
Performance Analysis of “Time Warp”

with Lirnitecl Memory

Ian F. Akyildizt, Liang Chenjt, Samir R, Dast, Richard M. Fujimotot, Richard F. Serfozo~

t College of Computing

~ School of Indust rial ancl Systems Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract

The behavior of n interacting processes synchronized

by the “Time Warp” rollback mechanism is analyzed

under the constraint that the total amount of memory

to execute the program is limited. In Time Warp, a

protocol called “cancelback” has been proposed tc) re-

claim storage when the system runs out of memory. A

discrete state, continuous time Markov chain model for

Time Warp augmented with the cancelback protocol is

developed for a shared memory system with n hc,mo-

geneous processors and homogeneous workload. The

model allows one to predict speedup as the amount of

available memory is varied. To our knowIedge, this is

the first model to achieve this result. The performance

predicted by the model is validated through direct per-

formance measurements on an operational Time VVarp

system executing on a shared-memory multiprocessor

using a workload similar to that in the model. It iz ob-

served that Time Warp with only a few additional mes-

sage buffers per processor over that required in the cor-

responding sequential execution can achieve approxi-

mately the same or even greater performance than Time

Warp with unlimited memory, if GVT computation and

fossiI collection can be efficiently implemented.

1 Introduction

The Time Warp mechanism haa been proposed as a

general technique for synchronizing asynchronous par-

allel computations [8]. Unlike conventional, so-called

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct Commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is fjven
that copying is by permission of tha Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1992 ACM SIGMETRICS & PERFORMANCE ‘92-6 /92/R.l., USA

Q 1992 ACM 0-89791-508-9/92/0005/021 3... S1 .50

conservative, approaches to synchronization that uti-

lize blocking to avoid the posaibllity of synchronization

errors, Time Warp uses a mechanism that detects er-

rors at runtime, and automatically recovers using roll-

back. Empirical studies have reported some success in

speeding up the execution of discrete-event simulation

applications using Time Warp [4].

A Time Warp program consists of a collection of log-

ical processes (LPs) that communicate by exchanging

timest amped event messages.1 We assume timestamps

are unique, real, values that are totally ordered by the

relation “<”. All computations are the result of pro-

cessing messages, i.e., processes do not “spontaneously”

begin new computations. Each process maintains a lo-

cal clock variable that indicates the timestamp of the

message now being processed, or the last message it

processed if the LP is idle. Messages must be processed

in non-decreasing timestamp order. If a message with

timestamp T is received “in the past ,“ the computa-

tions associated with messages with timestamps larger

than T must be rolled back. This may involve sending

antimessages to cancel previously sent messages, which

in turn may induce additional rolibacks. Details of the

mechanism are described in [8]. We will assume that

the reader is familiar with the definitions and basic ter-

minology described in that work.

A substantial amount of effort has been devoted to

developing analytic models to characterize the behav-

ior of Time Warp. Several models have been developed

to model execution on two processors [2, 11, 19, 21].

Recently some work has also attacked the n processor

case [7, 10, 18]. Bounds have been derived to com-

pare Time Warp’s performance with that of other ap

preaches [1, 13, 15, 20], and conditions have been iden-

tified under which an excessive number of rollbacks may

lWe use the terms event and message synonymously,

213. Performance Evaluation Review, Vol. 20, No. 1, June 1992

occur [17].

All prior work in modeling Time Warp has assumed

that there are no constraints on the amount of mem-

ory that is available to execute the program. In ef-

fect, these models ignore the message sendback aspect

of Time Warp that was proposed by Jefferson to im-

plement flow control [8]. Several extensions of message

sendback have since been proposed in the literature.

As discussed later, message sendback based protocols

are often used when the simulation runs out of memory

and the normal garbage collection procedure (called fos-

sil coUection) fails to recover additional storage. These

protocols roll back some processes that are ahead in

virtual time relative to others in order to reclaim mem-

ory and enable the simulation to progress. While Time

Warp models that ignore message sendback can still

yield accurate predictions when there is adequate mem-

ory, substantial deviations could arise when memory is

limited. Moreover, little is known concerning the per-

formance of Time Warp with limited memory. This is

the central issue that we address here.

In a prior work we discussed the performance of Time

Warp with unlimited memory [7]. Although many of

the assumptions used here are similar to those in that

work, substantial changes have been made to model the

limited memory situation. Furthermore, the solution to

the present model differs significantly from the earlier

one.

This paper is organized as follows: in section 2 we

briefly overview different memory management schemes

for Time Warp and discuss the scheme that we are ana-

lyzing. In section 3 we describe the model. The analysis

of this model is discussed in section 4. In section 5 we

compare predictions made by the model with experi-

mental measurements. In section 6 we conclude and

discuss directions for future research.

2 Memory Management in Time Warp

Time Warp consumes memory by storing three types

of objects, viz., state vectors in the state queue, positive

messages in the input queue, and negative (anti-) mes-

sages in the output queue. Several mechanisms can be

used in Time Warp to control the amount of memory.

Various approaches are enumerated below:

● Fossil collection: Storage used by objects that are

older than global virttial time (GVT)2 can be re-

claimed and used for other purposes.

zGVT is defined as a lower bound on the timest amps of

all future rollbacks. For operational definitions of GVT see

[8, 12].

●

●

●

Message sendback and its extensions: If fossil col-

lection fails to recover any storage, but additional

memory is needed, some other mechanism is re-

quired. Jefferson’s message sendback protocol is

one such approach [8]. Several variations and/or

extensions of message sendback have also been

proposed, as outlined below.

