
PERFORMANCE COMPARISON OF INDEX PARTITIONING
SCHEMES FOR DISTRIBUTED QUERY PROCESSING

J6rg Liebeherr, Ian F. Akyildiz and Edward Omiecinski

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332 .
ABSTRACT

The benefit of using indexes for processing queries in a
database system is well known. The use of indexes in dism-
buted database systems is equally justified. In a distributed
database environment a relation may be horizontally parti-
tioned across the nodes of the system and indexes may be
created for the fragment of the relation that resides at each
node. However, as an alternative. one might wnsuuct each
index on the entire relation, i.e., global indexes, and then
partition each index between the nodes. Two approaches are
presented for processing such an index partitioning scheme in
response to a range query and their performance is compared
with the typical scheme. The performance of these schemes
is evaluated in terms of the response time, system
throughput network utilization and disk utilization while
varying the number of nodes and query mix.

Key Wora's: Distributed Database System, Performance
Evaluation, Simulation, Query Processing

1. Introduction
Within the past ten years, query processing in distributed database

systems has been a major area of research [2.3,6,8.11,13]. Specific
inerest in dismbuted query processing for local area networks 'has also
been popular [1,12,14,18,20]. Most of the research has been oriented to
the optimization of multi-relation queries, such as a join of two or more
relations [12,14.16,18,19]. However, there are hadeoffs hat are involved
in processing single relation queries th3t have not as yet been explored.
We examine these tradeoffs in the context of a locally distributed data-
base system.

Intra-query parallelism as well as inter-query parallelism can pro-
vide improvements in response time for individual transactions 1171. For
intraquery parallelism, a query optimizer would produce a query plan
that could be executed in parallel by a number of processors. For inter-
query parallelism, several queries would be executed in parallel. In this
paper we examine the trade-off between intraquery and inter-query
parallelism for single relation queries which use secondary indexes.

In this work we consider only one type of query, which is a single
relation range query. This type of query is one for which the access plan
might use one index, i.e., if the selectivity of the key is small [7]. A
range query requests tuples from a relation whose key value is within the
range of key values specified in the query. As a special case of range
query, we allow a query to specify only one key value. If the key is
unique then the range query is really an exact match query that would
have only a single tuple as its result

Since we are concerncd with evaluating different index partitioning
and processing schemes in our distributed database system. we will limit
the access plans for the query to just those which use the index. The
index suucture is the well known B+ me [7]. We assume tha~ the leaf
nodes are linked together to allow efficient processing of a range query.

0073-1 129/91/0000/0317$01 .OO 0 1991 IEEE
3 17

To process a query, the range of key values which appear in the
query is used to search the index. The search begins at the root of the
tree using the key value specified as the lower bound of the range. The
search will always proceed to a leaf node that will contain the key value
if there exists at least one tuple in b e relation having that key value.
From lhat leaf node, the key values which fall within the range specified
in the query will be extracted along with the addresses of the tuples that
have those values. If the greatest key value in the leaf node satisfies the
query, then the next leaf node is examined, via the pointer which links
together adjacent leaf nodes. The search ends when the current leaf node
contains a key value greater than the upper bound of the range query.
The result of searching the index is a set of tuple addresses. These
addresses are then used to remeve the set of tuples which satisfy the
query. We assume that the pages (or nodes) which comprise the index are
stored on a secondary storage device, i.e., a disk, as well as the pages
which store the tuples for the relation. In addition. the pages that store
the index are disjoint from the pages that store the data. Since our intent
is to compare different partitioning schemes, we divorce the query pro-
cessing from the buffering scheme in that an access to an index block,
other than the root, will cause a disk access.

The paper is organized as follows. In section 2 we describe the use
of indexes in a distributed database system. First we explain the classical
partial index scheme. Then we introduce a new scheme, called parti-
tioned global index, for storing an index. In section 3 we describe the
distributed database system under' investigation. We show how a query is
processed under the above mentioned index schemes. In section 4 we
present the simulation model. In section 5 three series of experiments are
conducted. In Section 6 we discuss the conclusions of the obtained
results.

