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G M Lundy and I F Akyildiz* use a model to specify FDDI's MAC 
protocol, and analyse its safety and 'liveness' 

A model designed for the specification of communication 
protocols called systems of communicating machines is 
used to specify the FDDI token ring protocol, and to 
analyse its safety and "liveness' properties. This model 
specifies each node as a finite state machine which has a 
set of local variables. With each transition is an enabling 
predicate and action. The predicates determine whether 
transitions may be taken, and actions alter the variable 
values as the transition executes. Communication between 
nodes is through shared variables. Our contributions 
include the specification of the basic FDDI protocol using a 
formal description technique; the use of this specification 
to analyse the safety and liveness properties of the 
network; the extension of the formal model to include the 
timing of transitions; and confirmation of the timing 
properties of the protocol 
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which has been under development in recent years. It is 
the first major standard for optical fibre high-speed 
networks, and is expected to play a major role in future 
communications. At I00 Mbit/s its data rate is an order of 
magnitude improvement over current local area networks 
(LAN)7, 8,1 i, 12. 

In this paper the basic FDDI protocol is formally 
specified and analysed using a model called systems of 
communicating machines. This model was designed for 
the purpose of describing and analysing communication 
protocols I, 2, and has been used to model several well- 
known protocols. Each machine in the network is 
specified as a finite state machine augmented with 
local variables. Communication between machines is 
accomplished through shared variables. Each transition in 
the state machine has an enablingpredicate and an action; 
these serve to unite the machine, the local variables, and 
the shared variables into a cohesive network. 

Our primary contributions are in the specification of 
FDDI using a formally defined model, and in the analysis 
for safety and liveness. To accomplish this, the model 
definition was extended to include timing of transitions. 

Much work has been carried out in the past decade on 
the formal modelling of protocols 3' 6. A number of models 
have been suggested, including Communicating Finite 
State Machines, Petri Nets, Estelle, LOTOS, and several 
others. In this work we have chosen systems of com- 
municating machines because it seemed to be an 
effective tool for the specification of this protocol, 
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providing flexibility as well as a formal basis for analysis. 
In the following section we present the model systems 

of communicating machines. The FDDI is then specified 
using this model, and our analysis is given. 

SYSTEMS OF COMMUNICATING MACHINES 

The systems of communicating machines model was 
designed as a method for the formal description and 
verification of communication protocols 1. It represents an 
effort to define a formal system which is useful in the 
description of network protocols, in their analysis or 
verification for correctness, and also in their conformance 
testing 2. It is our belief that this model is a reasonable one 
for use in standards as well as for formal verification and 
testing; and that protocol implementors will find protocol 
specified in this way clear and unambiguous. 

The following definition is an extension of the original 
definition to allow the explicit modelling of time. 

A system of communicating machines is an ordered 
pair '4'= (M, V), where: 

M = [ m  1, m 2 . . . . .  mnl 

is a finite set of machines, and: 

V = Iv1, v 2 . . . . .  vkl 

is a finite set of shared variables, with two designated 
subsets Ri and Wi specified each machine mi. The subset 
Ri of V is called the set of read access variables for machine 
mi, and the subset Wi the set of write access variables for 
mi. The integers n and k are the number of elements 
(machines and variables) in sets M and V. 

Each machine m i C M is defined by a tuple (Si, So, Li, Ni, 
q), where: 

1 Si is a finite set of states; 
2 s o C Si is a designated state called the initial state of mi; 
3 L i is a finite set of local variables; 
4 Ni is a finite set of transition names. Associated with 

each name is a unique triple (p, a, t), where p is an 
enabling predicate, a is the action, and t is a time 
interval. An action is a partial function: 

a : L i X R i --~ Li X Wi 

from the values contained in the local variables and 
read access variables to the values of the local variables 
and write access variables. The time interval t specifies 
an upper and lower bound on the time which a 
transition may be enabled before occurring. These 
limits are expressed in discrete units. If t ime limits are 
not specified, then default values of zero and infinity 
are assumed. 

5 ~i : Si X N i --~ S i is a transition function which is a partial 
function from the states and names of mi to the states 
of m i. 

In the original definition, the time interval was not 
included as a part of the transition name. If the time 
interval is taken to be [0, oo], then this definition is 
equivalent to the original. 

