4, 5
and Tables 5 and 6. Table 4 contains a listing of the
transition names and other important acronyms, with a
brief explanation of their meaning.

There are 20 states in the MAC protocol machine; the
initial state is zero. The station remains in states 0 through
7 as long as it has no data frames to transmit to other
stations. It passes to state 10 from state 0 when it receives
a data frame to send; that is, when a protocol data unit
(PDU) becomes queued for transmission.

From state 0, three other transitions in addition to the
PDU-Q are possible; these involve the receiving of
messages. These three receiving transitions are token,
rcv-F, and pass-F. The first merely involves the receipt of
the token, and (since there are no messages to transmit)
passing it on to the next station. The second and third
both receive an incoming data frame. In rcv-F, the data
frame is addressed to the station itself, and so must be
copied, symbol by symbol, at the same time it is repeated

ear'
pass-tk I

token

tk

PDU-(

rcv-F ass-F ~-rpt)_~_~epeat

()
aek nd~F

next-~

next-

b

,token (~) pass-F

]rcv-F -rpt

~ - S y n j@___~-Syn

oo ,.3 I on _S

1
nd-A / 10

pass-tk
*a~s-tk

~ rip
' clear, 0

~ e p e a t

end-F

10

Figure3. State diagram for the FDDI token ring
protocol. (a) No data to transmit; (b) data to transmit

vol 15 no 5 june 1992 289

protocols

Table 2. Local and timer variable specification

Variable name Range Initial value Purpose

Late-cnt 0 . . inf 0
T-opr integer
A-bur array [1 .. n] of buffer O
S-buf array [1 .. n] of buffer O
msg-buf buffer 0
i 1 . . M F L + 1 1
j 1 . . M F L + 1 1
in 1 . . MFL + 1 1
out 1 . . M F L + 1 1
F-cnt 0 . . inf 0
S-cnt 0 . . inf 0
err boolean (T, F) F
max 0 . . inf
TRT-val 0 . . inf T-opt
THT-val 0 . . inf 0
ENABLED boolean (T, F) F

counter for TRT timer
TTRT value (constant)
asynchronous messages to be sent
synchronous messages to be sent
store incoming messages
pointer into A-buf
pointer into S-buf
pointer into in-buf
pointer into out-buf
frame counter (all frames)
synchronous frame counter
set when error detected
limit to synchronous transmission
counter for the TRT timer
counter for the THT timer
used to start the THT timer

Table 3. Predicate-action table for FDDI MAC machine (UB is time limit)

Transition UB Enabling predicate Act ion

PDU-Q 1

token(= L.B.) 7

early 1

late 1

pass-tk(= L.B.) 7

rev-F 1

cp-rpt 1

T 1

end-F 3

ack 3

pass-F 1

repeat 1

X-Syn 1

X-Asyn 1

end-S 3

endoA 3

next-S

next-A

strip

clear

TR T-watch

CRASH

1

1

MFL

1

0

1

AbufO(i) --/= 0 v S-buf(j) #= 0

inbuf[1 . . 7] = (I, l, K, 0, 0, T, T)

Late-cnt = 0

Late-cnt > 0

TRUE

i nbu f [5] (Z {1, 2} A
i n b u f [6 . . 7] = MA

inbuf [in] #= T

inbuf [in] = T

TRUE

TRUE

i nbuf [5] E {1, 2} A
i nbu f [6 . . 7] -~ MA

inbuf [in] =I= T

S-buf[j , out] ~ 0

A-buf [i , out] ~ O A
(S-cnt = max V S-buf [j] = 0)

S-buf[j , out] = O

A-buf [i , out] = 0

S-cnt < max A S-buf [i] ~ O

THT-val > 0 A A-buf [i] #= O

i nbu f [6 . . 7] = MA A F-cnt > 0

F-cnt = 0

TRT-val = 0

Late-cnt > 1

inbuf . - 0 ; S-cnt 4,- 0

THT-val ~-- TRT-val; TRT-val ~- T-Opr

Late-cnt .-- 0

ou tbu f [1 .. 7] * - (I, J, K, 0, 0, T, T)

