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Abstract 

We analyze an MI, M2/G1,G2/1/N queue with different sch- 
eduling and push-out scheme in this paper. Our work is mo- 
tivated by the study of the performance of an output link of 
ATM switches with two-class priority traffics. The queueing 
model developed in this paper is more general than that of 
the output link of ATM switches with two-class priority traf- 
fics. We can have general service time distributions for classes 
1 and 2, and a general service discipline function, al(z,j), 
with al ( i , j )  being the probability that a class 1 packet will 
be served, given that there are i class 1 and j class 2 packets 
waiting for service. We obtain an exact solution for loss prob- 
abilities for classes 1 and 2, the queue length distribution and 
the mean waiting time for class 1 and an approximate cal- 
culation for the queue length distribution and mean waiting 
time for class 2. We show that our approximation is an upper 
bound and the error due to the approximation is very small 
when the loss probability of class 2 is small (e.g., 5 0.01). 

1 Introduction 

In this paper, we analyze an MI, M2/G1, G2/1/N queue with 
different scheduling and push-out schemes. Our work is pri- 
marily motivated by the study of the performance of an out- 
put link of ATM switches with two-class priority traffics. 

The future Broadband Integrated Services Digital Net- 
work (BISDN) will provide an integrated access that will 
support a wide variety of applications for its customers in a 
flexible and cost-effective manner. The transfer mode chosen 
by the CCITT for BISDN is called the ATM. ATM is a high 
bandwidth, low-delay, packet-like switching and multiplexing 
technique. ATM can switch a l l  types of traffic, ranging from 
low-bit rate to high rate traffic, in a packet format of fixed 
length called cell using a simplified end-to-end protocol. Var- 
ious different media such as voice, data, video and graphics 
can be accommodated in a ATM network. Each multimedia 
system requires its own grade of service (GOS). For example, 
voice packets are more sensitive to delay than data packets. 
A data packet requires a higher level of protection against 
loss than a voice packet. Therefore the network should be 
designed and controlled to satisfy these greatly differing per- 
formance requirements. Various service and buffer control 
mechanisms have been proposed, ranging from the dedicated 
buffer access for each traffic class to the shared buffer with 
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or without push-out scheme [4], [6]. 

Processor - Ou1put 
Processor - Buffer 

Figure 1: An ATM Switch 

Consider an ATM switch consisting of a network of pro- 
cessors and buffers as shown in Figure 1. Cell delay and loss 
may occur when cells pass through the switch and the out- 
put buffer. If we assume that there are two-class traffics in 
the ATM switch, the output buffer can be modeled as finite 
buffer two-class queue as shown in Figure 2. The server in 
the Figure represents the trunk for the transmission of cells 
out of the output buffer. Our work is motivated by the study 
of the performance of the queueing model in Figure. 2. 

I +  Class 1 

N2 

Class 2 Output Trunk 
Buffer 

Figure 2: A Queueing Model 

There is only a small number of studies on the push-out 
priority schemes. Doshi and Heffes [3] have described and 
analyzed an overload control algorithm using the push-out 
scheme with replacement strategy FIFO for the M/M/l /N 
queue. Sumita and Ozawa [4] have derived conservation laws 
for systems using a push-out scheme. They have also pro- 
posed a mixed head-of-line service discipline for the push-out 
scheme in which, when the server becomes idle, the server will 
serve class 1 packets first with a probability a or class 2 pack- 
ets first with a 1 - a. They obtain the mean waiting times for 
packet classes 1 and 2. Their result shows that the two mean 
waiting times are subject to a linear restriction. Furthermore, 
Hebuterne and Gravey [6] have evaluated the loss probabil- 
ities of a similar system assuming a Poisson arrival process, 
a deterministic service time and the replacement strategy 
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FIFO. Their solution is not applicable to a general service 
time distribution. They observe a tagged low priority packet 
from joining until leaving the system and derive the probabil- 
ities that  this packet will either be served or discarded from 
the system. Kroner [7] presents a method to  compute the 
loss probabilities of an MI, MZ/G/l/N push-out system with 
FIFO service discipline. He considers three different space 
priority mechanisms, namely, push-out scheme, partial buffer 
sharing, and the scheme with a separate route for each traffic 
class, and determines the push-out scheme as the best scheme 
in terms of loss probabilities. A finite-buffer priority queue 
MI, MZ/G1, GZ/l/N is analyzed in [SI. However, no push-out 
scheme and buffer space division are considered in [8]. Most 
recently, Saito [lo] analyzes an MMPPl+MMPPZ/G/l/K 
queue with a push-out scheme. 

