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ABSTRACT 
The queueing model of the multichain network is presented 
where the network is window flow controlled on its virtual chan- 
nel of communication network. Its performance is optimized 
based on Simulated Annealing. The solution space is assumed to 
be the set of all admissible service rates of all stations with the 
nonlinear cost constraint. The optimum total throughput of the 
network is determined for different chain packets. 
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1. Introduction 
Most packet networks nowadays provide virtual channels that are 

end-to-end flow controlled. Flow controlled virtual channels may be 

maintained between data sources and sinks or between pairs of source 

destination nodes. In some networks, both types of flow controlled vir- 

tual channels are maintained. In the queueing network models to be 

considered, only one type of flow controlled virtual channel is 

assumed. Such channels may be interpreted as being maintained either 

between packet sources and sinks or pairs of source-destination switch- 

ing nodes. An important function of end-to-end flow control protocols 

is the synchronization of the data source input rate to the data sink 

acceptance rate. All of them work by limiting the number of packets 

that a virtual channel can have in transit within the network. Hence 

they also provide, to some extent, a congestion control capability for 

the network as a whole. We consider the modeling of flow controlled 

virtual channels as multiple closed chains. The chain population size 

corresponds to the maximum number of packets that can be in transit 

within the virtual channel. This number will be referred to as the vir- 

tual channel window size. The effect of virtual channel window sizes 

on the throughput-delay characteristics of the network can be studied 

using closed queueing networks with multiple chains. 

Figure 1 illustrates a queueing network model of packet switch- 

ing network with R virtual channels. Each virtual channel has a source 

and a sink both of which are also modeled as FCFS servers with 

exponentially distributed service times. Packets in the same virtual 

channel follow a fixed route which may be chosen probabilistically 

from a finite set of routes between source and sink. 

Figure 1. Modeling Flow Controlled Virtual Channels 
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The delay for the return of an end-toend (Em) aclmowledge- 

ment (ACK) from the sink to the source indicating receipt of a packet 

is modeled by an independent random variable, the distribution of 

which may be different for different virtual channels. This delay is 

modeled by an IS (infinite server) node that joins the sink to the 

source to yield a closed chain in the queueing network model. It is 

not really important to model the route of an ACK explicitly because 

ETE ACKs are typically either sent piggybacked in data packets, or, if 

sent separately, very short. Thus, they consume relatively small 

amounts of buffer and channel resources in the network, which may be 

accounted for separately. In [15], Reiser suggested that the ACK traffic 

may be accounted for by reducing the channel capacities by amounts 

equal to the throughputs of ACK packets. 

The flow control window size of a virtual channel is the max- 

imum number of packets that it can have in transit within the com- 

munication network at the same time. Let K, denote the window size 

of virtual channel r for r = I,...&. If the number of packets in transit 

within a virtual channel is equal to its window size, then the source 

server is "blocked. A blocked source server is later unblocked when 

an ETE ACK retums from the sink indicating the receipt of a packet. 

The blocking behavior is naturally modeled in a queueing network by 

a closed chain with a fixed number of circulating packets. Each packet 

corresponds to an "access token". Initially, K, tokens are placed at the 

source server of virtual channel r .  Each packet admitted into the net- 

work carries a token with it. When there is no more token at the 

source server, it is blocked. A packet arriving at the sink node of the 

virtual channel releases its token which is then carried back by the 

ETE ACK to the source server to be reused again. Thus, the K, circu- 

lating tokens of a virtual channel corrspond to the K, circulating pack- 

ets of a closed chain. When the source server is not blocked, it gen- 

erates a new packet for input into the network at the rate y r .  The phy- 

sical interpretation of the rate y, depends upon the loading on the vir- 

tual channels. For a lightly loaded network y, may be interpreted as 

the extemal arrival rate of packets to the user of virtual channel r . For 

a heavily loaded network such that the queue of data packets at the 

source is nonempty most of the time, yr may be interpreted as the 

reaction speed of the user to a signal (or message) from the network 

interface of the virtual channel authorizing new input. Several 

researchers investigated the flow control in communication networks in 

recent years. Reiser [I51 introduced a tandem closed queueing network 

model for the evaluation of computer communication networks. He 

assumed losses in the model, Le, arriving messages facing a full win- 

dow are discarded. Varghese, Chou and Nilsson [19] assumed that 

such messages are not discarded; instead they wait for their tum to 

enter the network in a global queue. Georganas [6] studied a 

message-swiched network with three level flow-control, namely End- 

to-End, Local and Global window flow controls. He assumed the ser- 

vice times of each server to be exponential. Akyildiz [l] analyzed 

similar networks with local and global window controls and servers 

with nonexponential service times. In some other analysis of window 

flow control protocols the ACK delay is explicitly or implicitly 

assumed to be a random variable and follow a particular distribution 

[12,17] or congestion freedom [13,14]. 