in ~ -1

msg-buf [in] , ou tbu f [in] ~- - inbuf [in] ; in ~ - i n + 1

ou tbu f [in] ~- T; inbuf ~- 0 ; in ~- in + 1

outbuf [in , in + 1, in +2] ~-- (err, inbuf [in + 1, in + 2])

outbuf [in, in + 1, in + 2] ~-(err, 1, 1)

in ~ -1

ou tbu f [in] ~- inbuf [in] ~- in + I

ou tbu f [ou t] * - -S-buf [j , out]; out ~- out + 1

ou tbu f [ou t] ~ -A -bu f [i , out]; out ~- out + I

ou tbu f [ou t , out + 1, out + 2] * - (T, 0, 0);
S-cnt, F-cnt .-- S-cnt + 1 ; j, out ~-- j @) 1, 1

ou tbu f [ou t , out + 1, out + 2] ~-- (T, 0, 0);
F-cnt . - F-cnt + 1 ; i, out . - i • 1, 1

inbuf 4.-- a ; F-cnt ~- F-cnt - 1

TRT-val ~- T-opr; Late-nct ~-- Late-cnt + 1

notify SMT, terminate ring operation

290 computer communications

protocols

sta~ ~
Figure 4.

Figure 5.

~xpired TRT-val: (O..T-opr)

:)
State diagram and variable for the TRT timer

)4 d~c

:xpired TttT-val: (O..T-opr)

ENABLED: (true,false)

State diagram and variable of the THT timer

to the downstream station. When the end of the frame is
reached, indicated bythe symbol 'T' (the ending delimiter),
the transition to state 6 is made, and the acknowledgment
is sent by setting the bits in the frame status, immediately
following the 'T' symbol.

Table 4. Meanings of transition names and acronyms

Name Meaning

PDU-Q
PDU
token
rcv-F
pass-l:
early
late
TTRT
cp-rpt
repeat
T
ack
end-I:
X-Syn
X-Asyn
/VIA
DA
SA
next-S
next-A
end-S
end-A
pass-tk
strip
clear
SMT

a frame (PDU) is queued for transmission
Protocol Data Unit, a frame or message
receiving incoming token
accept frame, DA = MA
pass frame on to next station
token arrived before TTRT
token arrived after TTRT
Target Token Rotation Time
copy and repeat symbol to next station
repeat symbol to next station
ending delimiter for frame or token
acknowledgment of frame
send end of frame
transmit synchronous frame
transmit asynchronous frame
my address
destination address
source address
begin sending the next Sync. frame
begin sending the next Async. frame
end of transmission, Sync. frame
end of transmission, Async. frame
pass the token to next station
strip my frames from the ring
ring is clear of my frames
station management

The pass-F transition passes the frame, symbol by
symbol, to the next station without copying it. When the
end of frame is reached, the 'T' transition takes the
machine to state 7, and the frame status field is repeated
without setting the acknowledgment bits.

In state 10 a message (PDU)is ready for transmission,
so that when the token arrives the station will 'claim it'
(not pass it on) and transmit. The rcvF and pass-l:
transitions take the same actions as from state 0.

When the station claims the token, it will pass to state
11. There are two cases; either the token is 'early' or 'late'.
If the token is early - indicated by Late-cnt -- 0 - then the
'early' transition will be taken to state 14. This means that
the token has circulated the ring in less than one TTRT,
leaving some time for the transmission of asynchronous
frames as well as synchronous frames.

In state 14, one synchronous frame is transmitted,
symbol by symbol (see the X-Syn transition). At the end of
the frame, the machine moves to state 18; from state 18,
the machine will return to 14 for the next synchronous
frame transmission, until all are sent (S-Buf []] is empty), or
until the maximum number allowed is reached (S-cnt
reaches max). Then, in state 18, one asynchronous frame
will be sent, symbol to symbol, at the end of which the
transition to state 20 is made. From state 20 the machine
will return to 18 for the next asynchronous frame if one is
queued and time permits (see the next-A transition).

The symbol '(9' is used to increment the pointers i and j
in the next-A and next-S transitions. It is essentially
modulo addition, resetting the pointer to the first buffer
element after the last is reached.

From state 20, when no more asynchronous frames are
queued or when the timer THT expires, the token will be
passed as the machine transitions to state 21. The station
remains in this state in order to strip its own frames off the
ring, as they return to it from the opposite shared buffer.