Machines model the entities, which in a protocol 

system are processes and channels. The shared variables 
are the means of communication between the machines. 
Intuitively, Ri and Wi are the subsets of V to which mi has 
read access and write access. A machine is allowed to 
make a transition from one state to another when the 
predicate associated with the name for that transition is 
true. Upon taking the transition, the action associated 
with that name is executed. The action changes the values 
of local and/or shared variables, thus allowing other 
predicates to become true. 

The set Li of local variables specifies a name and a range 
for each. As with the shared variables, the range must be a 
finite or countable set of values. 

Let c(sl, n) = s2 be a transition which is defined on 
machine m i (i.e. c is the edge pointing from state sl to state 
s2). Transition ~ is enabled if the enabling predicate p 
associated with name n is true. The time interval t is 
measured from the point at which machine mi is in state Sl 
and predicate p is enabled. 

Transition r may be executed whenever the following 
three statements are true: (1) mi is in state sl; (2) the 
predicate p is enabled; and (3) the timing requirement 
(interval) is satisfied. 

The execution of r is an atomic action in which both 
the state change and the action a associated with n occur 
simultaneously. 

If the following conditions hold, then transition c must 
execute within the time interval: 

1 A (finite) time interval on a transition is specified. 
2 The machine is in a state from which the transition 

leads. 
3 The transition is enabled throughout the time interval. 

It is assumed that time passes at a constant rate within 
each machine. 

The definition does not assume or require, however, 
that time passes (clocks tick) at the same rate from one 
machine to the next. However, in modelling protocols it is 
generally assumed that the rate of 'ticking' between 
clocks in different machines is within a specified margin of 
error. 

A system state tuple is a tuple, or vector, of all machine 
states. For example, if a specified network has three 
machines (say 1, 2 and 3), which are currently in states 
O, 2 and 4, respectively, then the system state tuple is 
(0,2,4). 

The global state of a system consists of the system state 
tuple, plus the values of all variables. 

The system state consists of the system state tuple, plus 
an indication (listing) of the enabled outgoing transitions. 
Thus a system state provides more knowledge of the 
system that a system state tuple, without providing the 
complete global state. 

These definitions are useful in the analysis of protocols 
such as those which appear later in this paper. Further 
discussions of the model can be found elsewhere 1' 2 

FDDI PROTOCOL SPECIFICATION 

The protocol is described briefly in the following sub- 
section, and then the formal specification is given. 
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Overview and formats 

FDDI is a timed token ring network, i.e. the nodes are 
connected in a series of point to point links forming a 
cycle; the right to transmit is controlled by passing a token 
(special message) from station to station; and the time for 
holding the token is strictly controlled, so that every 
station is guaranteed the right to transmit a specified 
amount of data within a certain time limit. 

The standard specifies that two unidirectional rings, 
with data flow in opposite directions, will be included. 
The second ring provides redundancy in case of failure. 
The standard provides for at least three types of station 
(single attached, dual attached, and concentrators); 
however, for the purpose of the MAC specification in this 
work, all nodes will be treated as identical. 

Message types: there are two primary types of traffic: 
synchronous and asynchronous. Synchronous traffic is 
time critical; it must be transmitted within strict time 
limits. Examples are voice traffic or real-time data. 
Asynchronous traffic does not have strict time constraints. 
Upon receiving the token, each station is allowed a 
specified time for transmission of the synchronous traffic. 
This time is determined when the ring is initialized, and 
may vary from station to station. The sum total of 
synchronous time allotment for all stations must be less 
than the TTRT, the target token rotation time. Thus, the 
protocol is able to guarantee every station a minimum 
amount of transmission time with a maximum wait 
between transmissions. 

Asynchronous traffic may only be transmitted when 
the token is 'early', or ahead of its target rotation time. 

Node structure: each node on the network has functions 
which may be divided into three categories: the physical 
functions, or physical layer; the media access control 
(MAC), which interfaces to the physical; and (SMT) station 
management. 

The physical layer is further divided into two sublayers 
called PHY and PMD (physical medium dependent). The 
PHY interfaces with the MAC layer and the PMD; the PMD 
interfaces with the medium (fibre). 

