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Delay-Based Maximum Power-Weight Scheduling
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Abstract— Heavy-tailed (HT) traffic (e.g., the Internet and
multimedia traffic) fundamentally challenges the validity of
classic scheduling algorithms, designed under conventional light-
tailed (LT) assumptions. To address such a challenge, this paper
investigates the impact of HT traffic on delay-based maximum
weight scheduling (DMWS) algorithms, which have been proven
to be throughput-optimal with enhanced delay performance
under the LT traffic assumption. First, it is proven that the
DMWS policy is not throughput-optimal anymore in the presence
of hybrid LT and HT traffic by inducing unbounded queuing
delay for LT traffic. Then, to solve the unbounded delay problem,
a delay-based maximum power-weight scheduling (DMPWS)
policy is proposed that makes scheduling decisions based on
queuing delay raised to a certain power. It is shown by the
fluid model analysis that DMPWS is throughput-optimal with
respect to moment stability by admitting the largest set of traffic
rates supportable by the network, while guaranteeing bounded
queuing delay for LT traffic. Moreover, a variant of the DMPWS
algorithm, namely the IU-DMPWS policy, is proposed, which
operates with infrequent queue state updates. It is also shown
that compared with DMPWS, the IU-DMPWS policy preserves
the throughput optimality with much less signaling overhead,
thus expediting its practical implementation.

Index Terms— Heavy tails, delay-based maximum weight
(MaxWeight) policy, power-weight scheduling, fluid-limit approx-
imations, throughput-optimal, switched networks.

I. INTRODUCTION

L INK scheduling is a critical and even most challeng-
ing resource allocation functionality in general queueing

networks, such as wireless downlinks and uplinks, input-
queued switches, wireless sensor networks, ad-hoc networks,
and cloud computing facilities among many others. In all
these systems, not all queues can be served simultaneously,
due to the constraints from wireless interference or switch
matching. To fully utilize the limited network resources,
throughput-optimal scheduling policies [1], often referred
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to as maximum weight (MaxWeight) policies, have been
extensively exploited. The throughput-optimal policy can
stabilize the network by guaranteeing bounded queueing delay
under any feasible loads, without requiring any explicit sta-
tistical information of the arriving traffic flows and serving
rates. Throughput-optimal scheduling was first introduced in
the seminal work [1], which proposes queue length-based
MaxWeight scheduling (QMWS), where the flow with the
largest queue length is served first. Since then, numerous
work has been focused on the variations or extensions of
this policy in different settings. For example, the recent work
in [2] investigates the response time performance (i.e., queue-
ing delay) under generalized queue length-based MaxWeight
policies. However, while these queue length-based policies
have been shown to achieve excellent throughput performance,
they suffer a substantial queueing delay because the long
waiting time of building up large queue lengths [3] is required
for a flow to be served eventually. Moreover, the queue length-
based MaxWeight scheduling policies even lose the throughput
optimality under flow dynamics, where certain flows only have
a finite number of packets to transmit and thus cannot bring
a sufficiently large queue length to establish desired queueing
dynamics [4].

To address those challenges, delay-based MaxWeight
scheduling (DMWS) policies [5]–[8] have been investigated
recently, which utilize the head-of-line (HoL) packet waiting
time as the weight instead of queue lengths. More specifically,
DMWS gives a higher serving priority to the flows with a large
weight as before, but the weight of a flow now increases with
its HoL time until the flow gets served, even if there is not
sufficient built-up queue lengths. This intuitively eases or even
solve the substantial delay problem. By applying the similar
concept, the DMWS policy is proven to be throughput-optimal
with flow dynamics, where the flows with finite number of
packets come or go as time proceeds [7].

Despite its superior throughput and delay performance, all
existing DMWS policies are developed under the assumption
of the conventional light-tailed (LT) traffic (i.e., Markovian
or Poisson traffic), and the throughput performance of the
DMWS policy in the presence of heavy-tailed (HT) traf-
fic has not yet been fully understood. HT traffic has been
widely identified in a variety of data-oriented communica-
tion and computer networks, such as WiFi networks [9],
the Internet [10], [11], mobile ad-hoc networks [12], cellular
networks [13], [14], and data center networks [15], [16].
Heavy-tailed traffic can be either caused by the inherent heavy-
tailed distribution in the traffic source such as the file size on
the Internet servers [16], [17], the message size of cellular
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base stations [13], [14], and the frame length of variable bit
rate (VBR) video streams [18], or caused by the network pro-
tocols themselves such as retransmissions and random access
schemes [19]. In particular, HT traffic exhibits high burstiness
and strong correlations as well as statistical similarity over
different timescales. The highly bursty nature can induce
significant performance degradation, such as unbounded net-
work latency [20], [21], greatly degraded network stabil-
ity [22], [23], and considerably reduced connectivity [24].