Infrequent state saving: State vectors can be saved

at a less frequent rate to reduce storage consumed

by the state queue [14, 22].

Limiting optimism: Variations on Time Warp that

limit the degree to which processes can advance

ahead of others implicitly reduce the amount of

memory that is required [16, 18, 23, 24].

Several policies utilizing message sendback have been

proposed. Jefferson’s original proposal invokes message

sendback when a process receives a message, but finds

that there is no memory available to store it [8]. Then

the message with the largest send timestamp in its in-

put queue is returned to its sender. The sender rolls

back on receipt of this message if its local virtual time

is more than the send timestamp of the returned mes-

sage, and possibly resends it in a later forward exe-

cution phase. Gafni’s protocol [6] generalizes message

sendback by removing any stored object (input mes-

sage, state vector or output message) from the process

P that runs out of memory. If the discarded object

is an input message, it is returned to the sender, as

in message sendback. If it is an output message, it is

transmitted to its receiver where it will cancel the cor-

responding positive message, and P rolls back to the

state before it sent the original positive message. If the

stored object is a state, it is discarded. Typically, the

object with the highest sendtime is selected for removal,

Jefferson proposed an alternative approach called

cancelback [9] specifically targeted for shared memory

systems, where there is a single shared pool of mem-

ory. In this protocol, if a process P needs storage for

any object u, it is assumed that u is always allocated,

but after allocation there may not be any free memory

to continue the simulation. The protocol then discards

a stored object from some process (not necessarily the

same process that stores u) exactly as in Gafni’s pr~

tocol to free memory. The discarded object must have

its sendtime greater than GVT,

Lin observed that all these protocols rely on some

process rolling back to free memory [12]; so the ability

to artificially roll back any process to an earlier virtual

time will be a simple, but efficient, memory manage-

ment scheme. He described the artificial rollback pro-

tocol in connection with a shared memory architecture

214. Performance Evaluation Review, Vol. 20, No. 1, June 1992

with a shared memory pool. If any process runs out

of memory, and fossil collection fails to reclaim enough

storage, the process farthest ahead in virtual time is

rolled back. How far to roll back is a parameter of the

scheme. For efficiency reasons Lin recommends rolling

back the process with the latest local clock to the second

latest local clock. Thb continues until enough storage

has been reclaimed.

Artificial rollback is semantically equivalent to can-

celback. The syntactic difference, however, makes it

somewhat easier to implement in most systems (tlhere

is no need to distinguish between messages in forward

and reverse transit).

Here, we are concerned with the performance of Time

Warp with cancelback. Cancelback is believed to be a

complete solution for the Time Warp memory manage-

ment problem, as it enables Time Warp to complete

the simulation with the same amount of memory as the

corresponding sequential execution [9].

3 Model Description

We assume that the Time Warp program is parti-

tioned into n processes, each of which executes cm a

separate processor, All processors and processes are

identical. This assumption of homogeneity is perhaps

the strongest assumption made by the model. Since

each process executes on a distinct processor we use the

words “process” and “processor” interchangeably. We

also assume that there are initially m unprocessed mess-

ages in the system, and that upon processing each mess-

age, exactly one new message is generated. The quan-

tity m is referred to as the message population. This

fixed message population assumption holds exactly for

simulations such as closed queueing networks, and ap-

proximately for many other simulations where the size

of the event list (in sequential execution) does not vary

substantially throughout the simulation. The compu-

tation time associated with each message is assumed to

be exponentially distributed with rate A.

We assume rollback is non-preemptive; if a message

in the paat is received while an event is being processed,

the rollback does not take effect until the processing of

the current event is finished. We aasume the time! for

rollback is negligible. We also assume that the ,pro-

cesa’s state is saved prior to processing each event, and

the time to save state is negligible. These latter as-

sumptions are mild for medium to large grain simula-

tions (e.g., many combat models), where the associated

overheads are small relative to the computation time

per event.

An event whose timestamp is less than GVT is called

a committed message. Committed messages cannot be

rolled back. Others are referred to as uncommitted mes-

sages. These may or may not have been processed pre-

viously and, with the exception of the message with

timestamp equal to GVT, could later be rolled back.

We use a shared-memory model for memory alloca-

tion, i.e., we assume unallocated memory is stored in a

global, shared, pool of buffers. Each message includes

the associated state vector (recall that state is saved

before each message is processed) and is assumed to

require one memory buffer. M denotes the total num-

ber of memory buffers available in the system, We as-

sume no additional buffers to hold messages in transit.

When a message is sent, the sender requests and ob-

tains a memory buffer (if one is available), fills it in,

and puts the buffer directly in the receiving process’s

input queue. Any buffer freed by a process (e.g., via

fossil collection) is returned to the shared pool. We

assume cancellation is done by a pointer traversal as

in direct cancellation [3] rather than through antimes-

sages. As demonstrated in [3], each pointer consumes a

constant amount of space for each positive message in

the system, so they are included as part of the memory

buffer. Thus, no additional buffers are required to hold

ant imessages.

The total number of messages in the system cannot

exceed the memory capacity M. We assume that fossil

collection is instantaneous and runs continuously on the

background so that any fossil is immediately reclaimed.

Thus all messages in the system correspond to uncom-

mitted events. When there are no free message buffers

in the system and process P8 attempts to send a mes-

sage to process P,, the Time Warp system returns the

message u with the largest send timestamp back to the

process PU that originally sent it. This causes Pu to

roll back to the last state prior to sending u, and the

memory buffer holding u is freed. The only exception

occurs when the local time of P~ is greater than the

sendtime of u, In this case, P8 aborts the send, and

rolls back the current event.