The physical layer is concerned with the actual 
connection of fibre to the station, the transmitting and 
receiving hardware, the type of fibre and physical 
connectors. It also specifies the encoding of the data 
received from the MAC into signals, timing requirements, 
etc. The PHY receives symbols from the MAC layer, 
encodes and transmits them (through the PMD) to the 
PHY at the next station, which decodes them and passes 
them to the MAC at that station. 

The medium access control layer implements the 
timed token ring protocol. One the sending side, it 
receives a message (sequence of characters) to transmit as 
input. It encodes these into symbols - characters of data 
or special control symbols - and groups the symbols into 
messages (frames) for transmission. The frames are passed 
to the PHY, symbol by symbol, for transmission. The 
receiving part of the MAC receives symbols from PHY, and 
regroups them into messages. The data in these frames 

are then passed on to the application. The MAC is also 
responsible for token passing, which controls the right to 
transmit on the medium. Figure 1 shows the relationship 
between PHY, MAC and the user or application. 

The station management layer is concerned with 
network initialization, recovery from ring failures, and 
other control functions. 

The complete FDDI standard includes a document for 
the PMD, PHY, MAC and station management layers. 

The specification and analysis of this paper is con- 
cemed with the medium access control (MAC) layer. The 
physical layer (PHY and PMD) is also modelled; this is 
necessary because of the interface between the two 
layers. However, the physical part of our specification is 
an abstraction of the actual physical layer, meant to retain 
key properties (for our purposes) and eliminate 
unnecessary details. 

The set of symbols consists of data values from 0 
through 15, and some special control symbols. Each 
symbol is coded a five-bit string. The symbol set used in 
this paper is: 

{I,J,K,T,0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,FI. 

The symbol l is the 'idle' symbol; and the symbols J, K and 
T are used as delimiters. The data symbols are from 0 to 15 
(decimal), where 'A' through 'F' represent the (decimal) 
data values 10 through 15. The FDDI standard has four 
additional control symbols (Quiet, Halt, Set and Reset) 
which were not included in this specification. 

Token Format: the token consists of four fields: preamble 
(PA), starting delimiter (SD), frame control (FC) and ending 
delimiter (ED). Table 1 depicts the fields used and their 
values. The preamble in the FDDI standard has a variable 
number of '1' symbols; the originating station transmits 16 
'1' symbols, and other stations may shorten it or lengthen it 
to meet physical layer clocking requirements. However, in 
this paper, for the sake of brevity, a single '1' symbol is 
used as a preamble. When written as symbols, the token 
consists of the seven symbol sequence [I,J,K,0,0,T,T]. 

USER 

J Message 
MAC 

Symbols 

PHY 

S/gr~ls \ 
Fibre cable 

Figure 1. FDDI structure of the layer 
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Table 1. Token and frame fields 

Name Ab Values 

Preamble PA I 
Starting delimiter SD JK 
Frame control FC O0(token) 

01 (synch. frame) 
02(asynch. frame) 

Destination address DA 
Source address SA 
Information INFO sequence of data 

symbols 
Frame check sequence FCS (error code) 
Ending delimiter ED T 
Frame status FS 0 or 1 

Frame format: a data frame consists of the following 
fields: 

[PA,SD, FC,DA,SA, I N FO,FCS,ED, FS]. 

The additional fields are destination and source addresses 
(DA,SA); information (INFO); frame check sequence 
(FCS); and frame status (FS). The FC field indicates 
whether the frame is a token or (data) frame. Table 1 
shows which symbols are used in each field. 

Formal specif icat ion 

The specification of the FDDI network formally as a 
system of communicating machines consists of (1) the 
specification of the network stations, (2) the shared 
variables through which they communicate, and (3) the 
designated initial state of the system. 

Structure and shared variables 
The overall structure of the network and the relation 
between each machine and the shared variables is shown 
in Figure 2. Each machine shares one variable with its 
upstream neighbour. This variable is of the type buffer, 
where buffer is specified by: 

type buffer: array[1 .. MFL + 1] of symbol; 

where symbol may be any of the symbol values listed in 
the previous subsection, or the empty value, denoted 
by 'a' .  The value of 'MFL' is the maximum frame length. 
(The maximum frame length in the standard is 9000 
symbols, which is 4500 bytes.) Each machine refers to the 
incoming shared variable as inbuf, and the outgoings as 
outbuf . 