In this paper we present an exact method to compute 
loss probabilities, the distribution of the number of class 1 
packets in the system and the mean waiting time of a class 1 
packet. An approximate solution is given for the computation 
of the mean waiting time for class 2 packets. Our model in 
the paper differs from other analyzed push-out models in that 
we allow general service time distributions for classes 1 and 2, 
a general service discipline and a divided buffer management 
scheme. 

This paper is organized as follows. Section 2 describes the 
model. Section 3 outlines the calculation of loss probabilities. 
In Section 4, a method for computing the steady state proba- 
bilities of the number of class 1 packets and number of class 2 
packets at a service beginning time in the system is presented. 
Section 5 details the computation for the average number of 
losses of packet during a service time, which has been used 
in Section 3. Sections 6 and 7 derive an exact mean wait- 
ing time computation for class 1 and an approximate mean 
waiting time computation for class 2, respectively. Numerical 
examples are given in Section 8 with some discussion about 
the results. Finally, Section 9 concludes the paper. 

2 Model Description 

We consider an MI, Mz/Gl,Gl/l/N with additional features 
in service discipline and buffer management as will be ex- 
plained shortly in this section. Since we allow general, vari- 
able length service times, we will call a customer a packet 
instead of a cell called in ATM networks. Two classes of 
packets are denoted by class 1 and class 2. The arrival pro- 
cess for class s (s = 1,2) is Poisson with rate A, (s = 1,2). 
(Note that we do not consider the bursty traffic here.) The 
service time of a class s (s = 1,2) can be a random vari- 
able with a general probability distribution. Let b , ( s )  and 
b, denote, respectively, the probability density function and 
the mean of the service time of a class s packet (s = 1,2). 
Service times and arrival processes are independent of each 
other. 

- 

There are N number of total buffer spaces in the system, 
where N is finite and can be divided as N = NI + Nz. The 
number of class 1 packets waiting for service cannot be more 
than Nl - 1. (Total number of class 1 packets in the system 
may be NI if the one currently in service is class 1.) An 
arrival of class 1 packet can join the system by taking an 

unoccupied buffer space, if it finds that there are less than 
NI - 1 class 1 packets waiting for service and there is an 
unoccupied buffer space in the system upon its arrival. An 
arrival of class 1 is lost if there are, upon its arrival, Nl - 1 
class 1 packets waiting for service in the system, even though 
there is an unoccupied buffer space in the system. In the 
contrast, an arrival of class 2 can take an unoccupied buffer 
space anywhere in the system upon its arrival as long as there 
is one. It is lost, otherwise. However, an arrival of class 
1 can join the system by replacing (pushing out) a waiting 
class 2 packet in the system if it finds that there are less than 
NI - 1 class 1 packets waiting for service and that there is no 
unoccupied buffer space in the system upon its arrival. The 
class 2 packet being pushed out is lost. 

The service discipline is specified by a,(i, j ) ,  s = 1,2, 
where al(i,  j )  is the probability that class 1 packet will be 
served when there are i class 1 and j class 2 packets in the sys- 
tem at the beginning of the service. az(i, j )  can be similarly 
defined. Obviously, az(i, j )  = 1 - a l ( i ,  j )  when d + j > 0. 
a.(O,O) (s = 1,2) is undefined. We also assume that the 
server will not be idle as long as there is some packet in the 
system waiting for service. Equivalently, this is to say that 
al(i,O) = 1, i > 0, and az(0, j )  = 1, j > 0. 

disciplines in the system. 
Using the Q we can model several different scheduling 

a) Head of Line (HOL) Scheduling 

Ql( i , j )  = 1 i f i > O  

b) Shortest Line First (SLF) Scheduling 

c) Longest Line First (LLF) Scheduling 

d) Random (RS) Scheduling 

a l ( i , j )  = P i f i > O & j > O  

i.e., the server will serve class 1 with probability p and class 2 
with probability 1 - p .  We should point out that although al 
is general, it has to  be a function of the numbers of packets of 
two classes, and therefore, it cannot exactly model schemes 
that are not a function of these numbers. For example, FIFO 
and LIFO. Note that from the loss probabilities point of view, 
it does not matter in which order the packets of the same class 
are served and which class 2 packet will be pushed out. 