In this paper, we aim to analyze the impact of hybrid
HT and LT traffic on the throughput optimality of DMWS
policies. Previous researches [22], [23], [25], [26] have shown
the destructive impact of HT traffic on the system stability
under queue length-based policies (e.g., QMWS). However,
such analysis cannot be applied for the delay-based scheduling
policies (e.g., DMWS), since there exists no direct relation
between the instantaneous queue length and queueing delay.
To counter such challenge, fluid model-based stability analysis
can be adopted [27], [28], which establishes the deterministic
fluid model for the original stochastic queueing model and
exploit the Little’s law in fluid domain to connect the fluid
limit of the HoL packet delay with that of the queue length.
By such a way, DMWS can be considered to be equivalent
to the queue length-based counterpart (e.g., QMWS). Then,
it is easy to prove that DMWS is throughput optimal with
respect to steady-state stability, i.e., the convergence of queue
length process in distribution for every traffic vector within
the stability region. However, although under the conventional
LT assumption, the steady-state stability generally implies
bounded average queue lengths, under HT environments, such
implication may not hold at all [25]. Hence, it is of significant
importance to study the potential destructive impact of HT
traffic on the boundness of queue lengths under DMWS and
develop effective solution to mitigate such impact.

In this paper, we first show the network instability of the
DMWS policy with hybrid HT and LT traffic. Specifically,
by applying sample-path analysis (e.g., [27], [28] in the
literature for queue length-based scheduling), we derive the
sufficient condition under which DMWS leads to unbounded
average queueing delay for LT traffic. Next, we propose the
delay-based maximum power-weight scheduling (DMPWS).
In particular, by jointly exploiting fluid model-based stability
and moment analysis, we prove that DMPWS is throughput-
optimal with respect to moment stability by admitting the
largest set of traffic rates that is supportable by the network,
while guaranteeing bounded queueing delay for LT traffic.
Intuitively, this feature is achieved by giving higher priorities
(i.e., larger power-weight) to LT traffic flows, which provide
them sufficient serving opportunities when competing with HT
traffic flows. Such a feature is of great importance in the sense
that it prevents bursty HT traffic from significantly degrading
the queueing performance of LT traffic (e.g., email deliveries,
audio/voice traffic, and scalar sensing readings).

Note that the design insights of DMPWS are inspired by
the previous work on QMPWS [23], [25], [26]. However,
the stability and throughput optimality analysis of DMPWS
are different and much more involved. We adopt fluid-limit
approximations that transform the original stochastic systems

into a deterministic system. While the work of queue length-
based policies in [29] also adopts fluid-limit approximations to
prove the unbounded delay with HT traffic, due to the merits
of queue length-based designs, it simply proves the stability
with stochastic queueing systems by using the conventional
approaches of Foster-Lyapunnov criterion and moment bound.
On the other hand, aiming at delay-based designs, we establish
linear relation between queue lengths and queueing delay
with deterministic systems in the fluid domain, and prove
the steady-state stability of DMPWS by using fluid-domain
Lyapunov drift technique. Finally, we exploit the fluid model-
based moment analysis to prove the throughout optimality of
DMPWS by investigating the bounds on mean return time of
queue-length process.

To further enhance the practicability of DMPWS, we pro-
pose a variant DMPWS policy, called infrequent updating-
DMPWS (IU-DMPWS), which only needs the infrequent
queue-state (i.e., HoL packet delay) measurements. While such
infrequent updates of queue information have been exploited
for conventional QMWS [30], [31], the impact on the proposed
DMPWS is unknown and quite involved to analyze. To this
end, we prove that the IU-DMPWS policy still preserves the
throughput optimality as its original DMPWS scheme, but
is more favored in system implementation, such as uplink
scheduling in cellular networks, due to less signaling overhead.
More specifically, there is a clear tradeoff with IU-DMPWS
that infrequent updates and lower overhead (or computational
cost) come at the expense of larger delay, as verified by
simulation results.

To the best of our knowledge, this work is the first rigor-
ous analysis for the throughput performance of delay-based
scheduling policies with HT traffic. We summarize our main
contributions as follows:

• We show that the existing DMWS policy fails to achieve
throughput optimality in the presence of HT traffic.

• We prove that the proposed DMPWS policy can achieve
the throughput optimality with respect to moment stabil-
ity, under hybrid HT and LT traffic.

• We further demonstrate that the proposed IU-DMPWS
policy preserves the good merits from its original scheme
with less signaling cost.