The processing of a message with timestamp ~ in-

volves the following operations:

i)

ii)

iii)

Read the contents of the message.

Compute and update state variables.

Send a new message to one of the n processors

(including possibly itself) chosen from a uniform

distribution. The timestamp of the new message

is ~ + ~, where (is an exponentially distributed

random variable with rate p.

The assumptions regarding the choice of message re-

cipient and the timestamp increment may not be true

215. Performance Evaluation Review, Vol. 20, No. 1, June 1992

for many systems, but are necessary to make the analy-

sis tractable. Empirical evidence suggests that the mes-

sage routing function, computation time, and times-

tamp distributions have a secondary effect on perfor-

mance for homogeneous applications [5].

A memory buffer needs to be allocated from the

shared pool to hold the message to be sent. If none is

free, the system already contains Al uncommitted mes-

sages and the memory management protocol described

above is invoked to free a buffer. We assume that the

time to send a message, whether or not the protocol

is invoked, is negligible. As noted earlier, this is con-

sistent with the situation where computation grain is

significantly larger than the associated overheads.

As a processor completes processing the message

with timestamp T, it looks for the lowest timestamped

unprocessed message (or antimessage) in its input

queue. Suppose the resulting timestamp is T’. If # < ~,

the process rolls back to the most recent state earlier

than r’. The process then (whether or not it rolls back)

(i) sets its local clock to r’, (ii) copies the state vector

from the most recent message with timestamp less than

~’, and (iii) processes the message with timestamp T’

as described before. If the message with timestamp

T’ is an antimessage, however, it annihilates the corre-

sponding positive message (if it is already present in the

queue), or is processed as a no-op. The time taken to

do these operations in between processing of two mes-

sages is assumed to be negligible. It is assumed that

there is always at least one unprocessed message in each

processor’s input queue, i.e., the message population is

substantially larger than the number of processors n.

This implies that all processors busy all the time. This

is a reasonable assumption for simulation models that

are much larger than the multiprocessor configurate ion,

Note that a change in the system occurs only when

a processor completes processing a message and the

above actions are taken. The number of processed un-

committed messages in the system may increase or de-

crease depending on whether or not there is a rollback,

or whether the GVT advances (thus committing some

messages) after processing the next message. The num-

ber of unprocessed messages is always constant and is

equal to the message population m. Thus the total

number of processed uncommitted messages cannot ex-

ceed (M – m). It follows that M must at least be m

for the simulation to complete. Our objective is to de-

termine the effect of memory capacity M on the speed

of the system.

4 Model Analysis

A complete Markov modeling of the system would

entail keeping track of all the messages in the system,

i.e., recording their timestamps, locations and whether

they are processed or not, Since this is impractical

we take another approach. The key idea in our ap-

proach centers on the assumptions that the processors

are identical and the workload is homogeneous. We use

these assumptions to extrapolate or generate inform-

tion about the messages knowing only their quantities.

For instance, each processed message in the system has

probability l/n of being located at a particular proces-

sor. This is valid in equilibrium and hence is a reason-

able assumption for non-equilibrium states when one

has little information containing the past.

Recall that in our model the timestamp increment

(difference of the receive and send timestamps of a

message and its source message) is exponentially dis-

tributed with rate p. This assumption implies that

the interdistance in virtual time of the processed un-

committed messages in any process is also exponen-

tially distributed with rate a (say), where a may dif-

fer from p (See [7] for an explanation). Similarly, we

assume that the distribution of timestamp differences

is also exponential for the unprocessed messages with

rate ~ = rep/n, and for antimessages is exponential

with rate /3. We use these assumptions to model the

distribution in virtual time of the processed and unpro-

cessed messages at a processor in order to determine the

number of processed messages that must be undone in a

rollback. Aside from this relative ordering of the virtual

timestamps, their actual values are not important.

4.1 Equilibrium State Probabilities

We will represent the system by the continuous-time

stochastic process {X(t) : t ~ 0}, where X(t) denotes

the total number of processed but uncommitted events

in the system at real time t. Note that X(t) does not

include messages currently being processed (which are

partially processed messages). Recall that X(t) can be

at most (M – m), where M is the memory capacity

in number of message buffers, and m is the message

population. Information concerning the locations and

types (processed or unprocessed) of messages will be

generated from X(t).

Under our assumptions, the process X is an

irreducible Markov chain with state space S =

{O, 1,..., (A4 - m)}. The evolution of X is character-

ized by its transition rates

qjk+it ‘lP{x(t) = klX(0) = j}, j # ~ G S1 (1)

216. Performance Evaluation Review, VO1. 20, No. 1, June 1992

The process X is irreducible and its equilibrium distri-

bution r is the solution to the balance equations

k#j k #j

(2)

Under our assumption that all processors are always

busy, the exponentially distributed time that the pro-

cess X remains in any state is n~, where A is the rate

of the exponential processing time of each processor,

Then qjk = ?dpjk, where l’jk is the probability that X

moves from state j to state k at a transition. Therefore

the balance equations (2) simplify to

The following subsections describe the transition

probabilities Pjk and a computational procedure for ob-

taining the equilibrium probabilities Tj from (3).

4.2 Expressions for Transition Prol~a-

bilities

The transitions of the process X involve the following

events:

Rollback : ~k = {X moves to state k due to a

rollback }

GVT advance : vk = {X decreases to state k due

to a GVT advance }

Unit increase : Z = {X increases by one unit }

The nonzero transition probabilities of the process X

are therefore

Here Pj{.} is the conditional probability given

X(0) = j. We will derive expressions for these proba-

bilities in the following subsections. We make frequent

reference to the following random variables associated

with processor i at a transition:

Xi is the number of processed uncommitted mess-

ages (in processor i).

