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Abstract

The behavior of n interacting processors 1 synchronized
by the “Time Warp” protocol is analyzed using a discrete
state continuous time Markov chain model. The perfor-
mance and dynamics of the processes are analyzed under the
following assumptions: exponential task times and times-
tamp increments on messag s, each event message gener-
ates one new message that is sent to a randomly selected
process, negligible rollback, state saving, and communica-

tion delay, unbounded message buffers, and homogeneous
processors that are never idle. We determine the fraction
of processed events that commit, speedup, rollback prob-
ability, expected length of rollback, the probability mass
function for the number of uncommitted processed events,
and the probability distribution function for the virtual time

of a process. The analysis is approximate, so the results
have been validated through performance measurements of
a Time Warp testbed (PHOLD workload model) executing
on a shared memory multiprocessor.

1 Introduction

Over the last several years, research in synchronization
mechanisms for parallel discrete event simulation programs
has progressed along two fronts — conservative [I] [20] and

optimistic [7] [1 I] approaches. Conservative schemes do not

allow an event with timest amp t to be processed if there is
a chance that an event with timestamp s, where s < t,may
arrive. On the other hand, Time Warp [11], an optimistic
scheme, allows computation of an event with timestamp t
to proceed without regard to the possibility of the arrival of
another event with a lower timestamp. If an event with a
lower timestamp does arrive, the Time Warp scheme “rolls
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back” to the most recently saved state with virtual time
earlier than the timestamp of the arriving event. The rel-
ative advantages and disadvantages of these schemes have

been extensively debated [16 .
AThe Time Warp scheme a ows the processes to have dif-

ferent virtual times in their local clocks. It attempts to
enforce a partial ordering of events [14]. Processes com-
municate only by exchanging messages. Each message is
stamped with a virtual send time, and a virtual receive time.
Virtual send time is the local time of the sender when the
message is sent. Likewise, virtual receive time is the virtual
time at which the message is to be processed by the receiv-
ing processor, and is also referred to as its timestamp. The
receiver compares the timestamp of the message with its
virtual time. If the message is “in the future” it is queued
for later processing; if the message is “in the past” the com-
putation must be rolled back.

Our research focusses on determining the performance
measures that characterize the dynamics of the Time Warp
program. The analytical solutions for these performance
measures are validated a ainst performance measurements

l’”of an implementation of lme Warp executing on a shared
memory multiprocessor [6].

To our knowledge, thm is the first analytic performance
model for Time Warp that has been compared with mea-
surements of an operational Time Warp system. Many anal-
yses have dealt with the two-processor case, and could not
be extended due to complexity of the problem. Lavenberg,
Muntz, and Samadi [15] have obtained an approximate so-
lution for two processors with very low interaction. Mitra
and Mitrani [21] have obtained exact solutions for the two-

rocessor case under more general conditions.

!’1
Kleinrock

13 has considered a discrete state, continuous time model

for the two-processor case. Felderman and Kleinrock [4]
have considered a discrete time discrete state Markov model,
and by taking limits have provided a unifying framework
for previous work on two processor Time Warp. Plateau
and Tripathi [23] have obtained numerical results for the
rate of message exchange, and blocking probabilities for

two communicating processors. They have employed ten-
sor algebra to handle the three-dimensional Markov chain
model of the system. Jefferson and Witkowski [12] have
proposed a new stochastic process - linear Poisson process
- to model timestamp driven schemes. Performance anal-
yses of the general n process case have appeared recently.
Madiset ti~ Walrand, and Messerschmitt [19] have derived
an analytical estimate for the progress of distributed com-
putation for the two processor case. They have also inves-
tigated different synchronization schemes for the general n
process case. Felderman and Kleinrock [2] give an upper
bound on the gain in speedup that n asynchronous pro-
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cesses can achieve relative to n synchronous lock-step pro-

cesses for large n. Nicol [22] derives an upper bound on
Time Warp’s performance for the general n processor case.
Nicol considers a self-initiating model which schedules its
own state re-evaluation time as opposed to our model where
a process’s state is affected when messages are received from
other processes. Further, his analysis of Time Warp ignores
effects due to rollback propagation. Greenberg et. al. [9]
present methods for parallel discrete event simulation when
the number of processors is larger than the number of simu-
lated objects. Lin and Lazowska [16] show that Time Warp
always performs at least as well as any conservative mecha-
nism (and possibly better) under certain conditions; like our
analysis, they assume the overheads for state saving and roll-
back are negligible. Lipton and Mizell [17] demonstrate that

while Time Warp may outperform the Chandy/Misra algo-

rithms (also known as the conservative algorithms) [1][20]

by an arbitrary large amount, the opposite is not true, i.e.,
Chandy/Misra algorithm can only outperform Time Warp

by a constant factor. Lubachevsky et. al [18 present a
a!ltunable “filter” to bound the lag so that their gorithm is

conservative at one extreme and is optimistic at the other

extreme.
The paper is organized as follows. The model is described

in section 2. Related equations are derived in section 3.
The analytical results are compared with performance mea-
surements of the Time Warp system in section 4. Finally,
conclusions and suggestions for future research are given in
section 5.