2. Queueing Network Modeling 

In the queueing network model considered, FCFS servers are 

used to model communication channels and IS servers are used to 

model random delays associated with acknowledgements and timeouts. 

We assume that there are N servers in the network. Service times at 

each server i for packet of chain r have mean values l/uirpi where pi 

is the nominal service rate and air characterize the relative service 

rates for different packet classes in the same server for i = 1, ...& and 

r = 1, ...$. Packets belong to different (routing) chains, indexed by 

r = 1,2, ...&. Chains are characterized by different routing behaviors. 

The routing behavior of packets in chain r is specified by a first order 

Markov chain with transition probabilities p i j i r ,  i.e., a packet of chain 

r after receiving service at server i proceeds to server 1. Multiple 

chains are needed between the same source-destination node pair to 

correspond to different virtual channels connecting data sources in the 

same source node and data sinks in the same destination node. 
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Bard/Schweitzer [3,16] algorithm provides the following solution 

for the analysis of networks with the above assumptions. 

The mean delay of a chain r packet at server i (for i = 1.2, ...A’ 

and r = 1, ...,R) is: 

K r - 1  - R 
[I + - ki,] + E for + I S  1 

air Pi K r  s + r  
rir = 1 (1) 

for IS 
- 1- air  Pi 

The throughput of the network for chain r packets is obtained 

by Little’s law: 

Ar h, = - 
N -  E eir tir 

i=l  

The mean number of chain r packets at the i-th server (for 

i = 1,2,..,N and r = 1.2. ...,I?) is also obtained by Little’s law: 

- - 
kip = 1, eir tir (3) 

where eir is the mean number of visits that a packet of chain r makes 

to server i and is computed from 

N R  

j=1 s=l 
for i = 2 ,... ,h7 ; r = l,..,R. eir = E E ejs . Pjir 

Kr We start with Kr = - for i = 1 ,... ,N and r = 1 ,... ,R and iterate N 

sequentially through equations (1) - (3) until convergence is observed. 

The convergence is observed if the Kr values, equation (3). of the 

current iteration deviates less than a threshold value (e.g., E = lo4) 

from values of the previous iteration. 

Several optimal routing problems may be formulated depending 

upon the nature of the incremental flow and optimization objective. 

For example, the objective of ARPANET routing algorithm [I11 is to 

minimize the (estimated) delay of an individual packet from its source 

node and to its destination node. However, it has been observed that 

routing algorithms with the objective of individual-optimization do not 

necessarily lead to network optimization, i.e., minimizing the mean 

delay of all packets in the network or accordingly maximizing the 

throughput of the network. 

Performance optimization is an important step in the design and 

planning of communication networks. Several authors have discussed 

the issue of optimization in recent years [2,5,8,10,18]. Most of the 

optimization studies regarding the communication networks are based 

on the selection of the routing of packets in the network. However, in 

virtual circuit networks the routes are fixed. Thus, in this work the 

optimization question is to determine the optimal service rates of each 

server as decision variables subject to cost constraints such that the 

throughput of the network will be maximum. 

3. Simulated Annealing 

In this section we describe our application of simulated anneal- 

ing to the task of locating the service rates for optimal or near optimal 

throughput under fixed cost. Initially, more traditional optimization 

methods for problems subject to constraints were med but these had to 

be rejected. In an approach by Lagrange multipliers, the Lagrangian 

proved too difficult to solve in general due to its non-linearities. Next 

a gradient ascent numerical method was tried. However, due to the 

presence of multiple local maxima, this method was unable to locate 

the global maximum. When there are numerous local maxima hd ing  

the global maximum by an ascent method is a matter of pure chance 

depending on the algorithm’s starting point. Unfortunately, a starting 

point chosen without good knowledge of where the global optimum is 

located will in all probability be near a local maximum and “get stuck 

at it. 