Yi is the number of unprocessed messages in the

local paat.

Zi is the number of antimessages in the local past.

U~ = Ya + Z~ is the number of messages in the IIocal

past. These are the messages that cause rollback

in processor i.

4.2.1 Probability y Dkt ribut ion Messages k

the Local Past Our expressions for the transition

probabilities will involve the following conditional dis-

tribution for the number of past messages Ui at proces-

sor i. Conditioning on Z~,

P{Ui = lLIXi = X} =

min(ti,=)

~ P{z; = .1X, = .}P{fi = U-.1X, = m},

z=max(o,ti-~~n)

U=o ,.. .,a+rn -n. (7)

Here Zi and Yi are conditionally independent given

Xi = x, and Ui cannot exceed (x + m – n) since at

most z antimessages may arrive at the processor being

rolled back to cancel the processed uncommitted events

and at most m – n unprocessed events may arrive at

that processor causing a rollback. We can write

P{Zi = ZIXi = ~} = h(z)/ ~h(z), Z = 0,..., z, (8)

1=0

where

h(z) = P{Zi = Z,Xi = X}

= ()z : z (?’p)’/(l + r~)’+’+’, (9)

Z=o,z

and rp = O/a. The integral follows since differences

between the timestamps of the Xi = z messages are

exponential with rate a and the differences between the

timestamps of the Zi = z antimessages are exponential

with rate ~. Thus, the first probability in the sum (7)

is evaluated by (8) and (9). The last probability in (7)

is expressed as

P{Yi = ylXi = X} =

m—n

~ P{~ = ~[Xi = Z,T’Vi = W}P{Wi = WIXi = Z},
w q

y= O,. ... n,n, (lo)

where Wi is the number of unprocessed messages in pro-

cessor i. As the processors are always assumed to be

busy, there are always m unprocessed events in the sys-

tem and that each of the n processors contains at least

one of them. The rest of (m — n) unprocessed messages

are equally likely to be located at the processors, and

so

217. Performance Evaluation Review, Vol. 20, No. 1, June 1992

messages or antimessages at i). Then

(m~n)(3W(1-Y-’-W,’11)
W=() ,.. .,n —n.

Consequently, Wi is independent of Xi. Then, similarly

to (8), (9),

P{Yi = ylxi = x, Wi = w} =
9(Y)

~ = 0::=0 g(i) ~ (12). . . . w,

where

9(Y) = P{yi = y, xi = Z} =

()

z ~y (rT)’/(l +r7)’+z+l (13)

and ry = y/et. Thus, the last probabilities in (7) are

obtained by (10)-(13). This completes our evaluation

of (7).

4.2.2 Unit Increase Consider the event Z that

there is a one-step increase in the process X. Let I

denote the processor that advances and initiates the

transition. Note that 1 is not the GVT regulator [7].

(GVT regulator is the processor that has the GVT

event in its input queue. The GVT event is the un-

committed event with the minimum timestamp among

all such events.) This is because whenever the regulator

advances it immediately commits the event it has just

processed. Since all processors are identical, we may as-

sume the nt h processor is the regulator at a transition,

and let Pj {.} denote the conditional probability y under

this additional condition. Then by standard condition-

ing,

i=l 2=0
(14)

Whenever X = j, we assume that these j processed

uncommitted events are independently located at pro-

cessors l,. ..jrz – 1 (no processed uncommitted event

can be in processor n, which is the regulator), and the

probability of one being at processor i # n is l/(n – 1).

Then

Pj{Xi = Z} = ~) (+) ’(1 - __+)i-x,

Z=o, ... ,j. (15)

Also, the process X can increase by one unit at pro-

cessor I = i if and only if Ui = O (there are no past

Pj{Z, I = ilXi = ~} = n-lP{Ui = OIXi = ~}, (16)

where n– 1 is the probability that processor i is the first

of the n processors to finish their processing. The last

probability y in (16) is given by expression (7). Thus,

Pj{~} can be computed from (14)-(16) and (7).

4.2.3 Rollback Consider the event %?~ that pro-

cess X moves to state k as a result of a rollback. As

above, assume that processor n is the regulator at the

transition and that Pj {.} is conditioned on this event.

Let I denote the processor that finishes processing first

and triggers the transition. If 1 = n and a rollback oc-

curs, then the process X can move only from j back to

j. Then conditioning on Xi and I, we have

n—1 j

p]{~k} = ~ ~ Pj{xi = Z]Pj{I = ilxi = X}

i=l z=j —k

.pj{~klxi = ~,~ = ~]

+l(k=j) pj{~j,~ = 7Z, xn = 0}, (17)

k= O,..., j.

Here, l(~sj) = 1 if k = j, and O otherwise. The last

probability involving K?j is evaluated by (33) in the next

subsection. In the summation of (17), the first proba-

bility y is given by (15) and the second probability y is

n-l[l – P{Ui = OIXi = Z}],

which is evaluated by (7). Here n-1 is the probability y

that processor i finishes before the other n– 1 processors

and this processor can rollback if and only if Ui # O.

The third probability y in the sum (17) (conditioned

on U~) is

Pj{’%?kl.xi = z,I=i}=

z+m-n

74=1

where C’i = {Ui = u, Xi = x, I = i}. The last probabil-

ity in (18) is

P{tJj=UIXi =X,l<U<X+?71-7t} =

P{U~ = UIXi = X}

1 – P{Ui = OIXi = X]

where the probabilities on the right hand side are given

by (7).