I 11 I1. 
Figure 2. Modelling the token ring network: shared 
variables and stations 

To the MAC protocol machine, the shared variables 
inbuf and outbuf model the physical layer and trans- 
mission medium. The variable is an array of symbols; the 
length or number of elements in the array is equal to more 
than the maximum message length. The array elements 
are also allowed to be empty. 

Specification of the network stations 
The station specification, or MAC protocol machine, 
consists of the finite state machine given in Figure 3; the 
local variables in Table 2; the predicate action in Table 3; 
and the two timers, TRT and THT, shown in Figures 4, 5 
and Tables 5 and 6. Table 4 contains a listing of the 
transition names and other important acronyms, with a 
brief explanation of their meaning. 

There are 20 states in the MAC protocol machine; the 
initial state is zero. The station remains in states 0 through 
7 as long as it has no data frames to transmit to other 
stations. It passes to state 10 from state 0 when it receives 
a data frame to send; that is, when a protocol data unit 
(PDU) becomes queued for transmission. 

From state 0, three other transitions in addition to the 
PDU-Q are possible; these involve the receiving of 
messages. These three receiving transitions are token, 
rcv-F, and pass-F. The first merely involves the receipt of 
the token, and (since there are no messages to transmit) 
passing it on to the next station. The second and third 
both receive an incoming data frame. In rcv-F, the data 
frame is addressed to the station itself, and so must be 
copied, symbol by symbol, at the same time it is repeated 

ear'  
pass-tk I 

token 

tk 

PDU-( 

rcv-F ass-F ~-rpt )_~_~epeat 

() 
aek nd~F 

next-~ 

next- 

b 

,token (~) pass-F 

]rcv-F -rpt 

~ - S y n  j@___~-Syn 

oo ,.3 I on _S 

1 
nd-A / 10 

pass-tk 
*a~s-tk 

~ rip 
' clear, 0 

~ e p e a t  

end-F 

10 

Figure3. State diagram for the FDDI token ring 
protocol. (a) No data to transmit; (b) data to transmit 
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Table 2. Local and timer variable specification 

Variable name Range Initial value Purpose 

Late-cnt 0 . .  inf 0 
T-opr integer 
A-bur  array [1 .. n] of buffer O 
S-buf array [1 .. n] of buffer O 
msg-buf  buffer 0 
i 1 . . M F L  + 1 1 
j 1 . . M F L  + 1 1 
in 1 . .  MFL + 1 1 
out 1 . . M F L  + 1 1 
F-cnt 0 . .  inf 0 
S-cnt 0 . .  inf 0 
err boolean (T, F) F 
max 0 . .  inf 
TRT-val 0 . .  inf T-opt 
THT-val 0 . .  inf 0 
ENABLED boolean (T, F) F 

counter for TRT timer 
TTRT value (constant) 
asynchronous messages to be sent 
synchronous messages to be sent 
store incoming messages 
pointer into A-buf 
pointer into S-buf 
pointer into in-buf 
pointer into out-buf 
frame counter (all frames) 
synchronous frame counter 
set when error detected 
limit to synchronous transmission 
counter for the TRT timer 
counter for the THT timer 
used to start the THT timer 

Table 3. Predicate-action table for FDDI MAC machine (UB is time limit) 

Transition UB Enabling predicate Act ion 

PDU-Q 1 

token(=  L.B.) 7 

early 1 

late 1 

pass-tk(= L.B.) 7 

rev-F 1 

cp-rpt  1 

T 1 

end-F 3 

ack 3 

pass-F 1 

repeat 1 

X-Syn 1 

X-Asyn 1 

end-S 3 

endoA 3 

next-S 

next-A 

strip 

clear 

TR T-watch 

CRASH 

1 

1 

MFL 

1 

0 

1 

AbufO(i) --/= 0 v S-buf( j )  #= 0 

inbuf[1 . .  7] = (I, l, K, 0, 0, T, T) 

Late-cnt = 0 

Late-cnt > 0 

TRUE 

i nbu f [5 ]  (Z {1, 2} A 
i n b u f [ 6 .  . 7] = MA 

inbuf [ in ]  #= T 

inbuf [ in ]  = T 

TRUE 

TRUE 

i nbuf [5 ]  E {1, 2} A 
i nbu f [6  . . 7] -~ MA 

inbuf [ in ]  =I= T 

S-buf[ j ,  out]  ~ 0 

A-buf [ i ,  out] ~ O A 
(S-cnt = max V S-buf [j] = 0 )  