2 The Model

Assume there is a job which is partitioned into n pro-
cesses, each of which is executed on a separate, but identical
processor. Each processor is assumed to have an unbounded
local buffer to store received messages. It is assumed that
processors are never idle, i.e., every processor has at least
one unprocessed message throughout the entire simulation.
Furthe~, we assume that the processing time of events is ex-
ponentially distributed and that upon processing a message,
each event produces a single new event with a tlmestamp m-
increment (i.e., receive time minus send time) that is selected
from an exponential distribution. The new event message
is equally likely to be sent to any other process. Thus, in

our system, the number of unprocessessed messages (mes-

L
sage population remains constant at say, m, throughout
the simulation. ost reaJ simulations stabilize at a message
population after the transient phase with minor fluctuations
(otherwise, the simulation is probably unbounded).

Each processor is equipped with a virtual local clock that
indicates the virtual time of that processor. Virtual times
are real values totally ordered by the relation <. As the

events are process~d, the,virtual local clocks in different pro-
cessors move to higher virtual times, though they occasion-
ally jump backwards when a rollback occurs. It is assumed
that the time to rollback is negligible. This assumption is re-

alistic when the computation granularity (processing time)
of an event is large. We also assume a non-preemptive roll-
back,. i.e., if a message in the past is received while an event
is being processed, the rollback does not take effect until
we finish processing the current event. If more than one
message with a timestamp “in the past” arrive during pro-
cessing, the effect is the same as if only the message with
the least timestamp had arrived. Also, assume that state
is saved after processing every event. This ensures that a
process will rollback to the event with timestamp immedi-
ately less than the timestamp of the incoming late arrival,
rather than to an earlier state, viz., the last saved state. The
processing of an event involves the following operations:

i) receive a message with timestamp t.
ii) compare the timestamp t with the receiver’s

virtual clock time, s.
iii) if t < s, roll back to time t.

iv) - set virtual clock to t.
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Figure 1: System in state (1,0,0) i.e. processor 1 has one

processed uncommitted event, and processors 2 and 3 have

none.

read contents of message.
- update state variables.
- send a message with timestamp t+ < (where .$ is

an exponentially distributed random variable.)

Communication delay for the message is assumed to be neg-
ligible. The local clock does not change during the time an
event is processed; it changes only between events, and then
only to the timestamp of the next message to be processed.

Jefferson [11] defines the notion of global virtual time

(GVT). GVT serves as a floor (lower limit for the virtual
ktime to which a process will ever roll bac The state of

the system can then be defined as (Ic1, kz, . . . . kn) where ki,
1 < z < n, M the number of events that have been pro-
cessed at process i that have a timestamp greater than the
GVT. Figure 1 shows the case where there are three proces-
sors. However, our analysis holds for the general n-processor
case. An event that contains a timestamp that is less than
GVT is called a committed event, and others are called un-
committed events. Any event with timestamp less than the
GVT cannot be rolled back and can be committed safely.
Figure 1 shows processor 1 with one uncommitted (but pro-

cessed) event, and another event being processed. For the
range of virtual times that are shown next to the events,
processor 1 has no committed events while processors 2 and
3 each have one. It may be noted that process 3 has an un-
processed event with timest amp less than the timestamp on
the one bein processed. Due to the non-preemptive nature
of the mode’?, the arrival of event with timestamp 11,1 is

not observed by the process. This is because the event with
timestamp 13.1 arrived earlier than the event with times-
tamp 11.1, and the former was being processed when the
latter arrived.

The virtual time of a processor is the timestamp of the
event being processed. GVT is the minimum of all virtual
processor times (in this case, the virtual time of processor 2)
and the timestamps of all unprocessed messages. The latter
is necessary to account for received messages that have not
yet caused a rollback due to the non-preemptive nature of
the model. In such a case, a message with lower timestamp
will be waiting in the input queue while a message with
higher timestamp is being processed. The integer values in
the state tuple are measures of the amount of work done
(number of processed uncommitted events) in the process
which has not yet been commit ted. This characterization
of state is different from earlier studies that measure the
progress of a process with respect to another process. The
GVT-based characterization allows us to only consider in-
teraction of a process with GVT rather than with all of the
processes. The rate of progress of GVT can be considered
to be a measure of system progress.
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Figure 2: The Markov chain model.

In contrast to earlier studies mentioned in the previous
section which have analyzed the system from the sender pro-
cess point of view, our analysis is focussed on the receiver
process’s point of view. Cascaded rollbacks are difficult to
analyze from the sender process but are accounted for eas-
ily when analyzed at the receiver process because, at any
time, we need to be concerned only with the rollback at the

process under consideration. Appealing to symmetry and
homogeneity arguments, we observe that it is sufficient to
analyze one process and its interaction with GVT. The dy-
namics at the other processes are identical. For our analysis,
we observe that it is sufficient to classify messages as future
messages and past messages rather than the usual classifi-
cation into true messages (normal messages), false messages

(anachronous or pre-mature execution of messages), and an-

\
timessages to annihilate false messages). This is because
the length o rollback depends on the timestamp of the mes-
sage only and not on its being a true or false message, or
an antimessage. Future (past) messages are those messages

that are received by a process in the “future” ( “past”) vir-
tual time.