Thus an aproach incorporating random elements is indicated 

Modem Monte Carlo optimization methods such as simulated anneal- 

ing exploit random search but in a controlled way based on MtWd 

phenomena. Moreover, there is now a substantial body of experience 

and theory underlying simulated annealing. The method has been 

applied to numerous problems from practical ones such as cell place- 

ment and interconnection for VLSI circuit design [9] to well-known 

fundamental ones of combinatorial optimization such as the traveling 

salesman problem [4]. Excellent results have been reported in many 

cases. Normally, a disadvantage of Monte Carlo methods is their long 

run times. However, on the suite of example problems we used here, 
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run times are in seconds on workstations. Since our example problems 

were not specially selected, we feel the methods will work well in 

general on this class of optimization problem. 

The physical analogy on which simulated annealing is based is 

that of thermodynamic systems where internal molecular energy is to 

be minimized, for example, the formation of crystals from a liquid 

melt. If the system is cooled sufficiently slowly, low internal states of 

energy can be reached, the formation of a perfect crystal in our exam- 

ple. If cooling is too fast, then only metastable states of much greater 

internal energy will be reached. The function of temperature is to 

allow the system to pass from one state to another. When the tem- 

perature is zero, no transitions are possible and the system is frozen in 

some particular configuration with its corresponding energy. However, 

at non-zero temperatures and especially at high ones, transitions from 

states of low energy to states of high energy can occur. In this way it 

is possible for the system to climb out of a local energy well and ulti- 

mately freeze in the globally minimal energy state. 

The frequency with which possible thermodynamic states are 

actually observed is govemed by the Boltzmann energy distribution 

law. thus the probability of observing a state having energy E at tem- 

perature T is 

- e-E/BT 
Z 

where B is the Boltzmann constant and Z, the partition function, is the 

sum 

z = e-Eim 

over all states of the system. 

Consequently, it is less likely to observe a high energy state 

when the temperature is low than when it is high. Put differently, a 

transition from a state of low energy to a state of high energy is less 

likely to occur at low temperatures than at high temperatures. In fact, 

the probability of such a transition is given by 

e -A E lBT 

where A E is the energy difference between the two states. 

Consider now an abstract implementation of this physical pro- 

cess, An ensemble of particles with their attendant positions and velo- 

cities is replaced by a data structure containing values sufficient to 

describe a possible solution to the abstract problem, in short a state 

E. The energy of the physical system becomes in the abstract system 

the variable h to be optimized. Values of this all important variable 

are defined for each state and are calculated by an objective function 

w ,  h = w (E). Thermal kinetic energy as a function of temperature in 

the physical system brings about transitions between states. In the 

abstract implementation a suitable transition process between states 

must be concocted. Finally, just as a physical system cooled 

sufficiently slowly freezes in states of low energy, work on simulated 

annealing theory conducted by several researchers, [7,9,20] and others, 

has yielded the required temperature management to guarantee conver- 

gence of the abstract process to a globally optimum objective value. 

We state the result due to Hajek [7]: 

Theorem 1. If an annealing process is irreducible and reversible, then 

as running time t tends to infinity t-+, the probability that the pro- 

cess is in a globally optimum state at time t tends to certainty pro- 

vided temperature T is lowered no faster than 

d T = -  
log(t +I) . 

In this the parameter d is a constant at least as large as the 

depth of all non-global minima (or the height of all non-global max- 

ima). The process is irreducible if every state eventually leads by 

the transition process to every other state. The process is reversible 

(minimization formulation) if whenever a state pz can be reached from 

a state pL1 along a sequence of intermediate states all of whose objec- 

tive values are less or equal to h, then there should be a sequence of 

states leading back from pz to p1 all of whose intermediate objective 

values are less or equal to h as well. 

The salient difference then between a traditional deterministic 

minimizer and simulated annealing is that the latter permits uphill 

transitions in a controlled manner as well as downhill ones govemed 

probabilistically by the auxiliary parameter of temperature and 
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Boltzmann’s law. This difference enables the Monte Carlo method to 

succeed in finding the global optimum provided temperature is con- 

trolled properly during the course of the run. 