3 Loss Probabilities 

Packet losses occur only when the server is busy. A packet can 
be lost if either there is no space available in the buffer upon 
its arrival or it is pushed out from the buffer while waiting for 
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service. Let l l z  be the loss probability for a packet of either 
class 1 or class 2 and 512 be the average number of packet 
losses of either class during a service time. Consider a time 
period T when the system reaches the steady state. On the 
average there are (X1tXZ)T arrivals from classes 1 and 2 in T, 
and (1-112) fraction of them is served. Therefore, the average 
number of total packet losses in T is (XI t Xz)T(l - 11z)slz. 
By definition, ll2 is the ratio of the average number of total 
losses in T to the average number of total arrivals in T. Thus, 

From (1) we get 
512 

112 = - 
1 t 512 

The computation of 912 will be shown later (Section 5). 

Similarly, let 11 be the loss probability of a class 1 packet 
and a1 be the average number of losses of class 1 packets 
during a service time. We have 

Finally, let 12 be the loss probability of a class 2 packet. 
Using 

(A1  t X2)IlZ = All1 t X2lz (4) 
we obtain 

(A1  t X Z ) l l Z  - All1 

X Z  

a1 will be computed in Section 5. 

12 = (5) 

4 Steady State Probabilities 

The average number of packet losses during a service time can 
be computed by conditioning on the number of class 1 and 
the number of 2 packets in the system at the beginning of the 
service time. In this section, we will compute the probabilistic 
distribution of the numbers of class 1 and class 2 packets in 
the system at the beginning of a service time. We proceed 
as follows. First, the distribution of the numbers of packets 
left in the system at a packet’s departure time is computed, 
and then the distribution of the numbers of packets at the 
beginning of a service time is derived from the departure time 
distribution . 

Let ( i , j )  denote that there are i class 1 packets and j 
class 2 packets in the queue at a packet’s departure time. 
Since we restrict our view at a packet’s departure time, ( i , j )  
constitutes a Markov chain (imbedded Markov chain), where 
0 5 i < NI, j 2 0 and i + j  5 N - 1. Let p ( i , j ) ,  0 5 i < NI, 
j 2 0 and i t j 5 N - 1, be the steady state probability that 
the system is in state ( i , j )  at a packet’s departure time and 
P( i , j ) ; (k ,~ )  be the one step transition probability from state 
( i , j )  to state ( k , l ) .  Clearly, P(;,j);(k,l) is a function of arrival 
rates and service time. The Markov chain is totally deter- 
mined by P(i3);(k,~).. To facilitate the expression for P(i,j);(h,l), 
the following defimtions are introduced. 

Definition 1. I(n, A,  b(z))is the probability that there are 
exactly n Poisson arrivals with arrival rate X during a service 
time of which the probability density function (pdf) is b(z) .  

I(n, A, b ( z ) )  = JW 0 (X+)“e-xzb(z)dz n! 

Definition 2. I(> n, A, b(z) )  is the probability that there 
are a t  least n Poisson arrivals with rate X during a service 
time of which the pdf is b(z). 

n-1 

I ( >  n, A, b ( z ) )  = 1 - I(i, A, b ( z ) )  (7) 
i=O 

Definition 3. II(n1, nz, XI,  XZ, b ( z ) )  is the probability that 
there are exactly n1 and nz arrivals from Poisson processes 
with arrival rates A1 and Xz, respectively, during a service 
time of which the pdf is b(z). 

II(n1, nz, XI, X Z ,  b(z)) 
(Xlz)nl e-xlZ(X2z)na e-x’Xb W 

nz! ( )d 

Definition 4 .  TI(> nl, nz, XI,  XZ, b ( 2 ) )  is the probability 
that there are at least n1 and exactly n~ arrivals from Poisson 
processes with arrival rates A1 and Xz, respectively, during a 
service time of which the pdf is b(z) .  