2. Storage Organization
Since we are concerned only with the comparison of our partition-

ing schemes and their associated processing requirements, we limit our
analysis to a single relation database. This is reasonable in light of what
has been stated. The single relation is horizontally partitioned across all
sites, i.e.. disk drives associated with each site. The pari of the relation at
each site is sometimes referred to as a fragment. We make no assump-
tions about how the tuples fmm a relation may be dismbuted. For exam-
ple, a round robin, hashed or range partitioning approach as discussed in
[4,5] may be used. Our only assumption is that the number of tuples at
each site is approximately the same. For example, tuples from the
employee relation may be partitioned as follows:

employee tuples where the age < 30 are stored at site 1,
employee tuples where the age 2 30 and s 45 are stored at site 2,
employee tuples where the age > 45 are stored at site 3.
If a secondary index on the salary column was needed, the typical

approach [5,17] would be to construct thrce physical indexes, one for
each fragment Therefore, the fragment and its associated index are
located at the same site. These indexes are referred to as parId indexes
[17]. Figure 1 illustrates the concept of partial indexes.

36 smith IS green Relation
Fragment 1 17’0nCs 1 1 1 1 30 1

20 bmun 40 while

I I

Figure 1: Partial Indexes
As an alternative to the partial index scheme, one could conceptu-

ally think of building an index for the entire relation, i.e., a global index,
and then partitioning the index across the sites. Along with a given parti-
tion of the index, each site would have a small master index that in&-
cam the partitions that are stored at each site. Figure 2 illustrates the
concept of a partitioned global index.

SITE 1 SIT€ 2

Master Index a I I Masierlndex

Panirioned
Global Global
Index

56 srnilh
Rclation
Fragment 1 l7joner 1 I

I ?Obroun

I I

Figure 2: Partitioned Global Index
Intuitively. partial indexes look anractive from the standpoint of

intraquery parallelism. That is, the indexes can be searched at each site
in parallel. However, all sites must search their index to answer the range
query, e.g., select employee where salary c 10K. Equally intuitively, par-
titioned global indexes look attractive from the standpoint of inter-query
parallelism. That is, if the range query involves a limited range of key
values, only some of the sites will need to search their index allowing
other sites to process different queries. However, as one can imagine.
additional messages will be required for processing the tuple addresses
found in the partitioned global indexes. In this work we investigate these
schemes and quantify when one of these index schemes should perfom
better than the other.

We also indicate that updates are not addressed here, e.g., inserting
a new tuple in the relation. In the partial index approach only one site
would be responsible for handling the insertion of the tuple into its frag-
ment as well as inserting the tuple’s address in that site’s index. In the
partitioned global index approach. at most two sites would be responsible
for inserting the tuple in the fragment and its address in the appropriate
index. The problem of maintaining indexes of approximately equivalcnt
size would be common to both indexing schemes.

3. System Description
The distributed database syslem consists of several sites intercon-

nected by a communication network as shown in Figure 3. The sites
operate as self-contained computer systems, i.e.. each site has its own
CPU and a disk drive which srves as secondary storage.

SI!. Sll. Slt.

Figure 3: Structure of the Distributed Database
The communication network is an Ethernet-type local area network,

thus allowing broadcast messages which can be received by all sites.
Database items, i.e., tuples from each relation, are equally distributed
over all sites. That is, a relation is horizontally fragmented without repli-
cation. For our purposes we consider the case of accessing only one rela-
tion. All data items are accessed indirectly with an index. A query can
initiate execution at any site. Each transaction issues only one query at a
time. The list of key values generated by a query is a range of consecu-
tive key values belonging to a secondary key.

We distinguish two different schemes of storing index and data
blocks in the distributed database system. the partial index scheme and
the partitioned global index scheme, respectively. Each scheme follows a
different policy of answering a query. Three policies are described,
Send-None for the partial index scheme, Send-Forward and Send-Back
for the partitioned global index scheme. The names of the policies
correspond to the way each policy handles addresses of tuples which are
available afw index retrieval.

a) PARTIAL INDEX
Send-None.

For our purposes. we can think of a query as requesting tuples for a
set of one or more ordered key values. In the partial index scheme the
index at each site must be searched, when a query has requested a set of
key values. However, key values that are stored in an index at a given
site have their corresponding data records also stored at that site. This
means that once a key has been found in an index block it is assured that
the tuples with that key are stored at the site where the index entry has
been found. No address list has to be transmitted to other sites (thus the
name: Send-None). The partial index scheme with the Send-None-policy
is the one typically implemented in a dismbuted database system.