4. Throughput Optimization 

As explained above a numerical implementation of simulated 

annealing consists of a data structure for the state or solution space of 

the problem, a probability distribution on the transition between states, 

a temperature variable and an optimization function defined on states. 

We now detail our assignments of these ingredients to the prob- 

lem of maximizing multi-class network throughput. Since our applica- 

tion is one of maximization, the sense of optimization of the previous 

section is reversed. Thus, it is with probability 

e+AIJT 

that transitions will be made from high throughput states to low ones. 

We have taken the Boltzmann constant B=l here as it merely serves 

to scale objective values. According to Theorem 1 these may be 

scaled once and for all by the choice of the parameter d .  

throughput for packet chain r .  These latter quantities for r = 1,2, ...a 

are determined from equations (2) which must be solved iteratively 

using ci and k;, from equations (1) and (3). 

Transition Probability Distribution 

The transition from state to state is affected by means of two 

processes. The first, the generation process, generates new trial states 

as a function of the known present state. Annealing theory has little to 

say about the generation process outside of the general requirement of 

irreducibility and reversibility. Thus it is here that experience and 

problem specific information is brought to bear. 

On the basis of experience we use a generation process in which 

the trial state does not differ much from the present state. The process 

is made more complicated by having to satisfy the constraint. For- 

tunately a hyperplane constraint is easy to incorporate. In the first step 

one randomly selected component of the given rate vector is chosen to 

be modified and that component is then modified by a random amount 

up to a maximum, DMUMAX, which is taken as a parameter of the 

implementation. Following this step the modified rate vector will no 
State Space 

Our solution space X will be the set of all N-tuples of admissi- 

ble service rates 

N 
i =1 Ci = COST 

where COST and the ci’s are given constants. When p = 1, X is the 

portion of a hyperplane lying in the positive cone of N-dimensional 

Euclidean space. The hyperplm being determined by c l,c 2, . . . , CN 

and COST. When p # 1 the hyperplane is replaced by a curved sur- 

face instead. 

Objective Function 

Associated with every service rate vector 14 in X is its 

corresponding network throughput h = h, where h, is the 
R 

r=l  

longer satisfy the constraint. However, an adjustment factor is easily 

calculated and multiplying it into all components of the modified rate 

vector results in a new rate vector satisfying the constraint and still 

only slightly perturbed from the original. Expressed algorithmically 

this is 

generate (PI&, . . . ,pN); 
k t ( i n t ) ( l  + N*rand()); 
s + ( c ~ / c o s T ) ~ ~ ;  
1 tmax(0.s - DMUMAX); 
r tmin(1 , s  + DMUMAX); 
n t l  + (r-I) * rando; 
f t l / ( l  + n - s)”P; 
for i = 1,2, ...,A7 

if (i + k )  v i t f  * pi 
else 

p this scales terms in o to I*/ 

vi tf* (COSPN /ck)“@ ; 
fi 

endfor 
return VI,  ..., V N  
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In the linear case, p = 1, the generation process may be visual- 

ized geometrically as follows. As previously noted, valid service rate 

vectors g = (pl, ...,pN) are those on a hyperplane in the positive cone 

of N dimensional Euclidean space. Perturbating a single component 

of g by amount S = N-s results in moving off this hyperplane in 

the coordinate direction of the chosen component. Finally, the readjust- 

ment by factor f corresponds to shrinking or expanding the perturbed 

rate vector until the constraint is again satisfied. 

When the exponent differs from one, p # 1, the only change in 

the aforegoing analysis is that the surface is not a hyperplane but 

rather is curved slightly. Otherwise geometrically the procedure is the 

same. 

Having generated a trial rate vector = (vl, ..., v ~ )  as a pertur- 

bation of the present rate vector g, it is accepted or rejected as the 

next state of the process probabilistically in accordance with the 

Boltzmann distribution law. The throughput h, for the trial state is 

calculated and compared with the throughput k,, of the present state. 