11(2 R1,nzl X1, Xz,b(z))  

The following two probabilities are similarly defined. They 
are 

and 

nl-1 

=I(> nz,Xz,b(z))- II(i,2nz,X1,XzIb(z)) (11) 

If nz < 0 in the above definitions, the computation should 
not count the arrival process related to nz. For example, 

i = O  

I l (n~,nz,X~,X~,b(z))  = I(n~,Xl,b(z)) i fnz < 0. 

Now we are ready to  compute P(;,jli(k,1). 

Case 1. For i = 0 and j = 0: the class of the packet 
that will be served next depends on the class from which the 
next packet comes. Since both arrival processes are Poisson, 
with probability & the next packet comes from class 1 
and with probability & from class 2. Therefore, we have: 
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Ai = I - j, A: = k - a, and Ai = 1 - ( j  - 1). A: and 
A: indicate, respectively, the numbers of changes of classes 1 
and 2 packets in a class 1 packet service time, and At and A: 
have the similar interpretation except that in a class 2 packet 
service time. Note that it is impossible to  have A: < 0 or 
Ai  < 0 & le + I < N - 1 when a class 1 packet is being served 
and A: < 0 or AB < 0 & k + l  < N -1 when a class 2 packet 
is being served. Let 

I 

(12) 0 

if A1 < 0 
b(Ai$Az)=< or A2 < 0 & k + l <  N - 1 

1 

\ otherwise 

Thus 

p( i . j ) ; (k , l )  = 
Case 2. For a = 0 and j > 0: a packet of class 2 will be 

served. Let A1 = k and Az = 1 - ( j  - 1). A1 and A2 indicate, 
respectively, numbers of changes of classes 1 and 2 packets 
during a service time. A2 may become negative if j - 1 > Nz 
and A1 > N - j. Therefore we have: 

I I ( L  AI,> Az,Xi,Xz,ba(z)) This completes the computation for P ( ; , j ) ; ( k , J ) ,  where 0 < 
if k =  N l - l &  k + l =  N - l  i ,k < NI; j , l >  0 and i +  j , k + l <  N. 

The steady state probabilities, p(i,j),  should observe the Case 3. For a > 0 and j = 0: a packet of class 1 will be 
served. Let A1 = k-(i- 1) and A2 = 1. A1 and A, have the 
same interpretation as that in case 2. Note that A1 cannot 
be negative. We have 

law of conservation: 

p(i , j)  = dk, L)p(k , l ) , (a , j )  
d (k.1) 

I I ( 1  AI, A,, X i ,  X z ,  bi(2)) 

if k = Nl - 1 & k + 1 < N - 1 

11(1 AI, 1 Az, XI, X z ,  bi(z)) 

I 
if k = NI - 1 & k + l =  N - 1 

Case 4. For a > 0 and j > 0: a packet of class s (s = 1,2) 
will be served with probability u,(i,j). Let Ai = k - (i - l), 

f o r O < i < N 1 ; j L O ;  i + j < N - l  (17) 

and also 

P( i , j )  = 1 (18) 
all ( i , j )  

We can compute the values of p(i, j )  by solving equations 
(17) and (18) numerically, which involves N1(zN~N1+l~  inde- 
pendent linear equations. 

Let q(i, j) be the probability that there are i class 1 pack- 
ets and j class 2 packets at the beginning of a service time. 
Except for the first packet, the beginning of a service is pre- 
ceded by the departure of the last packet served. There is 
then a one-to-one correspondence between a packet’s depar- 
ture and the beginning of the service of the next packet. If 
there is some packet left in the system at a packet’s depar- 
ture time, then the beginning of the service time for the next 
packet coincides with the departure time and they should ob- 
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serve the same packets left in the system. However, if there is 
no packet left at a departure time, there will be either ( 1 , O )  
or (0 , l )  packet in the system at the beginning of the next 
service time depending on from which class the next packet 
comes. It is clear now that the possible state (i, j )  at the 
beginning of a service is i t j 2 1 and i + j 5 N - 1 for 
N 2 2. So q( i ,  j )  is computed as follows. 