S-buf[ j ,  out] = O 

A-buf [ i ,  out ]  = 0 

S-cnt < max A S-buf [i] ~ O 

THT-val > 0 A A-buf  [i] #= O 

i nbu f [6  . . 7] = MA A F-cnt > 0 

F-cnt = 0 

TRT-val = 0 

Late-cnt > 1 

inbuf  . -  0 ;  S-cnt 4,- 0 

THT-val ~-- TRT-val; TRT-val ~-  T-Opr 

Late-cnt .-- 0 

ou tbu f  [1 .. 7] * -  (I, J, K, 0, 0, T, T) 

in ~ -1  

msg-buf [ in ] ,  ou tbu f [ in ]  ~- - inbuf [ in ] ;  in ~ - i n  + 1 

ou tbu f  [in] ~-  T; inbuf  ~-  0 ;  in ~-  in + 1 

outbuf [ in ,  in + 1, in +2] ~-- (err, inbuf [ in  + 1, in + 2]) 

outbuf  [in, in + 1, in + 2] ~-(err, 1, 1) 

in ~ -1  

ou tbu f  [in] ~- inbuf  [in] ~-  in + I 

ou tbu f [ ou t ]  * - -S-buf [ j ,  out]; out  ~-  out  + 1 

ou tbu f [ou t ]  ~ -A -bu f [ i ,  out]; out  ~-  out  + I 

ou tbu f [ou t ,  out  + 1, out  + 2] * -  (T, 0, 0); 
S-cnt, F-cnt .-- S-cnt + 1 ; j, out  ~-- j @) 1, 1 

ou tbu f [ou t ,  out  + 1, out + 2] ~-- (T, 0, 0); 
F-cnt . -  F-cnt + 1 ; i, out  . -  i • 1, 1 

inbuf  4.-- a ;  F-cnt ~-  F-cnt - 1 

TRT-val ~-  T-opr; Late-nct ~-- Late-cnt + 1 

notify SMT, terminate ring operation 
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sta~ ~ 
Figure 4. 

Figure 5. 

~xpired TRT-val: (O..T-opr) 

:) 
State diagram and variable for the TRT timer 

)4 d~c 

:xpired TttT-val: (O..T-opr) 

ENABLED: (true,false) 

State diagram and variable of the THT timer 

to the downstream station. When the end of the frame is 
reached, indicated bythe symbol 'T' (the ending delimiter), 
the transition to state 6 is made, and the acknowledgment 
is sent by setting the bits in the frame status, immediately 
following the 'T' symbol. 

Table 4. Meanings of transition names and acronyms 

Name Meaning 

PDU-Q 
PDU 
token 
rcv-F 
pass-l: 
early 
late 
TTRT 
cp-rpt 
repeat 
T 
ack 
end-I: 
X-Syn 
X-Asyn 
/VIA 
DA 
SA 
next-S 
next-A 
end-S 
end-A 
pass-tk 
strip 
clear 
SMT 

a frame (PDU) is queued for transmission 
Protocol Data Unit, a frame or message 
receiving incoming token 
accept frame, DA = MA 
pass frame on to next station 
token arrived before TTRT 
token arrived after TTRT 
Target Token Rotation Time 
copy and repeat symbol to next station 
repeat symbol to next station 
ending delimiter for frame or token 
acknowledgment of frame 
send end of frame 
transmit synchronous frame 
transmit asynchronous frame 
my address 
destination address 
source address 
begin sending the next Sync. frame 
begin sending the next Async. frame 
end of transmission, Sync. frame 
end of transmission, Async. frame 
pass the token to next station 
strip my frames from the ring 
ring is clear of my frames 
station management 

The pass-F transition passes the frame, symbol by 
symbol, to the next station without copying it. When the 
end of frame is reached, the 'T' transition takes the 
machine to state 7, and the frame status field is repeated 
without setting the acknowledgment bits. 