If h, exceeds h,, then v does replace p. Even if h, < A,, it still 

replaces p with probability 

d - .t, 
p = e  

This is conveniently affected by use of a random number genera- 

tor, rand(). returning values in [0,1). Then v does replace b if 

rand() < p .  In the event that v does not replace p, then p is again 

the service rate vector for the next iteration. Algorithmically 

replacement ((p,v),AV 
if Ah 2 0 return v; 
if (rand() < exp((Al)/T)) return V; 

return b; 

Temperature Management 

Temperature control during the course of an anneal, known as 

the cooling schedule, is a much investigated subject in simulated 

annealing theory. Convergence to a globally optimum objective value 

is guaranteed eventually if temperature is decreased log hyperbolically 

as a function of iteration count k, 

d 
log(k +1) 

The parameter d should be at least as large as the height of all 

non-global maxima. In practice, this value is not known exactly but 

any estimate larger than the largest submaximal peak will do. In our 

work we have found that more rapid cooling performs equally well 

T=- 

and so we use hyperbolic cooling 

T = -  d 
d+k 

where d and k are as above. 

Summarizing, in a simulated anneal potential solutions are gen- 

erated and compared over and over and either accepted or rejected 

probabilistically consistent with the Boltzmann distribution law involv- 

ing a temperature T. During the course of the anneal T is reduced 

according to a cooling schedule. When finally a suitably low tempera- 

ture is reached the algorithmn terminates on an optimal or near 

optimal solution. The algorithmic structure is given as follows: 

T c l ;  
pcRandom-Initialization (); 
h = evaluate (p); 
k c l ;  
do 

vtgenerate (p); 
A htevaluate (v) - h; 
pcreplace ((p,v) Ah); 
kcevaluate (p); 

d T+-. 
(d+k)  ’ 

k+-k+l ;  
while (T > exit-T); 

5. Example 
The topology of a communication network model is shown in 

Figure 2. This network has 5 nodes and 12 half duplex links, so it is 

regarded as the multichain queueing network. 

Window flow controlled network is modeled as a closed queue- 

ing network model based on ACKs between source destination pairs. 

FCFS queues are used to represent forward data path and IS (infinite 

servers) are used to model random delays (ACKs). The queueing 

model is shown in Figure 3. Note that servers 1-6 represent FCFS 

queues and 7-11 represent IS servers. 
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n 

Figure 2. Communication Network 

Figure 3. Multichain Queueing Model 
It is assumed that routing strategy is fixed and seven routing 

chains exist. Mean service times of each queue and routing chains are 

specified in Tables 1 and 2 as input parameters. We assume the uni- 

form service rate and uniform service demand at each queue for con- 

venience. 

Table 2. Visit Ratios 

Table 3. Service Rate Factors 

We assume that chain population is 2L, i.e., two times of hop 

number. So we set population vector to E = (4,4,4,4,4,6,2). For the 

total cost we assume COST = 2700. The results are tabulated in the 

following Table. 

Solutions 

Table 4. Optimal Throughput and Optimal Service Rates 

11 I 250 I = IS 

Table 1. Cost Rates 
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APPENDIX 

2 1.0 
3 1.0' 
4 1.0 

REFERENCES 

0.5 1.0 0.333 0.444 
0.25 1.0 0.333 0.333 
0.25 1.0 0.333 0.666 

N = 4 servers, R = 5 chains, Kr = 20 packets per chain, COST = 1100 

server rate e, server type 

f IS 
4 100 # 1s 

eir 
I chain ~~~ ~~. 

servers 1 1 1 2 1  3 1  4 1  5 
1 1  1.0 I 1.0 I 1.0 I 1.0 I 1.0 

Solutions 

6. Conclusion 

The queueing model of the multichain network has been 

presented when the network is window flow controlled on its virtual 

channel of communication network. Its performance has been optim- 

ized based on Simulated Annealing. In particular, we assumed our 

solution space to be the set of all admissible service rates of all sta- 

tions with the nonlinear cost constraint and determined the optimum 

total throughput of the network for chain r packets. From our experi- 

ments we conclude that mean delay time decreases as window size 

decreases while throughputs change little. Mean delay time increases 

as window size increases while throughputs change little. Mean delay 

time reduces as mean service times are shortened while throughputs 

increase. Finally. the most desirable method against congestion in any 

region is to speed up the transmission rate of that channek but this 

costs too much, so altemative methods can be considered which reduce 

the window size within the tolerable limit of throughputs. 