To complete the evaluation of (17), it remains to ob-

tain an expression for the probability y in (18). We can

218. Performance Evaluation Review, Vol. 20, No. 1, June 1992

express it aa

/

m

F’j{’R~lC~} = pj{~klc~3Ti = tjP{Ti C dt}l~!i}j
o

(19)

where Ti is defined as the local virtual time of prcjces-

sor i minus the GVT. To evaluate this integral, note

that for processor i to rollback to move process X to

state k when (X = j, Xj = z, Ui = U, Ti = t), ex~lctly

[z–(j–k)] processed uncommitted messages must lhave

timestamps below the minimum of the timestamps of

the u past messages and the rest of the processed un-

committed messages [(j – k) of them] must have tilmes-

tamps above this minimum. The minimum timestamp

of the u past messages has the distribution

1 – (1 – S/t)”, O<s <t. (20)

This is the probability that u samples from a uniform

distribution on [0, t] all fall in the interval [0, s]. The

probability of this rollback event is therefore

/
‘(s/t)= -j+k(l - s/t)J-k[u(l - St)’’-] ds]ds.

o

(21)

The last term in the integral is the density of the distri-

bution (20) that the minimum of the u timestamps for. .
past messages equals s. (We are simply conditioning on

the distribution (20)). The rest of the right side of (21)

is the binomial probability that exactly (z – j + k) out

of the z processed uncommitted messages have tilmes-

tamps below s. Substituting y = s/t, the integral re-

duces to

u
/

1~-j+k ~(_V)U+J-~-ldy = u~(z-j+k+l, u-t-j-k)

o
(22)

where

/

1

B(fa, b) = y“-’(l - y)’-’dy (23)
o

is the beta function. Note that this integral is indepen-

dent oft. Then (21) is also independent oft and hence

it factors out of the integral (19). In other words, sub-

stituting (21), (22) in (19), we obtain

pj{~klci} = U (.-T+J
.B(z–j+k+l, u+j–k) (24)

for O~u~(z+rn- n), O~z~j,

O~j<(iW -m), O~k<j, l<i~nl

This completes our evaluation of the rollback probabil-

ity pj{%?k~.

4.2.4 GVT Advance As above, we assume that,

at a transition of X, the processor n is the regulator and

Pj {.} is conditioned on this assumption. As before Ti

denotes the virtual time of processor i minus the GVT.

Set T = min{T1,..., Tn.-l}. Then the probability of

a decrease of the process from j to k due to a GVT

advance is

The first probability in the sum is given by (15). The

second probability in the sum has a closed form ex-

pression, but it is not practical for computations. We

therefore use the approximation: The quantities Xl are

the same for all the processors 1 that are not the reg-

ulator before or after the transition of X. Then. for

[“](such a processor, X1 = ~ the integer part of the

number). Note also that

i?+l+y Z+l+y

x()()

Z+l+y 1——
k

ksx+l
5“

Then our approximation is

[([=1)1’-2‘2’)Pj{T=TilXi = X} = p X,

To evaluate the last probability in (25), we will use

the following events:

A = {The GVT advances}

P = {At a transition, the message at the new GVT

was partially processed before the transition}.

Since we will consider the last probability in (25) for

fixed i, j, x, we will write it as ~{Dk}, where ~ is the

probability defined for any event B by

~{B} = PJ{BIXi = x,2’= Ti), (i, j,s are fixed)

Conditioning on A and P, we have

Here P’ is the complement of T. If V is the minimum

timestamp of all unprocessed events, then P – GVT is

exponentially distributed with rate wy (it is the smallest

timestamp from the n merged streams whose rates are

~). It follows that

()
2+1

P{lq . -J.- = (l+nrT)-z-l, z= O,...,j,
a+n-y

(28)

219. Performance Evaluation Review, Vol. 20, No. 1, June 1992

(r~ = y/a as in (13)). This is the probability that n + 1

events from a Poisson stream of rate a occurs before

one event occurs from a Poisson stream of rate wy.

To derive ~{d}, we view the regulator as being in

one of the two states:

state O : The regulator’s virtual time is greater

than GVT (the new GVT event is therefore an

unprocessed one).

state 1 : The regulator’s virtual time equals the

GVT.

Considering the movement of the regulator as a Markov

chain on these two states, its transition probabilities are

Pol = 1,

n-l j

Pll = ~ ~~{~}pj{xi = x,T = Z}. (29)

jzl 2=0

The equilibrium distribution of this chain being in state

1 is therefore 1/(2 – pll). It follows that

7{A} = l/[n(2 – pll)], (30)

where n-l is the probability that process i finishes pro-

cessing before the other ones finish.

We now consider ~{~k]~, P}. As the process X

moves from j to k due to a GVT advance and the new

GVT event was partially processed in processor z with

Xi = z before the advance, then (j – k – z) processed

uncommitted events will be committed from the other

n – 2 processors (excluding i and n). Thus

~{Dk 1A, ~} =
/

m ~-(n-2)a8 [(72 – 2)a5]~-k-’

o
~!

e -aa

.a(crs)= --#s (31)

()j–k (n– z)j-k-== c
x (n – l)j-k+l’

[“where c = ~~~~

argument yields

k=o “ k.,.. .,J—

(’:k)=]-1 ‘similar

J
w

~_l]a# [(n – l)c+j-~
= e-(

o
(j_ k]! -fe-7’ ~S

-[

n—1 1
j-k

= k=o (32)
c rp+(n–1) ‘

,Oe.,j,

where 5-1 = Zi=o (-)k. Here if processor i is

the new regulator and the new GVT event is unpro-

cessed, then all j — k processed uncommitted events

will be committed from the n — 1 processors excluding

i.