The time limit on the pass-tk transition, as well as the
token transition, is specified as a lower bound as well as an
upper bound. This is because the timing of these is
determined precisely by the physical bit rate of the
hardware. This also serves to make the choice between
transitions in states 19 and 20 deterministic; if the
next-A/next-S transitions are enabled in these states, then
they will occur before the token is passed.

The specification assumes that the ring is sufficiently
long that the transmitting station will reach the strip state,
state 21, before its frames return. If this were not the case,
then this stripping part can be specified as a separate
parallel machine.

Consider next the case that the token is late; this
means that the TRT timer has expired once, that is
Late-cnt > 0 (see the late transition). Then the station may
only transmit synchronous frames, taking the transition to
state 15.

In state 15 and 19, the station transmits its synchronous
frames exactly as it is done in states 14 and 18. When no
more synchronous frames are queued, or when the
maximum number of these have been sent, the token is
passed, taking the machine to state 21, where the frames
which were transmitted are removed from the ring.

When all frames which the station transmitted have

vol 15 no 5 june 1992 291

protocols

been removed, indicated by the frame counter variable
F-cnt, the station returns to the initial state.

Each of the two timers, TRT and THT, is specified as a
simple two state machine, and a variable which serves as a
counter. In the active state, state A, the timer repeatedly
decrements the value in the variable. When this value
reaches zero, the timer passes to the expired state, state E.
The upper and lower bounds of this transition are both set
to one time unit, so that the machine is forced to act as a
timer.

The basic unit of time which was chosen was the time
to transmit one symbol, as this is the unit which the MAC
layer passes to the physical layer. For each symbol
transmitted, the physical layer transmits 5 bits. Four of
these bits are data bits; the 100 Mbit/s refers to the data
bits. The rate of transmission of all bits is 125 Mbit/s
(125 Mbaud is the baud rate, the maximum number of
times the signal can change per second). Thus, at
100 Mbit/s, the basic unit of time is 0.04 microseconds.
That is, each 0.04ps, 1 symbol with 4 data bits and 1
overhead bit is transmitted.

The timer variables are shared with the protocol
machine of the station. These are used by the station to
reset the timer when desired and to start it running. The
variable ENABLED is also used by the station to start the
THT timer running, when needed. The exact procedure is
specified in the predicate-action table in Table 5.

There are two transitions specified in the MAC
machine table (see Table 2) which are not shown in the
state diagram; this is because these transitions can be
taken from any state. The TRT-watch transition becomes
enabled whenever the TRT timer expires. This transition
immediately resets the timer, and increments variable
Late-cnt. By setting the upper bound on time of this
transition to 0, we insure that the timer is reset immedi-
ately. This is a way of modelling an interrupt mechanism.

The second transition not shown is called CRASH; this
is the termination of the ring operation, if the token fails to
circulate within twice the TTRT. If the protocol operates
as specified, this transition should never be taken unless
forced by some external event, such as a hardware
failure.

Initial state of the network
The initial system state is specified as follows:

(1) each protocol machine is in state 0;
(2) each shared variable between protocol machines is

empty, except exactly one, which contains the
token;

(3) The TRT timer is initially in state 'A', the active state,
with the variable TRT-val set to T-opt;

(4) The THT timer is initially in state 'E', the expired
state;

(5) the intital values of the local variables are as
specified in Table 1.

Startup requirements. The following restrictions apply
upon the startup of the ring. These could have been
included in the formal specification; however, we prefer
to simply state them here, rather than further compli-
cating the specification:

1 The TRT timer of each station is started for the first time,
when the station first receives the token.

2 The first time a station receives the token, no frames are
transmitted; the token is passed on to the next
station.

3 The second time the token is received, no asynchro-
nous frames are transmitted.

4 The sum of the synchronous allotments for all stations
is at most one frame time less than the target token
rotation time (TTRT).

ANALYSIS FOR SAFETY AND LIVENESS
PROPERTIES

Previous work 4' 5 proved that the timing requirements of
FDDI are satisfied; however, that work did not give a
formal description of the protocol, but assumed that the
network nodes performed the protocol correctly. The
proofs were based on the assumption that the nodes
perform the protocol correctly; that there are no errors
such as deadlocks, and that the functions of token passing
and data transfer are carried out correctly.