In state 10 a message (PDU)is ready for transmission, 
so that when the token arrives the station will 'claim it' 
(not pass it on) and transmit. The rcvF and pass-l: 
transitions take the same actions as from state 0. 

When the station claims the token, it will pass to state 
11. There are two cases; either the token is 'early' or 'late'. 
If the token is early - indicated by Late-cnt -- 0 - then the 
'early' transition will be taken to state 14. This means that 
the token has circulated the ring in less than one TTRT, 
leaving some time for the transmission of asynchronous 
frames as well as synchronous frames. 

In state 14, one synchronous frame is transmitted, 
symbol by symbol (see the X-Syn transition). At the end of 
the frame, the machine moves to state 18; from state 18, 
the machine will return to 14 for the next synchronous 
frame transmission, until all are sent (S-Buf []] is empty), or 
until the maximum number allowed is reached (S-cnt 
reaches max). Then, in state 18, one asynchronous frame 
will be sent, symbol to symbol, at the end of which the 
transition to state 20 is made. From state 20 the machine 
will return to 18 for the next asynchronous frame if one is 
queued and time permits (see the next-A transition). 

The symbol '(9' is used to increment the pointers i and j 
in the next-A and next-S transitions. It is essentially 
modulo addition, resetting the pointer to the first buffer 
element after the last is reached. 

From state 20, when no more asynchronous frames are 
queued or when the timer THT expires, the token will be 
passed as the machine transitions to state 21. The station 
remains in this state in order to strip its own frames off the 
ring, as they return to it from the opposite shared buffer. 

The time limit on the pass-tk transition, as well as the 
token transition, is specified as a lower bound as well as an 
upper bound. This is because the timing of these is 
determined precisely by the physical bit rate of the 
hardware. This also serves to make the choice between 
transitions in states 19 and 20 deterministic; if the 
next-A/next-S transitions are enabled in these states, then 
they will occur before the token is passed. 

The specification assumes that the ring is sufficiently 
long that the transmitting station will reach the strip state, 
state 21, before its frames return. If this were not the case, 
then this stripping part can be specified as a separate 
parallel machine. 

Consider next the case that the token is late; this 
means that the TRT timer has expired once, that is 
Late-cnt > 0 (see the late transition). Then the station may 
only transmit synchronous frames, taking the transition to 
state 15. 

In state 15 and 19, the station transmits its synchronous 
frames exactly as it is done in states 14 and 18. When no 
more synchronous frames are queued, or when the 
maximum number of these have been sent, the token is 
passed, taking the machine to state 21, where the frames 
which were transmitted are removed from the ring. 

When all frames which the station transmitted have 
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been removed, indicated by the frame counter variable 
F-cnt, the station returns to the initial state. 

Each of the two timers, TRT and THT, is specified as a 
simple two state machine, and a variable which serves as a 
counter. In the active state, state A, the timer repeatedly 
decrements the value in the variable. When this value 
reaches zero, the timer passes to the expired state, state E. 
The upper and lower bounds of this transition are both set 
to one time unit, so that the machine is forced to act as a 
timer. 

The basic unit of time which was chosen was the time 
to transmit one symbol, as this is the unit which the MAC 
layer passes to the physical layer. For each symbol 
transmitted, the physical layer transmits 5 bits. Four of 
these bits are data bits; the 100 Mbit/s refers to the data 
bits. The rate of transmission of all bits is 125 Mbit/s 
(125 Mbaud is the baud rate, the maximum number of 
times the signal can change per second). Thus, at 
100 Mbit/s, the basic unit of time is 0.04 microseconds. 
That is, each 0.04ps, 1 symbol with 4 data bits and 1 
overhead bit is transmitted. 

The timer variables are shared with the protocol 
machine of the station. These are used by the station to 
reset the timer when desired and to start it running. The 
variable ENABLED is also used by the station to start the 
THT timer running, when needed. The exact procedure is 
specified in the predicate-action table in Table 5. 

There are two transitions specified in the MAC 
machine table (see Table 2) which are not shown in the 
state diagram; this is because these transitions can be 
taken from any state. The TRT-watch transition becomes 
enabled whenever the TRT timer expires. This transition 
immediately resets the timer, and increments variable 
Late-cnt. By setting the upper bound on time of this 
transition to 0, we insure that the timer is reset immedi- 
ately. This is a way of modelling an interrupt mechanism. 