Finally, we note that the probability that the regu-

lator is in state O equals (1 - pll)/(2 – pll). Thus, the

probability P] {’RJ, I = n, Xn = O}, in the last section,

that the regulator rolls back from j to j, is

PJ{Xj, I=n, Xn= O}=
1 – pll

(33)
n(2–plJ”

4.3 Estimation of Parameters

The transition probabilities we have derived above

are functions of the parameters r~ = /3/a, r7 = 7/cY,

where a, /3 are unknown, We now present an iterative

procedure for computing TP, r~ and the equilibrium dis-

tribution x. We first express rfl, r~ as a function of r.

Whenever X; = z in processor i, its virtual time (with

respect to GVT) Ti is the location of the (z + 1)-th

message in a Poisson process with rate a. Therefore,

-E(Z [Xi = ~) = (~+ 1)/~. (34)

This Ti can also be viewed as location of the Yi-th point

of a Poisson process with rate 7. Therefore,

E(~]X~ = ~) = 17(~lX; = ~)/~.

Combining these expressions yields

ry = ~/a = E(Y~[X; = 2?)/(~ + 1).

Now viewing Xi as a random variable whose distribu-

tion is determined from the equilibrium distribution r,

a reasonable estimate of TT is

‘-m E(ylxa = z)
T7 = E (Z+l)

P{xi = x}, (35)

X=o

where

M-m

P{Xi = Z} = ~ Pj{Xi = X}%j. (36)

j =X

To estimate rp, we must consider antimessages. The

timestamps of antimessages are the same as that of

their parent processed uncommitted events. As an ap-

proximation, we suppose that if there are Zi = z an-

timessages in processor i, then they correspond to pro-

cessed uncommitted messages whose timestamps may

be smaller than the antimessages’ parents. Then simi-

larly to the above,

_E(TilX; = z) = CY‘1[2 - E(Z;IX, = ‘)1

+ ~-lE(ZilXi = ~)

= [rpz + (1 - rp)E(ZilXi = ~)]/@.

220. Performance Evaluation Review, Vol. 20, No. 1, June 1992

Applying (34) to the first term here and

for rp, we have

E’(ZilXi = 3)

‘p = 1 + .E(Zi[Xi = ~)

then solving

Thus, a reasonable estimate of rp is

‘-m E(ZilXi = ~)
l.p =

x.=O 1 + E(Zi IXi = ~)
P{Xi = X} 1(37)

Our iterative procedure for computing rp, r7, m is as

follows, For an initial setting of r~, r7 we compute u

from the balance equations. Using this m, we compute

new values of rp, r~ from (35) and (37), and use these in

the balance equations to compute a new m. We repeat

thb procedure until the new values of rp, r7 are within

a distance of 0.001 from their previous values. Perfor-

mance measures can then be computed as described in

the following subsection.

Extensive computations with this procedure showed

it to be very eflicient. Although we cannot prove that

there exist unique fixed points-for rp, r7, the data sug-

gests that this might be true. In runs of the procedure

for 100 initial values of rp, r7 ranging from 0.001 to

1)000, these parameters always converged to the same

values. The number of iterations for the convergence

depends strongly on their initial values. This nunnber

is very low, approximately 2 to 4, when (lf – m) is

below 10. For larger values of (Al – m), we found that

the number of iterations can be decreased significantly

by using the previously computed values of rp and ry

as initial values for the new value of (Af – m).

4.4 Performance Measures

The main performance measure of the system is the

number of memagea committed per unit time. This is

the same as the rate of GVT advancement per unit

time. This quantity is given by

M-m j

p = n~ ~ ~(j + 1 – k)Pj{Dk}~j (38)

j=O k=O

This follows by a standard law of large numbers for

a Markov process. The sum represents the expected

decrease in the state of X which is the expected number

of committed events per transition, and na is the total

rate of the transitions per unit time.

One can compare this n-processor model to a single

one operating in series as follows. Consider a single

processor working in series that processes messages over

time accordhg to a Poisson process with rate A. ‘Then

the speedup of the n-processor system is expressed as

s=; (39)

5 Experimental Results and Validation

of the Analytic Model

The analytic model makes a number of simplifying

assumptions (for instance, we assume that the timea-

tamps of the processed uncommitted events in each

processor follow a Poisson distribution) in order to

make the analysis tractable. Measurements on a Time

Warp kernel running on a shared memory multiproces-

sor (specifically, a BBN Butterfly GP-1OOO) were made

and compared with the performance predicted by the

analytic model in order to test the validity of the ap

proximations underlying the analysis.

The assumptions used in the analytic model pertain-

ing to the workload (exponential execution time per

event, exponential timestamp increment, fixed message

population, etc.) correspond to a specific instance of

the parallel HOLD (PHOLD) workload model [5]. This

model was used in the experiments performed here, and

a synthetic application program was designed that cor-

responds to the workload assumed in the model. Also

the mean computation time per event was aasigned a

relatively high value (50 millisecond per event) to re-

duce Time Warp overheads to a negligible level, and

the experiments here utilize a high message population

m (32 times the number of processor) to satisfy the non-

idle processor assumption. Experiments evaluating the

impact of relaxing these assumptions are currently un-

der progress.

The original Time Warp kernel we have used is de-

scribed in detail in [3]. This kernel has been modified to

make the memory to store messages accessible as a glob-

ally shared pool. As described in [3] the antimessages

in the kernel are mere pointers to the corresponding

positive messages organized in a causality record, and

these pointers require a constant amount of space per

event. The state vector and the pointers implementing

the causality record are included in each message, (re-

call that the state vector is saved before processing each

message) and are not separately allocated/deallocated.