Table 5. Predicate-action table for the TRT timer

Name Time Enabling predicate Action

dec 1 TRT-val > 0 A operational TRT-val ~- TRT-val - 1
expired 1 TRT-val = 0 Late-cnt ~- Late-cnt + 1
start 0 TRT-val > 0

Table 6. Predicate-action table for the THT timer

Name Time Enabling predicate Action

dec 1 THT-val > 0 THT-val ~- THT-val - 1
expired 1 THT-val = 0 ENABLED ~- false
start 0 ENABLED = true

292 computer communications

protocols

The results of this paper are complementary: we give a
formal description of the protocol and prove that a node
operating according to this description does so without
deadlocks, and that the progress functions of token and
frame passing are indeed executed. These are necessary
conditions for the timing requirements to be satisfied.

Safety properties are a guarantee that something bad
does not happen, while a liveness property is a guarantee
that something good does happen.

In Lemmas 1-3 we prove some basic characteristics of
the protocol. These will simplify the proof of the theorem.
A basic assumption in the following results of this section
is that the ring is not forced to reinitialize, or'crash', due to
failure to rotate within the time limits; in other words, the
CRASH transition is not taken. The validity of this
assumption is confirmed in the next section.

The reader may verify the intermediate proof steps by
examiningthe state diagram and corresponding predicate-
action table.

Lemma I If the token is in the input buffer i nbuf for station
i, and station i is in state O, then within a finite number of
time units the token will be removed from inbuf with
station i in state 0.

Proof The conditions above enable the token transition
to state 1. From state 1, either the early or late must be
taken to states 4 or 5. From these, pass-token writes the
token into outbuf, returning to state O. Each of these
transitions has a finite upper time bound, so the sequence
is bounded. []

From Lemma 1, it follows that by observing the sequence
of transitions taken and the upper bound on each, it may
easily be verified that the token will be passed within 15
times units.

Lemma 2 If a data frame is in the input buffer inbuf for
station i, and station i is in state 0 (10), then within a finite
numbe,- of time units the frame will be removed from inbuf
and appear in outbuf, with the station again in state 0
(10).

Proof Suppose station i is in state 0. If the DA part of inbuf
contains I's address, then the rcv-F transition to state 2 will
be taken; otherwise the pass-F transition to state 3 is
taken. In either of these, the frame will be copied symbol
by symbol into outbuf. W h e n the end of frame is reached,
as indicated by the ending delimiter T, the n o d e
transitions to states 6 or 7, and then returns to state 0. As
each transition is time bounded , so is the entire sequence.

The proof beginning in state 10 is identical. []

Lemma 1 states that when a station receives the token,
and has no data to transmit, that it will pass the token on
to the next station. Lemma 2 states that a station also
passes a data frame. Note that Lemma 2 does not apply to
a station's own frames; the station must strip its own
frames off the ring. But this is taken care of by specifying
the state; a station will be in state 21 when receiving its
own data frames. Also note that in both Lemmas, the
station always returns to either state 0 or state 10 after

processing its incoming data. This is a key in proving
freedom from deadlocks.

Lemma 3 is an extension of Lemma 1, to include the
case in which a station gets the token and transmits.

Lemma 3 If the token is in the input inbuf for station ,, and
station i is in state 10, then within a finite number of time
units, the token will be removed from buffer inbuf and
appear in buffer outbuf, and the station will return to the
initial state O.

Theorem 1 (Safety) Excluding the CRASH transition, the
FDDI protocol as specified is free from deadlocks.

Proof Assume that the stations are ordered 1 ,2 , . . , n, and
that initially the token in the input buffer of station 1.

It is sufficient to show that the token continues to
circulate indefinitely. From the initial system state, each
machine is in state 0; any machine receiving a PDU to
transmit moves to state 10. Thus each machine is in either
state 0 or state 10 when the token first appears in its input
buffer.

By Lemmas 1 and 3, station 1 will receive the token,
pass it on to station 2, and return to state 0 or 10. By
Lemma 2, any data frames which station 1 transmits will
be passed by each station to the next; then each station
will return to state 0 or 10. Station 1 will receive the
returning data frames, strip them, and return to state O.