The second transition not shown is called CRASH; this 
is the termination of the ring operation, if the token fails to 
circulate within twice the TTRT. If the protocol operates 
as specified, this transition should never be taken unless 
forced by some external event, such as a hardware 
failure. 

Initial state of the network 
The initial system state is specified as follows: 

(1) each protocol machine is in state 0; 
(2) each shared variable between protocol machines is 

empty, except exactly one, which contains the 
token; 

(3) The TRT timer is initially in state 'A', the active state, 
with the variable TRT-val set to T-opt; 

(4) The THT timer is initially in state 'E', the expired 
state; 

(5) the intital values of the local variables are as 
specified in Table 1. 

Startup requirements. The following restrictions apply 
upon the startup of the ring. These could have been 
included in the formal specification; however, we prefer 
to simply state them here, rather than further compli- 
cating the specification: 

1 The TRT timer of each station is started for the first time, 
when the station first receives the token. 

2 The first time a station receives the token, no frames are 
transmitted; the token is passed on to the next 
station. 

3 The second time the token is received, no asynchro- 
nous frames are transmitted. 

4 The sum of the synchronous allotments for all stations 
is at most one frame time less than the target token 
rotation time (TTRT). 

ANALYSIS FOR SAFETY AND LIVENESS 
PROPERTIES 

Previous work 4' 5 proved that the timing requirements of 
FDDI are satisfied; however, that work did not give a 
formal description of the protocol, but assumed that the 
network nodes performed the protocol correctly. The 
proofs were based on the assumption that the nodes 
perform the protocol correctly; that there are no errors 
such as deadlocks, and that the functions of token passing 
and data transfer are carried out correctly. 

Table 5. Predicate-action table for the TRT timer 

Name Time Enabling predicate Action 

dec 1 TRT-val > 0 A operational TRT-val ~- TRT-val - 1 
expired 1 TRT-val = 0 Late-cnt ~- Late-cnt + 1 
start 0 TRT-val > 0 

Table 6. Predicate-action table for the THT timer 

Name Time Enabling predicate Action 

dec 1 THT-val > 0 THT-val ~- THT-val - 1 
expired 1 THT-val = 0 ENABLED ~- false 
start 0 ENABLED = true 
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The results of this paper are complementary: we give a 
formal description of the protocol and prove that a node 
operating according to this description does so without 
deadlocks, and that the progress functions of token and 
frame passing are indeed executed. These are necessary 
conditions for the timing requirements to be satisfied. 

Safety properties are a guarantee that something bad 
does not happen, while a liveness property is a guarantee 
that something good does happen. 

In Lemmas 1-3 we prove some basic characteristics of 
the protocol. These will simplify the proof of the theorem. 
A basic assumption in the following results of this section 
is that the ring is not forced to reinitialize, or'crash', due to 
failure to rotate within the time limits; in other words, the 
CRASH transition is not taken. The validity of this 
assumption is confirmed in the next section. 

The reader may verify the intermediate proof steps by 
examiningthe state diagram and corresponding predicate- 
action table. 

Lemma I If the token is in the input buffer i nbuf for station 
i, and station i is in state O, then within a finite number of 
time units the token will be removed from inbuf with 
station i in state 0. 

Proof The conditions above enable the token transition 
to state 1. From state 1, either the early or late must be 
taken to states 4 or 5. From these, pass-token writes the 
token into outbuf, returning to state O. Each of these 
transitions has a finite upper time bound, so the sequence 
is bounded. [] 

From Lemma 1, it follows that by observing the sequence 
of transitions taken and the upper bound on each, it may 
easily be verified that the token will be passed within 15 
times units. 

Lemma 2 If a data frame is in the input buffer inbuf for 
station i, and station i is in state 0 (10), then within a finite 
numbe,- of time units the frame will be removed from inbuf 
and appear in outbuf, with the station again in state 0 
(10). 

Proof Suppose station i is in state 0. If the DA part of inbuf 
contains I's address, then the rcv-F transition to state 2 will 
be taken; otherwise the pass-F transition to state 3 is 
taken. In either of these,  the  frame will be copied symbol 
by symbol  into outbuf. W h e n  the end of frame is reached, 
as indicated by the  ending delimiter T, the n o d e  
transitions to states 6 or 7, and then returns to state 0. As 
each transition is time bounded ,  so is the entire sequence.  