1. For N = 1, the only possible states are (1,O) and ( 0 , l ) :  

The idea for computing s12, the average number of losses 
of packets of the two classes during a service time is similar 
but more complicated. Again, suppose there are ( i , j )  packets 
in the system at the beginning of a service time. First, let 
us consider the case where the next packet to be served is 
a class 1 packet. Let t = Min(N1 - i ,  N - i - j }  and y = 
M a z ( 0 ,  Nz - j } .  t can be thought as the maximum number 
of class 1 arrivals during the service time which result in no 
packets being lost or pushed out, and y is the number of 
unoccupied buffer spaces that only class 2 packets can take. 
(N - i - j )  is the total number of unoccupied buffer spaces 
at the beginning of the service time. Assuming that there 
are k and 1 arrivals from classes 1 and 2, respectively, during 
a service time beginning at state (i,  j ) ,  the number of total 
losses of packets of the two classes during the service time is 

5 Average Number of Losses during a 
Service Time 

We define L(n, A, b ( z ) )  as the average number of arrivals after 
the first n arrivals of a Poisson arrival process with rate X 
during a service time whose pdf is b ( z ) ,  i.e., L(n ,A ,b ( z ) )  
is the average number of arrivals counted after the first n 
arrivals during a service time. By definition 

n 
= A i  - k I ( k ,  A, b(z) )  - nI(2 (n 4- l), A, b(z) )  (20) 

k = l  

where $is the mean of b ( z ) .  Suppose there are (i, j ) ,  i > 0 and 
j > 0, packets in the system (including the one which is going 
to receive service) at the beginning of a service time. Consider 
the number of class 1 packets that may be lost during the 
service time. If a class 1 packet is served, then the first ( N I - i )  
arrivals of class 1 packets during the service time can join 
the system. After that, all arrivals are lost due to the fact 
that there are (NI  - 1) class 1 packets waiting in the queue. 
Therefore, the average number of class 1 packets lost during 
a service time which begins with i class 1 packets and j class 
2 packets is equal to the average number of class 1 packets 
arrived after the first (NI  - i) class 1 arrivals if the packet in 
service is class 1 or is equal to the average number of class 1 
packets arrived after the first (NI  - (i -I- 1)) class 1 arrivals if 
the packet in service is class 2. Therefore, 

1 - ( N  - i - j - k )  

if k s t  & I >  N - i - j - k  

k - t  

i f  k > t  & l < y  

k - t + l - y  

if k > t  & l > y  

0 

otherwise 

Therefore, the averagenumber of packets of the two classes 
lost during a class 1 service time beginning at ( i, j )  is 

512 I(i,i) 

(23) Yll(2 (t + 1)s 1 (Y + I), X I ,  Xz, b l ( z ) )  

The case of the next packet to be served being a class 
2 packet can be derived similarly. The result will be the 
same except that t and y are calculated slightly differently: 
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t =  Min{N1-(i+l) ,N-i-j}andy = Maz{O,N2-(j-l)}, 
where j 2 1. 

Let 

di, j ,  t ,  Y, b ( z ) )  = 

k ( k  + l)IZ(k + 1,z (N - i - j - k), X i ,  Ao, b ( z ) )  - 
k=O 

t 

x ( N  - i - j - k)lZ(k, 2 (N - i - j - k + l), X I ,  X2, b(z))  + 

(Ai + Ao)z - 

k=O 
: 

bl (k ,  ai, b ( z ) )  - tZ(2 (t + I), AI, b ( z ) )  - 
k EO 

U a i  
11(1, b ( z ) )  - < x ( k  + l)lZ((a + I), 2 Y, A i ,  Xo, b ( z ) )  - 

I=O k =o 
Y Z W  (t  + 1),2 (Y + I), Ai, h, b ( z ) )  (24) 

where % = 1," 26(2)d2. Then, s12, the mean number of losses 
of packets of the two classes in a service time, is 

~ 1 2  = q(ilj)al(;,j)g(i,j,tl(ilj), y d d ,  bdz)) 
i > O , j z O  

+ q(iIj)aa(ilj)g(~,j,tz(i,j), yz(j), bz ( z ) )  (25) 
j>O,i>O 

where 
t l ( i , j )  = Min(N1-  i ,  N - i - j }  

(26) 
gl(j) = M a 4 0 ,  N2 - jl 
t2(i , j)  = Min(N1 - (i + l ) ,  N - i - j }  

sa(j)  = MazIO, Na - ( j  - 1)) 
Special Case: if NI = N ,  i.e., class 1 packets can take 

any buffer space in the system, the computation for 512 is 
much simpler. Suppose there are i and j classes 1 and 2 
packets, respectively, at the beginning of a service time, any 
arrival after the first ( N  - i - j) arrivals from both classes 
either is lost or pushes out a class 2 packet. Therefore, (25) 
is simplified to  the following form: 