b) PARTITIONED GLOBAL INDEX
The index for the entire relation (i.e., global index) is partitioned across
the sites. This is similar to the idea of range partitioning tuples as in
Gamma L4.51, however in our case, the index is range partitioned and the
data is partitioned according to some other method, e.g. round-robin or
range partitioned on some other key attribute. Each site is assumed to
know the dishbution condition of the index for all sites. We call this the
master index. It requires a small amount of storage since it contains only
one entry per site consisting of site address and a key value. This scheme
was illustrated in Figure 2. When a query initiates execution at a site the
master index is consulted and messages are sent to only those sites which
have index enuies for the desired s t of key values. Each site which has
index enmes for the query w i v e s a subset of the key values with
exactly those keys which appear in the index at that particular site. The
site is requested to lookup the index entries for the keys in the subset.
Note that index enlries and corresponding data enmes are not necessarily
stored at the same site. Therefore. once the index entry for a key has
&n found, possibly all sites have to be accessed to obtain the tuples
with that key value (a key may yield a set of addresses). A site which
searches its index for a subset of key values obtains a list of addresses.
Once the lists of addresses are obtained we may think of two strategies of

318

Send-Forwwd
Eafh site which obtained a list of addresses from the index search

determines to which sites the addresses refer and immediately sends
requests to the sites appearing in the se^ of addresses. The site which
receives a request retrieves the tuples from secondary storage using the
disk address pan from the address and delivers them to the site which
inilialed the query. Since key values from a query are ordered, Send-
Forward can easily be implemented by just assigning each site a range of
key values thac appear in the index.
Send-Back.
The procedure of obtaining the addresses corresponding to a list of keys
is the same as for Sed-Forward. However, once the addresses are
obtained Send-Back sends the addresses back to the site which initiated
Ihe query. Afm a l l addresses have arrived at the query-initiating site,
messages are sent to those si- which store the tuples corresponding to
Ihe l i t of addresses. On reception of a message with addresses. a site
accesses its data blocks, obtains the tuples and delivers them to the site
which initiated the query.

In the following example we will explain how a query for the
described database system is processed for each of the considered poli-
ties.
EXAMPLE:

A distributed database system may consist of 5 sites
(SITE,, SITE2. . . . , SITES). The relation REL. contains 50 tuples
(REL = (Tup 1, TUP, . . . , TUPso)) each tuple having a set of n aari-
butes (A7TRl .A lTR2 , . . . , ARR, ,) . Let the database have an index for
AlTR1. For this example we assume that the values for AlTR1 are
unique key values, i.e., there are 50 different values for AITRl with a
range given by (1.2. ..., 50) and the value of A?TRl of a tuple is given by
its index (AITR, [TUPj] = j . for j = 1.2. ... SO). Let SITEI initiate the
following query:

SELECT *
FROM REL
WHERE ATTRl 2 2 4 AND ATTR, 5 3 8

We now discuss the execution of the query under Send-None, Send-
Forward. and Send-Back.
i) Send-None

SITEl sends a broadcast message which contains the list of keys
(24, 25. 38) to all sites. Since SITEl itself does not know whether it
has the index entries to some of the requested key values it starts to
search its own index for all key values. AU other sites start to search
their index once the broadcast message is received from the communica-
tion network. When a site has scanned its index it holds a set of
addresses of data items that match the key values. According to the
specification of the partial index scheme these data items are stored at the
same sites where the index entry was found. For example. assume that
the index entry for the key with value A m R l = 24 is found at SITE,.
The address retrieved from the index enuy refers to data stored at SITE3.
Therefore, each site which has an index entry for the list of key values
s m to access its own data blocks 10 obtain the data items. If all data
items at one site are accessed the remote sites (from the point of view of
SITE1, namely, SUEZ. SITE3. SITE4. SITES) send the data items to
SITE1. SITE, waits until all data arrive and processes the &la items.

ii) Send-Forward
Here we assume that the index at SITE, contains enaies for key

values (1,2, lo), the index at SITE2 contains entries for key values
(1 1. 12, 20). etc.. Analyzing the same query as before SITEl sends
only messages to SITE, and SITE4 requesting to lookup key values
(24.25 ,.... 29.30) at SITE, and key values (31.32 ,..., 37,38) at SITE4.
Only these sites s m to search their index and obtain (he addresses
(ADRa, A D R a , . . . , A D R A at SITE 3 and
(ADR 31, ADR 32, . . . , ADR,d at SITE4, respectively. We denote with
ADR, h e address of the tuple with value AlTR, [77JP,]. ADR, has two
components ADR, = (site idedifrcationJocal address) with Ihe tint com-
ponent giving the site at which the data item is stored, the second com-
ponent giving the address on the disk at that site. Since addresses in a