The proof beginning in state 10 is identical. [] 

Lemma 1 states that when  a station receives the token,  
and has no data  to transmit, that  it will pass the token on 
to the  next station. Lemma 2 states that a station also 
passes a data  frame. Note  that  Lemma 2 does  not  apply to 
a station's own frames; the station must  strip its own 
frames off the ring. But this is taken care of by specifying 
the state; a station will be  in state 21 when receiving its 
own data frames. Also note  that  in both  Lemmas, the 
station always returns to either state 0 or state 10 after 

processing its incoming data. This is a key in proving 
freedom from deadlocks. 

Lemma 3 is an extension of Lemma 1, to include the 
case in which a station gets the token and transmits. 

Lemma 3 If the token is in the input inbuf for station ,, and 
station i is in state 10, then within a finite number of time 
units, the token will be removed from buffer inbuf and 
appear in buffer outbuf, and the station will return to the 
initial state O. 

Theorem 1 (Safety) Excluding the CRASH transition, the 
FDDI protocol as specified is free from deadlocks. 

Proof Assume that the stations are ordered 1 ,2 , . . ,  n, and 
that initially the token in the input buffer of station 1. 

It is sufficient to show that the token continues to 
circulate indefinitely. From the initial system state, each 
machine is in state 0; any machine receiving a PDU to 
transmit moves to state 10. Thus each machine is in either 
state 0 or state 10 when the token first appears in its input 
buffer. 

By Lemmas 1 and 3, station 1 will receive the token, 
pass it on to station 2, and return to state 0 or 10. By 
Lemma 2, any data frames which station 1 transmits will 
be passed by each station to the next; then each station 
will return to state 0 or 10. Station 1 will receive the 
returning data frames, strip them, and return to state O. 

Upon receiving the token from station 1, station 2 will 
go through the same actions, eventually passingthe token 
to  station 3, then station 4, etc., until the token eventually 
returns to station 1. [] 

Corollary 1 Excluding the CRASH transition, the FDDI 
protocol as specified is free from nonexecutable 
transitions. 

This corollary states that every transition is executable - 
that is, there are no unreachable 'lines of code' in the 
program - with the possible exception of the CRASH 
transition, which of course we hope will not be executed. 
The corollary may be proved by working through the 
proofs of the Lemmas and theorem above, and noting 
that all transitions are executable at some point. 

Theorem 2 (Liveness) If station i transmits a data frame to 
station j, i ~ j, then the frame will appear in the local 
msg-buf of station j within a finite number of time units. 

Proof Suppose that the stations downstream from i are 
I1,/2 . . . . .  Ik, j in order. Station i transmits the frame by 
placing it, symbol by symbol, into outbuf. Next / 1 will 
remove the frame and pass it to 12, by Lemma 2. This 
continues until Ik places it into the input buffer if 
station j. 

Station j is in either state 0 or 10 (because station i has 
the token). Since the frame is addressed to j, the DA field 
contains j 's address; this enables the rcv-F transition. Now 
in state 2 or 12, j will Copy the message into msg-buf. 
When the end of the message is reached the entire 
message will be in this buffer. []  
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CONCLUSIONS 

A formal specification and analysis of the FDDI token ring 
protocol has been presented using a model called 
systems of communicating machines. The specification 
included a specification of three machines: the main 
station or network note, and two timers. The physical 
layer of the network was modelled by a set of variables 
shared by adjacent nodes. 

Analysis showed that the specification was free from 
deadlocks, and that the protocol possesses the critical 
liveness or progress property. 

The emphasis is on the MAC level of the network. Each 
station is modelled as a finite state machine, having 20 
states, together with a set of local variables and two 
timers. The local variables include buffers to store input 
and output messages and pointers. The timers are 
a separate machine which ticks at constant rate, 
decrementing a counter. The station is able to use and 
control the timers through variables which it shares with 
them. The unit of time used corresponds to the time 
needed to transmit one symbol; in this case it is 0.04 
microseconds. 

The paper also extends the model systems of com- 
municating machines to include the explicit timing of 
transitions. Previous work had modelled time as a 
sequence of events, not assigning specific time limits to 
transitions. 
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