Lastly, if the timestamp increment is exponential (times-
tamps of messages being sent out are Poisson distributed in
virtual time) the committed messages at all the receiving
processors are also Poisson distributed. This is the well-
known Markov implies Markov (M –> M) property. We
note that the uncommitted messages will not be Poisson dis-
tributed. This is because these events include events which
will be later cancelled and exclude true messages that have
not yet arrived.

3 Analysis of the Model

In this section, we present an approximate analysis of the
performance of multiprocessor Time Warp which we have
modeled as a M arkov chain. We discuss the state space
of the Markov model, derive transition rates and solve the
model, determine performance measures, and finally present
an algorithm for numerical solution of the model.

3.1 State Description of the Markov Moclel

We analyze the behavior of n coupled processes which we

have modeled as a one-dimensional discrete state continu-
ous time Markov chain as shown in Figure 2. Since we have
assumed an unbounded buffer at each process, we could the-
oretically have an unbounded number of processed uncom-

mitted events at a process. This is because a process can
be arbitrarily far ahead of another. This implies that the
associated Markov chain has an infinite number of states.
However, to solve the system numerically we desire a finite

number of states. We observed from subsequent character-
izations of the transition rates that the greater the number
of processed uncommitted events at a process, the greater
the probability of the process being rolled back. Thus, if a
process goes far ahead, there is a tendency for it to be pulled
back. This indicates the existence of an equilibrium whence
we assume that the states in the Markov chain model are
not transient. In such a case, given a tolerance c, we can
find a finite integer M (dependent on c) such that the differ-
ence between performance measures obtained by truncating

the Markov chain at M and M + 1 states is less than c.
Essentially, we are approximating an infinite buffer space
by a finite M such that the results obtained are within a
tolerance c of the actual results.

To facilitate subsequent discussion? we introduce the no-

tion of GVT-regulator. A process w a GVT-regulator if
it has the event with the minimum timestamp among all
the uncommitted events. Since communication delay is as-
sumed to be zero, an event is guaranteed to be associated
with a unique process - either the sender, or the receiver. It
may be noted that, owing to the non-preemptive assump-
tion, it is possible for the GVT-regulator to be processing
an event with a timestamp higher than the GVT event be-

cause the latter may be waiting to be processed in the GVT-
regulator’s input queue.

From a state k, a process can make the following transi-
tions (Figure 2):

- rollback to state J1, for O <11 s k (rollback).

- come down by 12 states, O ~ 12 < k (GVT ad-

vancement).
- move to state k + 1 after processing the current

event (forward movement ),

A state change occurs either when the process under con-
sideration (receiver) completes processing of an event or the

GVT-regulator completes its event. A rollback to state II
occurs when the receiver process, upon completion of the

current event (k + lth), observes an event in the past with

a timestamp between the timestamps of the l~h and /1 + lth
events. A process comes down by 12 states (moves to state

k – 12) when the GVT-regulator completes its event and
GVT of the system moves past 12 events while the current
event is being processed. This is because the process now
has 12 fewer uncommitted processed events after its 12 events
were committed by GVT advancement. A process moves to
state k + 1 if neither an arrival in the “past” nor GVT ad-
vance occurs prior to completion of its current event.

To solve the model we need to derive the transition rates
(Figure 2).

3.2 Determining Transit ion Rates

To determine the transition rates we will deal with sums
of independent and identically distributed (iid) exponentizd

random variables. For this pnrpose, in Appendix A we de.
velop Lj,i - the probability that the sum of j independent
random variables is less than the sum of i independent ran-
dom variables, all of which are exponentially distributed

with the same rate. In Appendix B we derive C2,i - the
probability that the sum of j random variables with rate
a and a random variable with rate ,0 is less than the sum
of i + 1 random variables with rate a. All of the random
variables are independent and exponentially distributed.

We recall that the message population is m. This is the
number of “threads” in the parallel simulation. We define
message density to be the ratio of message population m to
the number of processors n. If the timest amp increment is

exponentially distributed with rate ~ one might expect the
messages at a processor to be Poisson distributed in virtual
time with rate mA/n (merge m Poisson streams and then

split them over n processes). While this is cert airily true
of the events that have committed and no longer influence
computation, this is not true of uncommitted events. The
effective message density for processed uncommitted events
is less than the above value because lagging processors have
not yet sent out their share of messages. In reality, the
nearer an event is to the GVT, the smaller will be the dis-
tance between uncommitted events. This is because events
far ahead of GVT would not have been generated yet (we

call these yet to be generated events “holes”) - there will
be fewer such holes near GVT. In our analysis we make the
following approximation: in computing CJ,i we have added
j random variables, each of which is identical and represents
the average distance between two uncommitted events. In
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reality, the distribution for uncommitted events will only
be “pseudo” Poisson in that although the interdistance be-
tween consecutive events will be exponentially distributed,
the rates for two consecutive pairs will differ slightly. We ap-

proximate this by a Poisson process with rate PA = m’A/n,
where p is the effective message density and is yet to be

determined. Thus, although m’ does take into account the
number of holes, we do not consider the fact that the virtual
time between events is smaller for those near GVT than for
those that are far into the (virtual time) future.