Upon receiving the token from station 1, station 2 will
go through the same actions, eventually passingthe token
to station 3, then station 4, etc., until the token eventually
returns to station 1. []

Corollary 1 Excluding the CRASH transition, the FDDI
protocol as specified is free from nonexecutable
transitions.

This corollary states that every transition is executable -
that is, there are no unreachable 'lines of code' in the
program - with the possible exception of the CRASH
transition, which of course we hope will not be executed.
The corollary may be proved by working through the
proofs of the Lemmas and theorem above, and noting
that all transitions are executable at some point.

Theorem 2 (Liveness) If station i transmits a data frame to
station j, i ~ j, then the frame will appear in the local
msg-buf of station j within a finite number of time units.

Proof Suppose that the stations downstream from i are
I1,/2 Ik, j in order. Station i transmits the frame by
placing it, symbol by symbol, into outbuf. Next / 1 will
remove the frame and pass it to 12, by Lemma 2. This
continues until Ik places it into the input buffer if
station j.

Station j is in either state 0 or 10 (because station i has
the token). Since the frame is addressed to j, the DA field
contains j 's address; this enables the rcv-F transition. Now
in state 2 or 12, j will Copy the message into msg-buf.
When the end of the message is reached the entire
message will be in this buffer. []

vol 15 no 5 june 1992 293

protocols

CONCLUSIONS

A formal specification and analysis of the FDDI token ring
protocol has been presented using a model called
systems of communicating machines. The specification
included a specification of three machines: the main
station or network note, and two timers. The physical
layer of the network was modelled by a set of variables
shared by adjacent nodes.

Analysis showed that the specification was free from
deadlocks, and that the protocol possesses the critical
liveness or progress property.

The emphasis is on the MAC level of the network. Each
station is modelled as a finite state machine, having 20
states, together with a set of local variables and two
timers. The local variables include buffers to store input
and output messages and pointers. The timers are
a separate machine which ticks at constant rate,
decrementing a counter. The station is able to use and
control the timers through variables which it shares with
them. The unit of time used corresponds to the time
needed to transmit one symbol; in this case it is 0.04
microseconds.

The paper also extends the model systems of com-
municating machines to include the explicit timing of
transitions. Previous work had modelled time as a
sequence of events, not assigning specific time limits to
transitions.

REFERENCES

1 Lundy, G M Systems of Communicating Machines: A
Model for Communicating Protocols, PhD Thesis,

School of Information and Computer Science,
Georgia Institute of Technology (July 1988)

2 Lundy, G M and Mil ler, R E 'Analyzing a CSMA/CD
protocol through a systems of communicating
machine specification', IEEE Trans. Commun. (to
appear)

3 Protocol Specification, Testing and Verification,
Volumes I-Xl, North-Holland, Netherlands (1981-
1991)

4 Johnson, M J 'Proof that timing requirements of the
FDDI token ring protocol are satisfied', IEEE Trans.
Commun., Vol 35 No 6 (June 1987) pp 620-625

5 Sevcik, K C and Johnson, M J 'Cycle time properties
of the FDDI token rink protocol', IEEE Trans. Softw.
Engl., Vol 13 No 3 (1987) pp 376-385

6 Akyildiz, I F, Chiola, G, Kofman, D and Korezlioglu,
H 'Stochastic Petri net modeling of the FDDI network
protocol', Protocol Specification, Testing and Ver/fi-
cation Xl, North-Holland, Netherlands (1991)

7 FDDI Token Ring Media Access Control (MAC-2),
ANSI Standard X3.139-1987, REV-10, ANSI, USA
(1987)

8 FDDI Media Access Control (MAC-2), Rev 4.0, ANSI,
USA (1990)

9 Grow, R M 'A timed token protocol for local area
networks', Electro '82 (May 1982)

10 Institute of Electrical and Electronics Engineers,lEEE
Standard 802.5, Token Ring Access Method and
Physical Layer Specifications, I EEE, New York (1985)

11 Ross, F E 'An overview of FDDI: the fiber distributed
data interface', J. Selected Areas in Commun., Vol 7
No 7 (September 1989) pp 1043-1051

12 UIm, J N 'A timed token ring local area network and
its performance characteristics', Proc. 7th Conf. on
Local Computer Networks, IEEE Press, New York
(Februant 1982)

294 computer communications