Site's index may refer to tuples at any site. SITE, and SITE4 analyze the
addresses to determine at which site the corresponding tuples are stored.
They send a message lo each site SITE; which has at least one address
with SITEi as the first componcnt A site which receives a message wilh
a list of addresses accesses its local disk to obtain the data. The data is
then sent back to SITE 1. the initiator of this query.
iii) Send-Back
As in Send-Forward. messages are sent to request the addresses for
values (24,25 ,..., 29, 30) from SITE3 and {31, 32 ,.... 37.38) from
SITE4. Both UTE3 and SITE4 obtain the addresses and send them back
to SITE]. If SITE, has nceived both Sits (ADRzp,ADRy,. . . , A D R d
from SITE3 and (ADR31,ADR32,. . . , ADR31) from SITE4 it parritions
the list of addresses according to the first component of each address. It
then sends requests far data to sites which are named in the addresses.
The sites, which receive the data request, access the data blocks, and
send the tuples back to SITE 1. . .

4. Simulation Model
The simulation model has been developed using the RESQ2

Software package 1141. In the following we describe the parameters
which characterize the simulation model. A complw discussion of the
simulation model can be found in [IO].

4.1. Distributed Database System

system is given in Figure 4.
A global view of the implementation of the distributed database.

11.L - - - - -'I1- I .! LI-1- - - - - $ I , c - - - - - i: - - -'-I - - - - - t
Figure 4: Model of the Distributed Database System

The simulation model consists of two types of subsystem, a site
and the network. The number of sites is denoted by the parameter
SifesQry. Each site contains an independent working CPU and a disk. All
sites are connected to the communication network in the Same way. The
CPU in the model processes four different classes of requests. It gen-
erates a list of key values, it processes lists of key 'values before the
index blocks are accessed. it processes lists of addresses to obtain data
items and it processes the incoming data before returning it to the user.
Note. that the number of different message types which are sent between
sites and the network is dependent on the implemented policy. We
assume thac the time each class of requests to the CPU takes to process is
exponentially distributed with mean value &U. Incoming requests are
med in a First-Come First-Sewed manner. However, processing of key
lits and address lists may need more than one access to the disk. In this
case. the process working on a list is n-queued at the CPU after the disk
access has been 6nished to process the remaining part of the lit. We
assume Lhat one disk access is required for each data item. F a index
retrieval, one disk access is assumed 10 yield up to IndexPerBlock
addresses at once. The size of a data record is given by 128 Byte,
addresses (and key values) are 4 Bytes long. Disk accesses necessary to
obtain addresses from the index blocks and data records from the data
blocks need an exponentially distributed time pUiod with mean value
SD,=. Once a transaction has completed a query it r e m s to h. US=
until a new query is initiated. 'Ihe time a transaction waits before a new
query is issued (think-time) is exponentially distributed with mean value
sIU. ~ h c flow of control is modeled by messages which h n v w the
syswm and are processed at the seMcc units of the system. Each mes-

319

sage contains the mformation needed for processing and routing in the
distributed system, such as: originating site, d e s W o n site, message
type, information needed for a spec& type, etc..

As mentioned before, we assume that the database consists of only
one relation since we are only interested in single relation queries. Tuples
are. uniformly distributed over all sites. ?he number of distinct key values
in the index, denoted by NumKeys, is assumed to be 1% of Ihe total
number of tuples in he relation. Therefore, given NumKeys total number
of tuples NwnberTuples is obtained by:

NumberTuples= NumKeys 100 (1)

A query requests a list of keys with a uniformly distributed length with
maximum value MprKcys. Thc numba of addresses which are found for
one index entry, denoted by TupPerKey is assumed to have an upper
limit In the simulation model a uniformly distributed number of
addresses with maximum MarTupPerKey is stored with an index entry.
Key values are uniformly distributed over al l sites regardless of the
implemented index scheme. i.e., whether the location of key values are
known or not If locations of key values are known (Send-Forward,
Send-Back) the range of the key values are assumed to be divided among
the sites in such a way that each site has the same number of index
entries. For our purposes the key values are integers with range 11: Nwn-
Keys]. The range of key values sites having he index entries stored at a
site SlTE, - given a database system with number of sites SiiesQty - is
computed from:

for i = 1. 2. SitesQty

If NlunKeys is not an integral multiple of SiiesQty, then may
have fewer index entries. The range of key values requested by a query is
computed with two random variables X, and X,k. X, is uniform
[I: NumKeys] distributed and indicates the lowest key value requested
for a particular query. X&, gives the number of keys requested for a
query and follows also a uniform 11: M d e y s] distribution. Therefore,
the range of a query is given by:

(3) [X b . : (Xbr +X,b- 1) mod NwnKeys]
Once the values for XbW and X i , are known the set of sites and the
number of keys at one site can be determined.
4.2. The Communication Network

The Ethernet-type network has a bandwidth of 10 Mbii /sec. A data
packet is assumed to have a maximum size of 1 B y r e . The setup time
for a packet, i.e.. the time to packetize data and perform network access
functions, is assumed to be exponentially distributed with mean S, , , , .
When a list of addresses or a list of data items has to be uansmitted on
the network it is regarded as a message which is only divided into
several packets if the message does not Gt into one packet. The number
of tuples which can be transmitled in a single packet is denoted by T u p
PerPackei. With the given maximum packet sue and the data record size
of 128 Byre TupferPackei is set to 8. Up to 256 key values or addresses
(each with sim of 4 Byies) can be transmitted in one packet Therefore,
splitting of lists of key values or addresses is not required since the data-
base considered hcre does not generate key value lists (address lists) of
that size. 'Ihe overall transmission times of a packet with key values or
addresses (nw-ref, nw-adr) and a data packet (nw-data) are assumed to
be exponentially distributed with mean values S,-,,f for a packet con-
taining a list of key values, s,, for a packet containing a list of
addresses and SmW-& for a packet containing a list of data items. Over-
head information of a packet is assumed to be constant and therefore
included in the setup lime of the packet The total transmission delay of a
packet consists of a fixed part, the setup time. and a variable part which
accounts for the transmission delay. Naturally. the transmission delay is
dependent on the amount of data transmitted in a packet With the given
network bandwidth of 10Mbillsec the transmission delay for a data
record is given by 0.1 m, for a single key value (or address) 0.003 m.
ne tarn1 time to transmit a packet c o n h i n g addresses (key values) and

sm_mJ = sm-& = S~W-ZC- +

~ U - d n l o = s,, + (5)

(4)

+ (addresses io be transm'iied) . 0.003ms

+ MAX(TupPerPackei , daia records io be transmitted) . 0.lm

5. Experiments
In this section we discuss the experiments conducted with the simu-

lation model described in the previous section. In each experiment we
varied a parameter of the model and compared the performance for the
different index schemes and query processing strategies. The following
parameters are varied in different series of experiments:

(I) number of sites (SiiesQty)
(11) transmission capacity of the communication network

(111) number of disks per site
(snw-sc, 9 Sw-wJ > sm-adr 3 Sw-&

The basic parameters for the simulation model are specified in Table 1.
These parameters remain unchanged throughout all experiments if they
do not denote the parameter which is varied for a particular experiment.
Note that we assume that the distributed database is homogeneous. i.e..
the components for all sites are the same.

Table 1. Basic Parameters
Note that the number of tuples in the database is dependent on the
number of sites (SiiesQy). Thus, if we add new sites to the distributed
system, we simultaneously increase the size of the global database. By
this, we avoid obtaining a lightly loaded system when sites are added to
the dismbuted system. We present the following performance measures:

Mean Response Time which is the average time a message carrying
the information for a particular query needs from leaving node
ihink to entering it again. The mean response time is also referred
in the literature as cycle time, turnaround time, residence time,
sojourn time, etc..
Uiilizaiion which is the fraction of time that a particular device is
busy.
Mean Queue Lengfh which is the average number of messages
containing key values, addresses or tuples waiting to be processed
at a parlicular resource of the system.
Throughpur which is the average number of messages leaving a
particular device (resource) per unit of time.

In the following sections we describe our simulation results and observa-
tions:

5.1. Experiment I
In this experiment we study how the policies perform if h e number

of sites (SiiesQty) is varied between 4 - 24. The mean response time for
all policies is depicted in Figure 5.