Let Qk be the probability that a message arriving at a

process in state k is “in the past”. Let Pj be the steady
state probability of the process being in state j. We make

the following observation in Figure 3. When a receiver in
state i receives a message from a sender in state j “in the
past,” it implies that the sum of j random variables with

rate m’A/n and one random variable with rate J is less than

the sum of z’+ 1 random variables with rate m’A/n. The j
random variables correspond to the interdistance between ~
events “in the past”. Each of these interdistances is assumed
to be exponentially distributed with rate p~. In this context,

J

a = p~ and B = A (see Appendix B because the processed

uncommitted events are distribute with rate p~ and the

timestamp increment is distributed with rate A Hence we
set y = af~ = p~f~ = p in the expression for Cl,,. C’l,, can
now be interpreted as the probability that a message will be
“in the past” of the receiver if the sender process is in state
j and the receiver process is in state i. Further, no process
can send a message to itself “in the past” (hence the factor

(n – I)/n). Owing to the non-preemptive nature of the
model, It M possible that none of the processes is in state
O. In the following expression we assume that the steady
state distributions at all the processes are independent. This
product form assumption is also implicit in the derivation
of some of the other expressions later on. Hence,

Qk = ~ ~p,cj,k fork =O,l,..., M (1)

J=o

where M is the number of states. The summation represents
the probability that a message arriving at a process in state
k is “in the past” given that the message is from another
process.

3.2.1 Transition Out of State k Now we
determine the probabilities of rollback (Rk), GVT advance-

ment (Gk ), and forward movement of a process (F~) while a
process is in state k. Processing times of events at all of the
processes are assumed to be identical and exponentially dis-
tributed. The mean processing time is independent of the

mean timestamp increment.z Due to the non-preemption
assumption, it is possible for the GVT-regulator (process

having the unprocessed event with least timestamp to be
1in state k, k >0. However, we observe that the hig er the

value of k the lower is the probability that the processor is

GVT-re~ulator. This is later verified in ( 8). Intuitively, a
process M more likely to roll back to immediate past than
it is to roll back to distant past. This issue of locality has
also been discussed in [11]. In deriving equations ( 2- 7),
we ignore the possibility that a process in state k, k > 0
is the GVT-regulator. When a process is in state k? k > 0

&c& is not the GVT-regulator), one of the following can

(i) the process completes execution of its current
event and observes a messa e “in the past”

7(rollback with probability Rk .

(ii) the GVT-regulator completes execution of its
current event and observes a message “in the

(iii)Y1’ process completes execution of its cur-
rent event and does not observe a message %
the past” (forward movement with probability

~k).

(iv) the GVT-regulator completes execution of its
current event and does not observe a message
“in the past” (GVT advancement with proba-

bility G~).

It is possible for the GVT-regulator in state O to observe
an event “in the past” due to the non-preemptive roHback
assumption. Now, consider two processes - one is the GVT-

regulator, and the other is the process under consideration
(receiver process). As the processing times of the processes

are iid exponential each of the process is equally likely (i.e.

L
probability y 1/2 to complete execution of its current event
first. Among t e above four actions, only the second one

does not affect the state of the process (GVT-regulator fin-

ishes before the process with probability y 1/2, and observes

an event in the past with probability y Q.). Hence the nor-

malization factor (1 — Qo/2) is used in the denominator of

expressions ( 2 - 4). A rollback occurs when the process
completes execution of its current event before the GVT-
regulator (probability 1/2), and observes an event in the

past (Qk):

Rk = ;Q./(l - ~) k=l,2,... (2)

The process moves forward when it completes execution

of its current event before the GVT-regulator (probability

1/2), and does not observe an event “in the past” (proba-

bility 1 – Qk ):

Fk = ;(1- Q,)/(1 - ~) k=l,2, . . . (3)

GVT advances when the GVT-regulator finishes first (prob-

abllit y 1/2), and does not observe an event “in the past”
(probability 1 – Q. ):

Gk = ;(1 - Qo)/(1 - ~) k=l,2,.. . (4)

When the considered process is in state O, we must take
into account the possibility of its being the GVT-regulator.
Here we assume that the GVT-regulator is identical to all

2 The value of this mean does not enter our analysis because

the overhead costs such as rollback, state saving, communication,

etc. have been assumed to be negligible in our model and all

the phenomena at the uniprocessor and the multi-processor are

scaled in the same proportion, leaving the performance measures

unchanged.
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the processes in state O. Specifically , whether a process is

JGVT-regulator (with probability I/i or not (with probabil-

ity (i – 1)/i) is assumed to be independent of the probability

of observing an event in the “past” upon completion (Qo).
This is not strictly true because GVT-regulator is known
to have the unprocessed event with least timestamp (either

in the input queue or being processed), so it is less likely
to receive another event with a timestamp lower than the
timestamp of the event being processed. This assumption
is implicit in equations ( 5- 7).

Since the considered process is in state O, we have at least
one process in state O. Given that at least one process is in
state O (hence the normalization factor 1 – (1 – Fj)n), the

probability that exactly i processes are in state O is

()n PO’(I – Po)n-’

z,== 8
1 – (1 – l%)”

fori=l,2,..., n

where PO is the steady state probability that a process is in
state O.