Memory buffers to store messages are dynamically allo-

cated from the global pool when a process wants to send

a message to another process. The only way storage can

be freed is when a message is cancelled or sent back, or

when it is fossil collected. GVT computation and fos-

sil collection are performed atomically and on-demand.

All processors are involved in fossil collection using a

global synchronization. When memory is needed and

221. Performance Evaluation Review, Vol. 20, No. 1, June 1992

Speedup

9–

8-

7–

6-

5-

4–

p~.n.––.––..––.––.–––-––a
/

LJ /
/’

–-––-–-–-––-––-–––––--$
II

—————— ..——————————— -4

[

I

2

1

0 experimental, 12 proc

❑ analytical, 12 proc

o experimental, 8 proc

+ analytical, 8 proc

*
●

experimental, 4 proc

analytical, 4 proc

r-n = 32 times number of processors

o~
o 50 100 150 200 250 300

No. of additional memory buffers (M – m)

Figure 1: Effect of Limited Memory Capacity on Speedup

no free buffer is available in the shared pool, fossil col-

lection is invoked to reclaim memory used by possible

fossils. If no fossil exists, cancelback (aa described in

section 3) is invoked to free storage.

We have run the experiments with 4, 8 and 12 pro-

cessors on the BBN Butterfly. The effect of memory

capacity on speedup is shown in Figure 1. Performance

monitoring indicated that GVT computation and fos-

sil collection require a considerable amount of time. It

is observed that these computations may consume as

much as about 8070 of the total execution time in our

system when the amount of available memory is small.

In this case the frequency of GVT computation and

(possible) fossil collection is very high. To eliminate

the effect of this large overhead, which is not included

in the analytic models, we subtracted the total time

spent in GVT computation and fossil collection from

the total execution time, and use the difference to com-

pute speedup. Thus the experimental data shown in

Figure 1 is as if GVT computation and fossil collection

are instantaneous.

If the total memory capacity Af in the shared pool is

larger than some threshold value, fossil collection alone

is sufficient to produce enough free memory for the

simulation to progress. However for smaller amounts

of memory, cancelback needs to be invoked occasion-

ally to enable progress. Frequency of cancelback in-

vocations increases as memory is reduced further, and

speed of execution is reduced as the progress of many

processes in virtual time is throttled by frequent can-

celbacks. Memory capacity ill, however, cannot be re-

duced indefinitely. Recall that M must at least be m

as this is the number of message buffers required in the

corresponding sequential execution.

The modest discrepancies between the analytical pre-

diction and experimental results shown in Figure 1 can

be attributed to the assumptions used in developing

the analytic model, which are only approximately true

in the real experiments performed. It is noted that with

increase in memory capacity from the value required by

the sequential simulation, performance increases very

sharply, and then becomes almost flat. It is observed

that the speedup curve has a well-defined ‘knee.M The

location of this knee indicates the minimum number

of message buffers needed to complete the Time Warp

simulation as rapidly as in the unbounded memory sit-

uation. It is interesting to note that knee occurs at very

low values of memory capacity. The analytical model

predicts that only 2 to 3 additional buffers per proces-

sor beyond which is required for the sequential simu-

lation are necessary to achieve the same performance

as with unbounded memory. The measurements agree

with this result, but require slightly larger number of

buffers (about 5 per processor) to achieve the perfor-

mance of the unbounded memory case.

The experiments also predict a slight decrease in per-

222. Performance Evaluation Review, Vol. 20, No. 1, June 1992

formance az memory capacity increaaes just beyond the

knee of the curve. This maybe due to the fact that lim-

ited memory capacity prevents processes from progress-

ing far ahead in virtual time with respect to the C,VT.

Overly optimistic processes are more prone to rollbacks

than others. If the rollback overhead is non-zero,, in-

fusing more optimism in the mechanism by increasing

memory capacity actually degrades performance. Also,

large memory capacity increases input queue sizes (note

that the message population is relatively high), and

queue management takes more time [3] thus adversely

affecting performance. The analytic model cannot pre-

dict such performance decrease with increasing memory

because of its zero-overhead assumptions.

6 Conclusions and Future Research

The principal contribution of this work is the devel-

opment of an analytic model of Time Warp augmented

with cancelback operating with limited memory. To

our knowledge this is the first attempt to model the

limited memory behavior of Time Warp. We developed

a Markov chain model and derived expressions to pre-

dict the performance of the Time Warp system in terms

of speedup.

In addition, we validated our analytical model

through measurements of an operational Time Warp

system. It is demonstrated that for homogeneous work-

loads Time Warp performs reasonably well with a very

limited amount of memory (a few extra buffers per pro-

cessor), if global computation overheads such as (GVT

computation and fossil collection are discounted. Fur-

ther investigation is necessary to (i) speed up these com-

putations or (ii) modify the memory management, pro-

tocol (e.g., canceling back more than one object at a

time) to minimize the effect of these overheads.

In addition to thki, our future work includes the fol-

lowing topics:

@

●

●

developing analytical models for memory manage-

ment schemes for distributed memory Time ‘Warp

systems (such aa those using message sendback or

Gafni’s protocol),

performance comparisons of different memory

management schemes (for example infrequent

state saving schemes versus flow control based

schemes such as message sendback), and

investigating the cases where Time Warp over-

heads and heterogeneous processors and/or work-

loads are taken into account.