320

30

-
:

X

4
c

:
0 r: 11

t

0

c 5

I
0 1 0 2 0 30

Slrr.O1y

Figure 5: Mean Response Time

Send-Back shows the best performance. Send-Forward performs better
than Send-None when the number of sites is small. However, the mean
response time increases slower for Send-None when the number of sites
becomes larger. The cause of this tradeoff will be clear when we investi-
gate bottleneck situations, i.e., the resource with the highest utilization in
the system. Bottleneck study is important since it limits the entire system
performance. In Figures 6, 7 and 8 we give the utilization values of disk,
CPU and the communication network for Send-None, Send-Forward and
Send-Back, respectively.

1 0 . - I - ntwork

-t disk

00-
I O 2 0 ? O

Sll . .Oty

Figure 6 Utilization (Send-None)

--e network - C p r - dhk

E 1 0 2 0 3 0
slt..aty

Figure 8: Utilization (Send-Back)

As it can be seen in Figure 6 disk utilization is high (> 0.9) under Send-
None even when the number of sites is small. Since the disk and the
CPU work together to process a disk access, the throughput of the CPU
is limited by the throughput of the disk. Since the CPU service time is
less than the disk service time (5 ms for CPU; 30 m for disk). the CPU
utilization is low for all cases. The communication network utilization for
Send-None increases linearly with the increasing number of sites. The
utilization of the resources under Send-Forward and Send-Back given in
Figures 7 and 8 shows a completely different behavior. The utilization of
the communication network increases faster with the number of sites.
With the increase of the network's utilization we observe that the utiliza-
tion of the disk decreases for both Send-Forward and Send-Back. This is
explained by the fact that the system's botleneck is migrated from the
disk of each site to the communication network. Since the network is
highly utilized, a queue of unuansmiaed messages builds up. thus keep-
ing the disk idle. Send-Back has less communication overhead than
Send-Forward. Therefore, the decrease of the disk's utilization due to
unuansmiaed messages for increasing number of siles is slower. This
explains the shorter mean response time of a query in Send-Back if more
sites are added to the disaibuted system.

As a consequence from the Erst experiment, we conclude that
Send-Back outperforms the other policies. Send-Forward shows good per-
formance only for smaller number of sites. As demonstrated, the com-
munication network is the bottleneck when Send-Forward or Send-Back
are used.

5.2. Experiment II
In Experimenl I we have seen for policies Send-Forward and

Send-Back that the communication network with the given transmission
capacity (10 Mbirlsec) is not able to process the number of messages
which is required if the partitioned global index scheme is used. Since
improvements in communication technology will provide faster networks
in the near future (up to 150 Mbiilsec with optical fiber technology) it is
a matter of high interest to study the presented query processing schemes
for networks with a higher transmission capacity. In this series of
experiments we increase the transmission speed and the setup time of the
network gradually by increasing the parameter nw-speed. The transmis-
sion of a packet is then computcd by:

S,-r,f = Saw-& = nw-speed . (6)

S,_doro = nw-speed . (7)

. (S#wgc, + (addresses 10 be ~ansm'rted) . 0.003 m)

. (S,,, + MAX(8, dola records IO be Iransmdred) . 0 .001~~~)

The results for the mean rcsponse. time of a query are shown in Figure 9.
Figure 7 : Utilization (Send-Forward)

321

30 . - 5.nd-Norr - S.nQ-Fow.rd

I

:
; 10

2

0 7 . I . , . , . , , .
0 2 & 6 I 1 0 .

C C J . , I , , , I
0 2 1 6 8 10 12

nw-rpeed

Figure 10: Utilization (Send-Forward)

-
1 2

'Ihe mean response time for Send-Fornard and Send-Buck decreases fast
if the transmission capabilities of the communication network are
improved. For a network with a capacity of 50 Mbir /sec (nw-speed = 5)
the mean response time of a query can be reduced LO one third of the
response time obtained for Send-None. Note that the values for Send-
Forward and Send-Buck do not improve for values nw-speed > 5 . Note
funher that Send-Fornard nevm performs better than Send-Back. For
Send-None we observe that the mean response time is not affected by
increasing the transmission capacity of the network. Since the system
under Send-None is disk bound the result comes to no surprise. The per-
fonnance of the system in this case is limited by the disk and increasing
the network speed does not improve the response time of a query. The
following Figures (Figures 10, 11) giving the utilization of the resources
for Send-Fornard and Send-Back explain why the mean response time
for Send-Forward and Send-Back does not decrease beyond a certain
threshold.

Summarizing we conclude that fast communication networks
reduce the response time of a query significantly if the strategies
developed for the partitioned global index a used.