The state of the process is not affected (i.e., the number
of processed uncommitted events at the process remains un-
changed) if (i) the process is not the GVT-regulator (prob-

ability (i – 1)/i), (ii) GVT-regulator completes its event be-

fore the considered process (probability 1/2), and (iii) GVT-

regulator rolls back (Q. ). Hence the normalization factor

(1 - -) occurs in the denominator of expressions ( 5-

7). Only one of the above i processes is the GVT-regulator.
A rollback occurs when the process is the GVT-regulator
(probability l/i) and, upon completion, observes an event

in the past (probability Qo), or if it is not the GVT-regulator

(probability (1 – I/i = (i – 1)/i)), completes its event before

the GVT-regulator (probability y 1 /2), and observes an event.,
in the past (Qo ): ‘-

(5)

The forward movement of a process in state O, F., occurs if it
is not the GVT-regulator (probability (i – 1)/i), completes

its event before the GVT-regulator(probability 1/2), and

does not observe an event in the past (1 – Qo) :

t–1)(1–q

FO =
2Z,= l_k#2!2
,=1

=2 Z,(2 – 1)(1 – Qo)

2i – (i – l)Qo
,=1

(6)

GVT advancement for a process in state O occurs when ei-
ther the process is GVT-regulator (probability l/i) and does

not observe an event in the past upon completion ( 1 – Qo),

or it is not the GVT-regulator (probability (i – 1)/i), the

latter completes its event before (1/2), and does not observe

an event in the past (1 - Q.):

kQCL + (z–I)fI–Qol
GO = gz, ‘ l_Q+l!&

,=1

= &$+l)(’-Qo)
a– (i – l)Qo

i= 1

(7)

3.2.2 Transition Out of State k Into State j
After determining the collective probabilities, we now de-
termine the individual transition rates from state k to state
j. The virtual time distribution of uncommitted events at
a processor has earlier been approximated by a Poisson dis-
tribution with rate p~. This excludes events which are yet
to be generated (holes

d
, and includes events that will ulti-

mately be cancelled. he virtual time distribution of com-
mitted events is Poisson (mA/n). The difference can be

accounted for by a virtual time Poisson distribution (corre-

sponding to events that cause a rollback) with rate pt+ p.
where the holes are Poisson distributed in virtual time with

rate p~ (true messages arriving out of sequence in virtual

time), and the antimessages (messages that will annihilate

“false” events that currently exist) are Poisson distributed in
virtual time with rate pa. In addition, there will be Poisson
distributed streams in virtual time with rate pf for messages
and corresponding antimessages that will arrive in the fu-
ture (real time). #h ese are the messages which have not yet
arrived, but will arrive at a future time, and subsequently
become annihilated. The messages that arrive “in the past”

(and hence cause a rollback) will be Poisson distributed in

virtual time with rate (pt + pa + pf). Since the uncommit-
ted events are Poisson distributed with rate p, and the in-
coming messages “in the past” are Poisson distributed with
rate .p$ + pa + pf, the length of rollback is geometrically
distributed with parameter, say,

Pt+Pa+Pfp=
P

Since pt, pa, and pf are unknown, the above expression is
of little use. However, it does establish that rollback length

is geometrically distributed - a fact that we will use shortly.
It may be noted that since we have used M as an approx-
imation to an infinite number of states, the geometric dis-
tribution for rollback len th is truncated.

t“ “Let Tk,l be the proba lhty of rollback from state k to
state j. We note that a rollback of len th 1 does not

%“cause a change of state since only the event emg processed

is rolled back and the number of processed uncommitted
events remains unchanged. This occurs when the arriv-

ing message has a timestamp lower than the current event

(k+ 1“ event) being processed but greater than the last
processed event. Thus, a process rolls back from state k to
state k with probability p (recall the definition of p from

the previous unlabeled expression). A rollback stops at a
state with probability p, and continues beyond that state
with probability q = 1 — p. Further, no arriving message
will have a timestamp less than GVT. Hence, the maximum
length of rollback at state k is k + 1. Then,

/

Rk g ‘-fp for O<j~k

Rk qk fork> Oandj=O
Tk,l =

RO k= Oandj=O
(8)

(0 fork<j

Rk is the probability of rollback from state k. This proba-
bility is geometrically distributed with respect to the length
of rollback.

We derive gk,; the probability that the GVT advances
by exactly i events when the process is in state k. The
t~mestamp increments at the p;ocesses are identically and
exponentially distributed. For k > i and k > 0, we observe
that the GVT can advance in two ways (see Figure 1):

(1) the GVT moves up probability Gk), its next event
\has a timestamp that lies etween the timestamps of the

ith and z’+ lth events of the considered process ((~)i+l be-

cause the timestamp increments at the two processes are
iid exponential), and all the remaining n — 2 processes have
their virtual clock time greater than the timestamp of the

“th event of the considered process. L,,i+l (Appendix A) kf
the probability that a process with 1 uncommitted events

I(-)K



and processing the 1 + Ith event has a virtual time higher

than the timestamp of the ith event on another process.