812 

6 Exact Computation of the Queue Length 
Distribution and the Mean Waiting 
Time for Class 1 

In this section, we compute the probability of i ,  0 5 i 5 NI, 
class 1 packets in the system at a random time. The result 
is then used to  compute the mean waiting time of a class 
1 packet. Since Poisson arrivals see time average [9], the 
probability that there are i, 0 5 i 5 N1, class 1 packets in 
the system at  a random time is equal to  the probability that 
there are i class 1 packets in the system at the arrival time 
of a dass 1 packet. So we will compute the probability from 
the point of view of an arriving class 1 packet. As before, T 
is used t o  denote a period of time when the system is in the 
steady state. 

Let we be the probability that a class 1 packet finds the 

server idle upon its arrival. This is possible only when there 
is no packet in the system at a service completion time and 
the next arrival is a class 1 packet. Therefore, we have 

Let a,., 0 5 k 5 Nl, be the average number of class 
1 arrivals which see k class 1 packets in the system upon 
th& arrivals during a service time. The population of class 
1 packets c m  be divided into two sets: those lost upon their 
arrivals and those served. The class 1 packets lost can see 
only N~ - 1 or Nl class 1 packets in the system upon their 
= r i d s ,  while class 1 packets served can BW 0 I k 5 NI - 1 
Class 1 packets in the system upon their arrivals. The number 
of losses of class 1 packet in a service time is 

(29) 
, I  

31 f aN1-l 

where 

a& = d 4 h ( i , j ) L ( N l -  i , A l , h ( z ) )  (30) 
i>oj>o 

and 

.N,-I = c ! l ( i l j )a2( i , j )~(Ni  - i - 1, AI, b z ( 2 ) )  (31) 

ahl-, a d  &, are the average numbers of class 1 packets lost 
during a service time which see N1 - 1 and N1 class 1 packets 
in the system upon their arrivals, respectively. 

The average number of class 1 packets served which see 
k, 0 I k 5 Ni - 1, class 1 packets in the system upon their 
arrivals during a service time can be computed as follows. If 
there is no class 1 packet a t  the beginning of a service, there 
should be at least k + 1 class 1 arrivals during the service time 
for only the (k + 1)st arrival will observe k class 1 packets 
in the system upon its arrival. If there are i ,  i 2 1, class 
1 packets in the system at the beginning of a service, there 
should be at  least k - i + 1 class 1 arrivals during the service 
time for o d y  the (k - i + 1)st arrival will observe k class 1 
packets in the system upon its arrival. Obviously, i 5 k and 
i + 1 < NI if a packet of class 2 is in service. Therefore we 
have 

j>O,i>O 

i f  k = NI 
(32) 

Now let &, 0 5 k 5 NI, denote the probability that a 
class 1 packet finds that there are k class 1 packets in the 
system upon its arrival. Bk is then 

a) If k = 0: 

2C.2.6 
0236 



(33) 

b) If k = 1,2, ..., NI: 

It can be verified that 

? B k = l  (35) 
k=O 

The mean system time of a class 1 packet can be com- 
puted by Little’s law. The average number of packets in the 
system equals to the mean system time multiplied by the ef- 
fective arrival rate. Therefore, the mean waiting time of a 
class 1 packet, W1, is 

7 Approximate Mean Waiting Time for 
Class 2 

We are unable to compute the mean waiting time of a class 
2 packet exactly due to the fact that a class 2 packet may 
get pushed out after joining the waiting queue. However, in 
the context of an ATM switch, the loss probability of a class 
2 packet, which can be computed exactly by the method de- 
scribed in section 3, is usually very small. When the loss 
probability is small, we can analyze approximately the mean 
waiting time of a class 2 packet by overlooking part of lost 
packets. Particularly, in the following we will present an ap- 
proximate method of computing the mean waiting time of a 
class 2 packet with the assumption that only those arrivals of 
class 2 packets which arrive after the first ( N  - i - j )  arrivals 
of class 2 packets during a service time beginning with i class 
1 and j class 2 packets in the system will be lost and there is 
no push-out loss. 