53. Experiment IXl.
In the previous experiment we compared the performance of the

query processing strategies for increased network capacity. Since Send-
None was disk bound increasing the network speed did not improve the
response time of a query. In this experiment we investigate solely the
behavior of Send-None and show how the performance can be improved
if disk drives are added to each site. We present results for 1, 2, 3 and 5
disk drives. As in Experiment /I the parameter which is varied in this
experiment is nw-speed. Thus, we are able to answer the question if and
how much an index scheme with the Send-None-policy can benefit from
a faster communication network if the YO-capabilities are improved. Fig-
ure 12 plots the results for the mean response time:

204 i

C C I
o 2 4 6 8 lo 1 2

n w - 5 p . d

Figure 11: Uulization (Send-Back)

For comparison we included the results from Send-Back from fiperimenr
I1 (dashed tine). We see that a site with multiple disks benefits from an
upgraded communication network. However, the response time does
(relatively) not improve as much as for Send-Back. If the network speed
is increased beyond a factor nw-speed = 5 the response time does not
improve for either multiple disk system. Note that the speed-up until
saturation is reached is approximately propodonal U) the number of sites
added, i.e., with 2 Disks at each site we achieve a mean response time
twice faster than with one Disk at each site, Figure 12 shows that for
a network with nw-speed > 2 the Send-Back-policy gives a better mean
response time than a partial inde% scheme with the Send-None even if the
latter system has 3 disks available at each site. We now discuss the utili-
zation of the critical resources disk and network, i.e., disk and network.
Figures 13 and 14 show the utilization of the disk and the network for
each system. Note that the values given for the disk refer LO each single
disk of a multiple disk station.
In Figure 13 we observe that if more disks are added to each site, the
utilization of the disk drives becomes less. However, the utilization
approaches a saturation point fast when the network speed is increased.
The chart for the utilization of the network (Figure 14) shows the oppo-
site behavior. For a low network speed the utilization of the network is
high and decreases when the network speed is increased. Note that the
utilization of the network becomes higher as more disks are added to the
sites. Adding disks increases the processing power. If processing of
queries is accelerated then the load on the network will be higher.

Comparing the results from Figures 10 (Send-Fornard) and 11
(Send-Back) in Experiment I I with Figures 13 and 14 we see that for a
high speed network environment the utilization of the resources of Send-
Forward (and Send-Back) having one disk at each site is about equal to
the utilization of resources of Send-None having multiple disks at each
site. Additionally, the response time of Send-Fornard and Send-Back

322

(single disk) compared to Send-None (> 3 disks) is approximately the
same. Since adding disk drives at each site involves considerable costs
we conclude that for high speed networks the partitioned global index
scheme with either policy Send-Fonvard or Send-Back is superior to the
partial index scheme with Send-None.

6. Conclusions
We inuoduced a new indexing scheme called partitioned global

indexes for a locally distributed database system. "he new scheme builds
a global index for the entire relation and parlitions the index across the
sites. We also presented two policies, Send-Forward and Send-Back, for
processing such an index. In order U) evaluate the performance of the
new scheme we developed a simulation model. The simulation results
were compared to the classical scheme, called partial indexes, in which
corresponding index and data envies are stored at the Same site. We
referred to the query processing strategy of the partial index scheme as
Send-None. The simulation experiments showed the Uadeoffs between the
new and the classical scheme. The results can be summarized as follows:

Query processing suategies for a partitioned global index scheme
in a distributed database system, i.e., Send-Forward and Send-Back,
have the advantage of reducing the time spent to do index searches
and, thus, reduce the workload on the disk. The amount of disk
accesses required for index retrieval in the partial index scheme is
considerably larger than in the new scheme. However, the
developed policies for the partitioned global index suffer from a
larger communication overhead. The communication overhead of
Send-Back was shown to increase linearly if sites are added to the
distributed database system, the overhead of Send-Fonvard
increases faster than linearly. Therefore, if the bandwidth of the
underlying communication network is small the partitioned global
index scheme may not perform much better than the old scheme
(Experiment I).
If a communication network with more transmission capabilities is
used, the processing l ime of a query can be reduced significantly
under Send-Forward or Send-Back (Experimenr 10. Since new com-
munication technologies with a high bandwidth (> 50 Mbitls) were
introduced in the late 1980's and will find their way into the
market in the 1990's the superiority of using high speed networks
makes Lhe partitioned global index scheme attractive for future use.
The performance of the policy for the partial index, Send-None,
scheme can be improved if each site in the distributed database
sysrem has multiple disk drives available. However, Experimenf 1II
demonstrated that in a high speed network environment a large
number of disk drives need to be added to outperform the policies
for the partitioned global index scheme having just a single disk
drive.