Acknowledgement

We thank the anonymous referees whose insight-

ful comments significantly improved thh paper. The

work of Akyildiz, Das and l?ujimoto was supported

by Innovative Science and Technology contract number

DASG60-90-C-0147 provided by the Strategic Defense

Initiative Office and managed through the Strategic

Defense Command Advanced Technology Directorate

Processing Division, and by NSF grant number CCR-

8902362. The work of Chen and Serfozo waa supported

in part by AFOSR 89-0407 and NSF grant DDM-

9007532.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

R. E. Felderman and L. Kleinrock. An upper

bound on the improvement of asynchronous versus

synchronous distributed processing. Proceeding

of the SCS Muhkconference on Distributed Simu-

lation, 22(1):131-136, January 1990.

R. E. Felderman and L. Kleinrock. Two processor

Time Warp analysis: Some results on a unifying

approach. Proceedings of the Multiconference on

Advances in Parallel and Distributed Simulation,

23(1):3-10, January 1991.

R. M. Fujimoto. Time Warp on a shared mem-

ory multiprocessor. Transactions of the Societg for

Computer Simulation, 6(3):211-239, July 1989.

R. M, Fujimoto. Parallel discrete event simula-

tion. Communications of the ACM, 33(10):30-53,

October 1990.

R. M. Fujimoto. Performance of Time Warp under

synthetic workloads. Proceedings of the SCS Multi-

conference on Distributed Simulation, 22(1):23-28,

January 1990.

A. Gafni. Rollback mechanisms for optimistic dk-

tributed simulation systems. Proceedings of the

SCS Multiconference on Distributed Simulation,

19(3):61-67, July 1988.

A. Gupta, I. F. Akyildiz, and R. M. Fujimoto.

Performance analysis of Time Warp with multi-

ple homogeneous processors. IEEE fiansactions on

Software Engineering, 17(10): 1013–1027, October

1991.

D. R. Jefferson. Virtual time. ACM 2%ansac-

tiom on Programming Languages and Systems,

7(3):404-425, July 1985.

223. Performance Evaluation Review, Vol. 20, No. 1, June 1992

[9] D. R. Jefferson. Virtual time II: The Cancelback

protocol for storage management in distributed

simulation. In Proc. 9th Annual ACM Symposium

on Pm”nciplea of Distm”buted Computation, pages

75-90, August 1990.

[10] D. R. Jefferson and A. Witkowski. An approach to

performance analysis of timestamp driven synchro-

nization mechanisms. Proceedings of the %d An-

nual Symposium on Principles of Diatribut ed Com-

puting, 1984.

[11] S. Lavenberg, R. Muntz, and B. Samadi. Perfor-

mance anal ysis of a rollback method for distributed

simulation. In Performance ’83, pages 117–132,

Elsevier Science Pub., (North Holland), 1983.

[12] Y-B. Lin. Memory management algorithms for op-

timistic parallel simulation. Proceedings of the SC’S

Multiconference on Parallel and Distributed Simu-

lation, 24(3):43-52, January 1992.

[13] Y-B. Lin and E. D. Lazowska. Optimality consid-

erations of “Time Warp” parallel simulation. Pro-

ceedings of the SCS Multiconference on Distributed

Simulation, 22(1):29-34, January 1990.

[14] Y-B. Lin and E. D. Lazowska. Reducing the state

saving overhead for Time Warp parallel simula-

tion. Technical Report 90-02-03, Dept. of Com-

puter Science, University of Washington, Seattle,

Washington, February 1990.

[15] R. J. Lipton and D. W. Mizell. Time Warp vs.

Chandy-Misra: A worst-case comparison. Pro-

ceedings of the SCS Multiconference on Distributed

Simulation, 22(1):137-143, January 1990.

[16] B. D. Lubachevsky, A. Shwartz, and A. Weiss.

Rollback sometimes works . . . if filtered. 1989 Win-

ter Simulation Conference Proceedings, pages 630-
639, December 1989.

[17] B. D. Lubachevsky, A. Shwartz, and A. Weiss.

An analysis of rollback-based simulation. A CM

Ybansaction on Modeling and Computer Simula-

tion, 1(2):154–193, April 1991.

[18] V. Madisetti, J. Walrand, and D. Messerschmitt.

Synchronization in message-passing computers-

models, algorithms, and analysis. Proceedings of

the SCS Multiconference on Distributed Simula-

tion, 22(1):35–48, January 1990.

[19] D. Mitra and I. Mitrani. Analysis and optimum

performance of two message passing parallel pro-

cessors synchronized by rollback. Performance

Evaluation J., 7:111-124, 1987.

[20] D. M. Nicol. Performance bounds on parallel self-

initiating discrete-event simulations. ACM !lkans-

actions on Modeling and Computer Simulation,

1(1):24-50, January 1991.

[21] B. D. Plateau and S. K. Tripathi. Performance

analysis of synchronization for two communicating

processes. Performance Evaluation J., 8:305-320,

1988.

[22] B. R, Preiss, I. D. MacIntyre, and W. M. Loucks.

On the trade-off between time and space in op

timistic parallel discrete-event simulation. Pro-

ceedings of the SCS Multiconference on Parallel

and Distributed Simulation, 24(3):33–42, January

1992.

[23] L. M. Sokol, D. P. Briscoe, and A. P. Wieland.

MTW: a strategy for scheduling discrete simula-

tion events for concurrent execution. Proceedings

of the SCS Multiconference on Distributed Simu-

lation, 19(3):34-42, July 1988.

[24] S. J, Turner and M. Q, Xu. Performance evaluation

of the bounded Time Warp algorithm. Proceedings

of the SCS Multiconference on Parallel and Dis-

tributed Simulation, 24(3): 117-126, January 1992.

224. Performance Evaluation Review, Vol. 20, No. 1, June 1992