M

Pobo,l =
x

PJaJ,O (15)

M n—2

G’k,t = Gk(; )’+l(~~&i+I) k>O

1=0

(2) the GVT moves up (probability Gk), its next event has

a timestamp greater than the timestamp of the Zth event of

the process (~’), and at least one of the remaining (n–2)

processes has a virtual clock time that lies between the ith

and i + lih event of the process.

rif n-2

PG“k,, = (@-)’ ( P, L,,,+,) -

1=0

M n—2 1

k>o

Note that these two probabilities are not mutually exclusive.
It is possible that the GVT moves up (G~), the next event

of the GVT-regulator lies between the ith and i + Ith events

of the process ((~ )’+1 ), and at least one of the remaining

n — 2 processes has a virtual clock time between the ith and

i+lth events. Hence,

1 :+1

flk,t = G;,, + G;,, – G@

n-2

(f PtLt+I,I+I )
1=0 1

M

(~P,L,,i.

1=0

n—2

1) —

(9)

If the considered process drops from state k to O (k = i >0,
Jit must be that the timestam~ of the next event of the GV -

regulator and the virtual crock time of all the remaining

processes is greater than the timestamp of the k’k event of
the process.

[

Gk(;)k(~~o ~l~k,i+l) “–2 k> Oandi=k

flk,, = GO k=i=O

k<i

(lo)

Now we are ready to set up the transition rates in the
Markov chain model of Figure 2.

Uk,j = Tk,] + gk,k–j O<j~k<M (11)

bk,k+l = Fk O~k<M (12)

Informally, rk,~ is the rate of transition out of state k and
into state j due to rollback. Similarly, gk k- is the tran-
sition from state k to state j when the G~~ advances by
k – j events. Thus, ak,~ is the rate of transition from state
k to state j when O < j ~ k ~ M. Upon forward movement
(~k a process moves from state k to state k +1.

J he following balance equations are obtained from Figure
n
L

0<k<A4 (13)

M-1

PM ~ LZM,J = &_lbiw.l,M

J=l

Note that the following is valid

5 P,=l (16)

j=o

3.3 Performance Measures

In this subsection we determine the expected length
of rollback, expected number of processed uncommitted
events, expected number of processed events above the

GVT, effective message density, probability of rollback, ex-
pected number of wasted events, expected fraction of com-
mitted events, speedup assuming processors are never idle,
and an approximation to the probability distribution func-

tion of the process’s virtual time with origin at GVT.
The ezpected length of rollback is given by l/p since roll-

back length is geometrically distributed with rate p.3 Alter-
natively, it can be computed directly by multiplying rollback

lengths with their corresponding probabilities. Equating the
two expressions for expected length of rollback, we have

(17)

The expected number of processed uncommitted events is

M

U = ~kpk (18)

k=l

The expected number of processed events above the G VT is

T processed = U+l (19)

because the current event being processed will count as pro-
cessed irrespective of whether or not a rollback occurs. This
is due to the non-preemptive rollback assumption.

We now determine p, the e~ectiue message density of pro-

cessed uncommitted events. It may be noted that although
the unprocessed message population is greater than m due
to the presence of antimessages, we require the message den-
sity of proce.weduncommitted events since these are the ones
that are liable to roll back. We recall that the effective mes-
sage density of processed uncommitted events is less than

m/? since the lagging processors have not yet contributed
their share of messages. Let us consider a “typical” proces-
sor. Such a processor would have half the processors ahead
of it, and the other half lagging behind it. The processors
that are ahead have contributed their share of messages to
the typical processor. The processors that are lagging have
only contributed a fraction of their share. If we ignore the
messages sent by the lagging processors into “the future” of
the “typical” processor, we observe that the set of messages
sent out by the lagging processors to the ‘typical” processor
is also the set of messages that caused a rollback in the lat-
ter. A “typical” rollback message is received l/p events ear-
lier than the virtual time of the “typical” processor. Since
the lagging processors (half the total number of processors,

approximately) have not yet contributed ~ /TP,OC~SSed frac-

tion of messages, the effective message density is

P= :(l-T * ) (20)
P.o...d.d

3 It is truncated geometric for which the mean is not 1/p. How-

(14) ever, the choice of a large enough M ensures that the error due

to this is less than the specified tolerance c.
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The equations for Cj,,’s (Appendix A), Q~’s ( 1), Rk’s

(2, 5), F~’s (3, 6), Gk’s (4, 7), rk,J’s( 8), gk,,’s (9,

10), transition rates ( 11, 12), balance equations ( 13 -

16), average rollback length l/p ( 17), expected number of

uncommitted events ( 18), expected number of processed

events TP.oce.sed ( 19), and effective message density p ( 20)
can be solved numerically. In practice, the solution requires
3-4iterationsonp. More details onthe solution procedure
are given later.

Once the stationary probabilities are determined, other
performance measures can also be computed.

The probability of rollback is

M

(h an average, one will find Tpm.e.s.d processed events at

a processor above GVT. Some of these events will be rolled
back (“wasted” ), while the others will be committed (“use-

ful” ). The expected number of rollbacks for this set of pro-
cessed events is QTP,oce,sc& The average length of rollback

is 1/p. The expected number of “wasted” events is

Iw~de G QTPr.ocessed P.