References
1. Agrawal. P.. Bitton, D.. Guh, K.. Liu. C. and Yu, C., "A Case Study
for Distributed Query Processing." Proc. of Inf. Symposium on Dafabases
in Parallel & Disfribufed System, 1988, 124-130.
2. Bernstein. P.. Goodman, N., Wong. E.. Reeve, C. and Rothnie. J.,
"Query Processing in a System for Distributed DaIabases SDD-1." ACM'
TODS, 6, 4 , 1981. 602-625.

3. Cen, S. and Pelagatti, G.. "Disuibuled Dambases: Principles and Sys-
tems", McGraw Hill, 1984.
4. DeWitt, D., Gerbcr, R., Graefe, G., Heytens, M., Kumar, K. and
Muralikrishna, M., "Gamma - A High Performance Dataflow Database
Machine," Proc. of V U E Conference, 1986,228-237.
5 . DeWiu, D.. Ghandeharizadeh. S. and Schneider, D.. "A Performance
Analysis of the Gamma Database Machine." Proc. ofACM SIGMOD
Conference, 1988.350-360.
6. Epstein, R., Stonebraker, M. and Wong, E., "Distributed Query Prc-
casing in Relational Da~abase Systems," Proc. ofACM SlGMOD Confer-
ence, 1978. 169-180.
7. Gudarin, G. and Valduriez. P.. "Relational Databases and Knowledge
Bass", Addison Wesley. Reading, MA, 1989.
8. Lafortune, S. and Wong, E., "A SUUC Transition model for Distributed
Query Processing." ACM TODS. 11. 3. 1986.294-322.
9. Liebeherr. J.. Omiecinski, E., and Akyildiz. 1. F.. "Index Partitioning
Schemes for a Locally Distributed Database System", Technical Report,
GIT-ICS-89-40, Georgia Institute of Technology. Oct. 1989.
10. Liebehem, J., Omiecinski, E., and Akyildiz, 1. F.. "The Effect of
Index Partititoning Schemes on the Performance of Distributed Query
Processing", Technical Report, GIT-ICs-90-20, Georgia Institute of Tech-
nology, April 1990.
11. Lohman. G., Mohan, C., Haas, L., Lingsay, B., Selinger. P., Wihs,
P. and Daniels, D., "Query Processing in R ," Query Processing in Data-
base System, &., Kim, W., Batory, D. and Reiner. D.. Springer Verlag,
1985, 3147.
12. Lu, H. and Carey, M., "Some Experimental Results on Distributed
Join Algorithms in a Local Network," Proc. of V W B Conference. 1985,

12. Mackert, L. and Lohman, G., "R* Optimizer Validation and Perfor-
mance Evaluation for Distributed Queries." Proc. of VLDB Conference,

13. Perrim, W.. Lin. J. and Hoffman, W., "Algorithms for Distributed
Query Processing in Broadcast Local Area Networks," IEEE TKDE, 1 , 2.

14. Sauer. C. H., MacNair, E. A., Kurose, J. F.. "?he Research Queueing
Package Version 2." IBM Thomas J. Watson Research Center. Yorktown
Heights. New York 10598.
15. Segev, A., "Optimization of Join Operations in Horizontally Parti-
tioned Database Systems." ACM TOLJS, 11, 1, 1986.48-80.
16. Stonebraker. M., Kalz. R., Patterson, D. and Ousterhout, J., "The
Design of XPRS." Proc. of VLDB Conference, 1988, 318-330.
17. Wang, X. and Luk, W., "Parallel Join Algorithms on a Network of
Workstations," Proc. of Int. Symposium on Databases in Parallel & Dis-
tribufed Sysiems, 1988, 87-95.
18. Yoo, H. and Lafortune, S.. "An Intelligent Search Method for Query
Optimization by Semijoins." IEEE TKDE. 1 . 2 , 1989.226-237.
19. Yu. C., Guh. K., Zhang, W.. Templeton. M., Brill, D. and Chen. A.,
"Algorithms Io Process Distributed Queries in Fast Local Networks."

292-304.

1986. 149-159.

1989, 215-225.

IEEE TC, C-36, 10, 1987, 1153-1164.

323