1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

I. F. Akyildiz, "Performance Analysis of Computer Communica- 
tion Networks with Local and Global Window Flow Control", 
Proc. of the IEEE INFOCOM'88, March 1988, pp. 401410. 
I. F. Akyildiz and G. Bolch, "Throughput Maximization and 
Response Time Minimization In Queueing Network Models Of 
Computer Systems", Proc. of Int. Sem'nar on Distributed and 
Parallel Systems, North-Holland, December 1988. pp. 241-259. 
Y. Bard, "Some Extension to Multiclass Queueing Network 
Analysis", Proc. of the Pegomnce'89 ,  Feb. 1979, Vol. 1. 
V. Cemy, "Thermodynamical Approach to the Traveling Sales- 
man Problem: An Efficient Simulation Algorirhm", J O W I K J ~  Opt. 
Theory Appl., 45, 1985, pp. 41-51. 
K. M. Chandy, J. Hogarth and C. H. Sauer, "Selecting Capacities 
in Computer Communication Systems", IEEE Transactions on 
Software Engineering, Vol. 4, July 1977, pp. 290-295. 
N. D. Georganas, "Modeling and Analysis of Message Switched 
Computer-Communication Networks with Multilevel Flow Con- 
trol", Computer Networks and ISDN, North-Holland, Vol. 4, 

B. Hajek, "Cooling Schedules for Optimal Annealing", Math. of 
Operations Research, 1986. 
J. R. Kenevan and A. von Mayrhauser, "Convexity and Concav- 
ity Properties of Analytic Queueing Models for Computer Sys- 
tems", Proc. of Performance' 84 Conf., North-Holland, 1984. pp. 

S. Kirkpanick, C. D. Gelatti and M. P. Vecchi, "Optimization by 
Simulated Annealing", Science Journal. 220, 1983, pp. 671-680. 
H. Kobayashi and M. Gerla, "Optimal Routing in Closed Queue- 
ing Networks", ACM Transactions on Computer Systems, Vol. 1, 

S. S .  Lam and J. W. Wong, "Queueing Network Models of 
Packet Switching Networks: Part 2: Networks with Population 
Size Constraints", Performance Evaluation Journal, North- 

S. R. Lee, W. H. Cho, S. B. Lee and M. Park, "Perfomance 
Analysis of Multichain Queueing Networks for Window Flow 
Control", Proc. of TENCON 87, Seoul, Korea, August 1987, pp. 

D. Luan and D. Lucantoni, "Throughput Analysis of a Window 
Based Flow Control Subject to Bandwidth Management", Proc. 
of INFOCOM 88, March 1988, pp. 41 1-417. 
M. Nassehi, "Window Flow Control in Frame-Relay Networks", 

M. Reiser, "A Queueing Network Analysis of Computer Com- 
munication Networks with Window Flow Control", IEEE Tran- 
sactions on Communications, Vol. 27, No. 8, August 1979, pp. 

P. J. Schweitzer, "Approximate Analysis of Multiclass Closed 
Networks of Queues", Int. Conf. Stochastic Control and 
Optimization, Amsterdam, 1979. 
J. B. Suk and C. Cassandras, "Analysis and Optimization of Pac- 
ing Window Flow Control with Admission Delay", Proc. of 

K. Trivedi and R. A. Wagner, "A Decision Model for Closed 
Queueing Networks", IEEE Transactions on Sofrware Engineer- 
ing, Vol. SE-5, No. 4, July 1979. 
G. Varghese, W. Chou and A. Nilsson, "Queueing Delays on 
Virtual Circuits Using a Sliding Window Flow Control Scheme", 
Proc. of the ACM Sigmetrics Conference, Aug. 1983, pp. 275- 
281. 
M. P. Vecchi and S. Kirkpatrick, "Global Wiring by Simulated 
Annealing", IEEE Transactions on Computer Aided Design, 2, 

1980, pp. 285-294. 

361-375. 

NO. 4, NOV. 1983. pp. 294-310. 

Holland, Vol. 2, 1982, pp. 161-180. 

32 1-325. 

IEEE GLOBECOM 88, NOV. 1988, pp. 1784-1790. 

1199-1209. 

IEEE INFOCOM 88. March 1988, pp. 391-400. 

1983, pp. 215-222. 

330.4.8. 
1209 