The fraction of events expected to commit is

Speedup is defined to be the ratio of useful events processed
by n processors to the number of events processed by a
single processor per unit real time. Since the processors are

aasumed to be never idle, the speedup is

The distribution of processed uncommitted events in virtual
time has been approximated by a Poisson distribution with
rate p. The virtual time of a process is the timestamp of
the event it is currently processing. The virtual tilme of a
process in state j (j processed uncommitted events above

GVT) is the timestamp of the j + l’h event being processed.
With GVT as origin, the virtual time of a process in state j
is the sum of j+ 1 iid exponential random variables with rate

p. The probability distribution function (pdf) of a process’s
virtual time with GVT as origin can be interpreted aa a

random sum of random variables and is given by (L–l is

the inverse Laplace transform)

( j+l

f(t) = r’ ~P,(-)

)

t~o

J=o

where p, given by equation ( 20), is the effective message

density and l/A is the mean of the exponential distribution
for timestamp increments.

3.4 Algorithm

In the following we outline the procedure to solve the sys-
tem of equations. Even though the highly inter-dependent
set of coupled non-linear equations appear formidable, the
following procedure computes the performance measures ef-
ficiently by utilizing the mutual dependence and structure
of the expressions derived in the earlier subsections. The
number of equations is the same as the number of unknown
variables. Since some of the equations are non-linea~, the
possibility that the system has more than one solutlon is

not ruled out. However, the procedure is iterative and our
tests showed that numerical solutions converged to the same

value irrespective of initizd values assumed. Although the

intermediate expressions are not listed, all labelled equa-
tions except equation 24 are necessary for solution of the

system. The procedure is presented below.

PROCEDURE

input number of processes (n), tolerance (c),

message population (m)

set p = m/n. /* equation ( 20) */

set p to some initial value; q = 1- p.

/“ equation ( 17) */

set Pi’s to any initiaf value such that sum is 1.

/* equations ( 13- 16) ‘/

compute L /* Appendix A */

Set?)old = ?)..W = O /$ fraction of committed events */

set Sold = S.eW = O /+ speedup */

do {

Sold = Sn,tu

Votd = ‘%.w

compute q+ Appendix B, makes use of p */

/“Y = P is the effective
message density at this iteration */

do {

compute Q~’s

/’ equation ( 1) */

compute Okzj and bk,k+~

/* equation ( 11-12 “/

update P,’s

/’ equations 13- 16 */

update p /* equation 17 */

} while difference between any P,’s is greater

than c

compute qn. W, S~e~ /* equations ( 22, 23) “/

update p /* equation ( 20) */

}while S and q not within desired accuracy

print S, q, and rollback probability

In the experiments the tolerance was set to 0.001. The
final performance measures are accurate to at least two sig-
nificant figures. The solution required 3-4 iterations of the

outer loop. Each iteration of the outer loop corresponds to

a.pproximat,ely 100 iterations of the inner loop. Computa.
tlon of CJ,, m the more expensive portion which, fortunately,
is in the outer loop. This procedure must be run for a large

enough value of M so that the error in accuracy of the re-
sults is within tolerance. For a tolerance of 0.001, a message
density of 1, 4, and 16 required approximately (depending

on the number of processors) lf to be 10, 30, and 60 re-
spectively. The complexity of the procedure depends most
strongly on the value of the parameter M.

4 Numerical Results and Validation

The analytic model makes a number of simplifying as-
sumptions in order to make the analysis tractable: zero
communication delays, unbounded bnffers, etc. Measure-
ments of a Time Warp program running on a shared mem-
ory multiprocessor (specifically, a GP-1OOO BBN Butterfly)
were made, and compared with the performance predicted
by the analytic model, in order to test the significance of
these assumptions, and the validity of the approximations
underlying the analysis. The Time Warp program is de-

scribed in more detail in [5].
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Figure 4: Analytical and experimental results for q.

The assumptions used in the analytic model pertaining
to the application program (exponential time per event, ex-

ponential timestamp increment, fixed message population,
etc.) correspond to a specific instance of the parallel HOLD

(PHOLD) workload model [6]. PHOLD was used in the

experiments performed here. While this satisfies certain as-
sumptions about the Time Warp program (e. g., exponential
timestamp increment, random message routing, fixed mes-

sage population, and others), assumptions such as non-idle
mocessors. zero rollback time and communication delav still
ho not hold.

Figure 4 compares the analytical estimate for fraction of
messages that are eventually committed (useful messages)
q with experimentally obtained values. We observe that for
very low message densities (around message density = l),
the fraction of useful messages predicted by the analytical
model is less than that which was observed experimentally.
This can be attributed to the non-idle processor assump
tion. Consider the following: With message population of 1

(message density l/n), the efficiency must be 100% since no
rollback can occur. In this case, the analytic model assumes
that none of the processors are idle when, in fact, n – 1

of them are idle. In the analytic model, rollback can still
occur and the predicted fraction of committed messages is
less than what is observed. Initially, as the mess?ge density
is increased the number of rollbacks increases which reduces
the fraction of committed events. Later, however, other ef-
fects come into play which cause the fraction of committed

events to increase with message density, These effects are
discussed shortly. For this reason, we observe a “dip” in the
observed fraction of committed events when the message
density is very low (around message density = 2).