If there are i class 1 and j class packets in the system at 
the beginning of service, ( N  - i - j )  is the number of unoccu- 
pied buffer spaces at the beginning of the service. An arrival 
among the first N - i - j arrivals of class 2 packets during 
a service may or may not be lost, depending on the number 
of class 1 packets arrived ahead of it during the service time. 
The arrivals of class 2 packets after the first N - i - j arrivals 
of class 2 are always lost. Thus the number of actual losses of 
class 2 packets in computing the mean waiting time of a class 
2 packet is reduced. We will comment on the accuracy of 
it shortly. As before, we compute the mean number of class 
2 packets in the system at a random time first, which can 
be carried out equivalently by computing the mean number 
seen by an arriving class 2 packet. We then use Little’s law 
to compute the mean waiting time. Because of the assump- 
tion, the mean number of class 2 packets in the system at a 
random time computed this way is greater than the actual 

mean number of class 2 packets served. So the mean waiting 
time computed with the assumption is an upper bound of 
the actual mean waiting time. We can also estimate a lower 
bound of the mean waiting time of a class 2 packet as follows. 
Let Nu be the upper bound of the mean number of class 2 
packets computed with the assumption. As the assumption 
suggests, the actual mean number of class 2 packets in the 
system is greater than N,,(1- I z ) .  So the error in the mean 
waiting time introduced by the assumption is, by Little’s law, 
no more than 12 fraction of the actual mean waiting time. For 
example, suppose the loss probability of a class 2 packet is 
IO-’, our approximate computation of the mean waiting time 
of a class 2 packet will have an error of less than 1 percent of 
that of exact computation, which is probably acceptable for 
practical interest. 

Similar to the previous section, let c;ae be the probability 
that a class 2 packet finds the server idle upon its arrival, then 

tide = (1 - l 1 2 ) ~ ( 0 ,  0) (37) 
Let ck, 0 5 k 5 N ,  be the average number of class 2 

arrivals which see k class 2 packets in the system upon their 
arrivals during a service time. The arrivals of class 2 during 
a service time can be divided into two sets, depending on 
whether they are lost or not upon their arrivals. Let ik, 
N2 + 1 5 k 5 N ,  be the average number of class 2 packets 
in a service time which see k class 2 packets in the system 
upon their arrivals and are lost at the same time due to no 
unoccupied buffer space, then 

and 

I ‘N 
i f k = N  

(39) 

Let Dk, 0 5 k 5 N ,  denote the probability that a class 2 
packet finds there are k class 2 packets in the system upon 
its arrival. Then 

1. If k = 0: 

(A1 + - ~ 1 Z ) C O  + Do = 
A 2 T  
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The mean waiting time of a class 2 packet, mz, is approx- 
imately 

8 Numerical Examples 

In this section we present some of the experimental compu- 
tations conducted in the study. It is assumed, in all of our 
examples, that  service times for two classes are constant and 
equal t o  1. Three service disciplines, namely HOL, SLF and 
LLF, are used for comparison. Let p = A1 + A2 be the total 
load t o  the system (since the service time is normalized to 1). 
An admissible load with respect to a certain GOS for classes 
1 and 2, which is specified in terms of loss probabilities and 
mean waiting times for classes 1 and 2 in the study, is the 
maximum total load without violating the GOS. At a given 
load, three different mixes of loads from classes 1 and 2 are 
tried. The three mixes are A 1  = Az, A 1  = 2A2 and 2A1 = Az. 

The first set of examples (Figures 3, 4 and 5), displays 
relationship between admissible loads and total buffer sizes. 
The same GOS are used in three figures with A1 = A2 in 
Figure 3, A1 = 2x2 in Figure 4 and 2A1 = A2 in Figure 5. 
The GOS is 

11 5 10-10, 12 5 10-6 

Vi 5 1.5, W2 5 5 
The admissible loads are represented on y-axes and total 
buffer sizes N are on x-axes where N = NI is assumed. Three 
curves in each figure correspond to  three service disciplines. 

As we can see, HOL administers the largest admissible 
loads with respect to  the GOS used here. This is true not 
only for different buffer size but also for different load mixes. 
In Figure 3, the limiting factor of admissible load is loss prob- 
ability of class 2 in all three service disciplines. In Figure 4, 
where A1 = 2x2, the limiting factor differs with service disci- 
plines. For HOL, the limiting factor is the loss probability of 
class 1 when NI the total buffer size, is less than or equal to 
20 and the loss probability of class 2 when N > 20. However, 
at N = 40 both the loss probability and the mean wait- 
ing time of class 2 approach the GOS limit simultaneously. 
For SLF, the limiting factor is the loss probability of class 
1 when N 5 38 and the mean waiting time of class 1 when 
N = 40. For LLF, the limiting factor is the loss probability 
of class 1 when N 5 12, the loss probability of class 2 when 
12 < N 5 32 and the mean waiting time of class 1 when 
N 2 34. In Figure 5, where 2A1 = A2, the limiting factor is 
the loss probability of class 2 for HOL, the loss probability of 
class 1 for SLF, the loss probability of class 2 when N 5 26 
and the mean waiting time of class 1 when N 2 28 for LLF. 

The second set of examples (Figures 6 t o  ll), shows how 
loss probabilities and mean waiting times of two classes vary 
with the total load. Again, three service disciplines and three 
load mixes are used. In all these examples, N = NI = 40 is 

assumed and the totalload changes from 0.05 to  0.95. Figures 
6 to  8 are curves of loss probabilities versus total load with 
A1 = A1 in Figure 6, A 1  = 2x2 in Figure 7 and 2x1 = A2 in 
Figure 8. Figures 9 to  11 are curves of mean waiting times 
versus total load with A1 = '2 in Figure 9, A 1  = 2x2 in Figure 
10 and 2x1 = A2 in Figure 11. 

The loss probabilities of LLF surprisingly resemble the 
loss probabilities of HOL in all three figures. On the other 
hand, the mean waiting times of HOL and LLF are in op- 
posite directions. HOL tends to  minimize the mean waiting 
time of class 1 and maximize the mean waiting time of class 2 
while LLF tends to  equalize the two. Indeed, this resembling 
and contrast character between HOL and LLF holds also in 
the next set of numerical examples when N FZ NI and can 
be explained intuitively. It seems that loss probabilities and 
mean waiting times of HOL are least sensitive to the change 
of the ratio of A1  and A2 for a given total load, while LLF 
and SLF are more and most sensitive. 

The last set of examples (Figures 12 to 17), shows changes 
of loss probabilities and mean waiting times of two classes 
with the increase of NI. In all these examples, N = 40 and 
p = 0.9 are assumed. Figures 12 to  14 are curves of loss 
probabilities versus NI with A1 = A2 in Figure 12, A1 = 2x2 

in Figure 13 and 2x1 = A2 in Figure 14. Figures 15 to 17 
are curves of mean waiting times versus N1 with A 1  = A 2  in 
Figure 15, A1 = 2x2 in Figure 16 and 2x1 = A2 in Figure 17. 

These examples show that once N1 surpasses certain value, 
it no longer significantly affects the loss probabilities and 
mean waiting times. 

9 Conclusions 

In this work, we analyzed a queueing model M I ,  M 2 / G 1 ,  G2IN 
with different scheduling and push-out schemes. Our work 
can be used to  evaluate the performance of an output link of 
ATM switches with two-class priority traffics and may also 
have other applications in computer and communications sys- 
tems. 

By introducing the function a, we were able to consider 
various scheduling disciplines such as HOL, SLF, LLF and 
Random Scheduling. By dividing the total buffer spaces into 
two parts, we created a push-out scheme that permits a con- 
trolled share of the buffer spaces between two classes. We 
gave an exact solution for loss probabilities of both classes, 
the queue length distribution and mean waiting time for class 
1. An approximate solution for the queue length distribution 
and mean waiting time for class 2 was also obtained. We gave 
a set of numerical examples which consider the loss probabil- 
ities and mean waiting time simultaneously. It remains to 
extend these results to  cases of bursty arrivals. 
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Figure 14: Sliding Buffer Size ( N I )  versus Loss Probabilities 
( N  = 40,2A1 = A?, Total load = 0.9) 
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Figure 15: Sliding Buffer Size ( N I )  versus Mean Waiting Time 
( N  = 40,Xl = XZ, Total load = 0.9) 
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Figure 16: Sliding Buffer Size ( N I )  versus Mean Waiting Time 
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Figure 17: Sliding Buffer Size (NI) versus Mean Waiting Time 
( N  = 40,2X1 = XZ, Total load = 0.9) 
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