For higher message densities (Figure 4), processors are
busy a larger fraction of the time, so the non-idle assump-
tion is less of a problem. We observe that as the message
density is increased, generally better agreement is obtained
between the predicted and measured fraction of committed
events. At moderate to high message densities, the analytic
model overestimates performance. We believe that the prin-
ciple cause of inaccuracy is the assumption that rollback and
message cancellation requires negligible time. Non-zero roll-
back cost causes overly optimistic processes to advance fur-
ther into the future, processing more incorrect events than
they would have had rollback required no time. This is
because the rollback “wave” takes a non-zero time to prop-
agate forward and “catch up” with the incorrect messages.
Another assumption that contributes to the discrepancy is
negligible communication delay. Since the communication

12
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Figure 5: Analytical and experimental results for speedup.

delay is non-zero, a message might be in the future of the
receiving processor when it was sent but in the past of the
receiving processor when it arrives. This contributes to in-
creased rollback, and hence a reduced fraction of committed
events. The model assumes these overheads to be negligi-
ble, so it predicts better than actual performance. These
effects are less prevalent for low message populations be-

cause, as noted earlier, processes tend to become idle rather
than incorrectly advancing forward, and message traffic is

lower.
Analytical and experimental results for speedup are

shown in Fimre 5. Due to the non-idle mocessor as-
sumption, th~ analytical model processes mor~ events than
the simulation program. When the processors in the sim-
ulation are idle, the analytical model continues to process
events, some of which are useful and contribute to increased
speedup in the analytical model. For example, if a proces-
sor rolls back 4070 of the events it processes, and is idle for
100 milliseconds (assuming 10 milliseconds per event), the
anal ytic model wdl roll back 4 of the 10 events processed

but it will still add 6 committed events to its tally while
the simulation program does not add anything during this
time. As the message density is increased the experimental
values for speedup are observed to approach the analytically
predicted values.

Analytical estimate for the fraction of committed events

is shown as a function of the number of processors in Figure
6. The larger the message density, the higher the inherent
parallelism leading to better performance. For a constant
message density and increasing number of processors, the

fraction of committed events drops rapidly at first, and then
stabilizes. Initially, adding another processor increases the
probability of rollback sharply but later the effect is only
marginal.

Analytical estimate for the dependence of speedup on the

number of processors is shown in Figure 7. The larger the

message density, the larger the inherent parallelism which

leads to higher speedup. As the message density is in-
creased, the speedup plot approaches the maximum speedup
possible, viz. speedup = n - the number of processors.

5 Conclusions and Future Work

We have derived and evaluated a discrete state continuous
time Markov model for Time Warp, We have determined
the dependence of fraction of useful events and speedup on
the message population when n processes limit each others’
rate of progress by passing messages between each other.
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These messages may cause a rollback and waste some of the
work that a process has accomplished. In addition, we have

derived expressions for several measures that characterize
the dynamics of Time Warp such as expected number of
processed uncommitted events at a process, the expected
number of these events that will be rolled back, rollback
probability as a function of number of processed uncom.
mitted events, pdf of the process’s virtual clock time, and

pmf for the number of processed uncommitted events at a
process. These have been determined for exponential task
times, negligible rollback time and communication delay,

and unbounded buffe~, homo~eneous, processes.
The principal contribution m the analysis of the n process

case wit h a straight-forward M arkovian model. The close
agreement between the analytical and experimental results
demonstrate the validity of the approximations. This pro-
vides a basis that more realistic models for Time Warp can

be analyzed. In particular, our model has successfully ana-
lyzed cascaded rollbacks where complex earlier analyses had
stumbled. The difficult y in analyzing cascaded rollbacks was
perhaps the single most important factor that prevented ex-
tensions to the earlier two-processor analyses. Iu addition,
to our knowledge, this is the first analysis to be backed by
performance measurements of a Time Warp prototype.

There are several interesting avenues for extension. One
is to investigate the effect of idle processors on the perfor-
mance of Time Warp. We have estimated this,. and it has
been discussed in [1 o]. Other possible generahzations in-

C1ude the following.

- Extending the model to heterogeneous proces-
sors.

Extending the analysis to general (non-

exponential) timestamp distributions.
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Derivation of L],1

transform)

Lo,t = 1 i=l,z... (25)

LI,, = 1 –1/2’ i=l,2, . . . (26)

j,i=l,2, . . .

forj, i=l,2 . . . (27)

B Derivation of Cj,i

In this appendix we derive CJ,, - the probability that the

sum of j random variables with rate a and a random variable
with rate /i’ is less than the sum of i + 1 random variables
with rate cr. All the random variables are independent and
exponentially distributed. Let t denote the random sum of
j random variables with rate a and one random variable

with rate ,B. Similarly, let t’denote the random sum of i + 1
random variables with rate cr. Then,

c .7,, = Lj+l,,+l forcr=~ (28)

r ~t+l f~ at’

co,, = ‘z!‘- [/” ~e-~’ d~] d+
o 0

where

c,.. =

.

.

In this appendix we derive Lj,, - the probability that the
sum of j independent random variables is less than the sum
of i independent random variables, all of which are expo-
nentially distributed with the same rate J. Alternatively,
Lj,, can also be viewed as the probability that Erlang(j) is

less than Erlang(i). Let tl (tz) denote the random sum of

j (i) random variables. Then, (L-l is the inverse Laplace