The rest of the paper is organized as follows. Section II
introduces the system model and preliminaries. Section III
analyzes the network instability of the DMWS policy with
hybrid HT and LT traffic. To solve the instability problem,
Section IV proposes the DMPWS policy and its variant
IU-DMPWS. Section V provides performance evaluation and
Section VI concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

A. Preliminaries

Definition 1 (HT Distribution): A random variable X is
heavy-tailed (HT) if for all θ > 0

lim sup
x→∞

eθx Pr(X > x) = ∞, (1)

or equivalently, E[ezX ] = ∞, ∀z > 0. On the other
hand, a random variable is light-tailed (LT) if it is not HT,
or equivalently, if there exists z > 0 so that E[ezX ] < ∞.
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Informally speaking, a HT random variable has tail distribu-
tion decreasing slower than exponentially (e.g., Pareto and log-
normal); a LT random variable has tail distribution decreasing
exponentially or even faster (e.g., exponential and Gamma).

An important class of HT distributions is the regularly
varying distribution.

Definition 2 (Regularly Varying Distribution): A random
variable X is called regularly varying with tail index β > 0,
denoted by X ∈ RV(β), if

Pr(X > x) ∼ x−βL(x), (2)

where for any two real functions a(t) and b(t), a(t) ∼ b(t)
denote limt→∞ a(t)/b(t) = 1 and L(x) is a slowly varying
function.

Regularly varying distributions are a generalization of
Pareto/Zipf/power-law distributions. The tail index β indi-
cates how heavy the tail distribution is, where smaller values
of β imply heavier tail. Moreover, for a random variable
X ∈ RV(β), tail index β defines the maximum order of
bounded moments X can have. Specifically, if 0 < β < 1,
X has infinite mean and variance. If 1 < β < 2, X has
finite mean and infinite variance. Regular varying distributions
can effectively and stochastically characterize lots of network
attributes, such as the frame length of VBR traffic, the session
duration of licensed users in WLANs, and files sizes on the
Internet severs.

B. System Model

Consider a queueing network topology described by a
directed graph G = (V , E), where V denotes the set of
nodes and E denotes the set of links. We assume that time
is slotted with a unit slot length and that arrivals occur at the
end of each time slot. Our model involves single-hop traffic
flows (i.e., data arrives at the source node of an edge to be
transmitted to the node at the other end of the edge, where it
exits the network). Let F be the number of traffic flows in the
network. A traffic flow f ∈ {1, . . . , F} consists of a discrete-
time stochastic arrival process {Af(t); t ∈ Z+}, a source
node s(f), and a destination node d(f), where s(f), d(f) ∈ V
and (s(f), d(f)) ∈ E . Each arrival process takes values in
the set of nonnegative integers, and is independent and iden-
tically distributed (i.i.d.) over time. Furthermore, the arrival
processes associated with different traffic flows are mutually
independent. Let λf = E[Af (0)] > 0 denote the rate of
traffic flow f and λ = (λ1, . . . , λF ) denote its vector. Each
flow f is buffered in a dedicated queue at s(f) and the service
discipline within each queue is assumed to be first-come, first-
served (FCFS). Moreover, we define the tail coefficient of an
arrival flow Af (t) as

κ(Ah(t)) := sup{k ≥ 0 : E[Ak
h(t)] ≤ ∞}, (3)

which gives the maximum order of finite moments that arrival
process Af (t) can have. In particular, if Af (t) is HT with tail
index β, i.e., Af (t) ∈ RV(β), then κ(Af (t)) = β.

Let the stochastic process {Qf(t); t ∈ Z+} and
{Wf (t); t ∈ Z+} denote the number of packets and the HoL

packet waiting time, respectively, in queue f at the begin-
ning of time slot t. Moreover, not all traffic flows can be
served simultaneously due to the interference in wireless net-
works or matching constraints in a switch. A set of flows that
can be served simultaneously is a feasible schedule π. Let S
denote the set of all feasible schedules that is assumed to be an
arbitrary subset of the powerset of {1, . . . , F}. For simplicity,
we assume the maximum transmission rate along any links
is one packet per time slot. Let πf (t) denote the number
of packets transmitted from queue f at time t, E[πf (t)] =
πf ≤ 1 the average service rate of queue f where π =
(π1, . . . , πF ) ∈ S, and S(t) = (π1(t), . . . , πF (t)) the time-
varying scheduling vector. Let Y (t) = (Y1(t), . . . , YF (t))
denote the schedule idling process at time t, where Yf (t) =
max{πf (t) − Qf (t), 0}. Q(t) = (Q1(t), . . . , QF (t)) captures
the queue lengths at time slot t, and its initial state Q(0) can
be an arbitrary element of Z

F
+. As a result, we adopt quadruple

processes {Q(t), W (t), Y (t), S(t)} and an initial condition
Q(0) to completely characterize a stochastic queueing system
and its time evolution.

We introduce notations used in this paper as follows.
IM denotes the indicator function of event M and ‖X‖1

indicates L1-norm of vector (or set) X .
Definition 3 (Steady-State Stability [6]): A queueing sys-

tem described in Section II-B is considered. Let Qx denote
the queue length process with initial backlog ‖Qx(0)‖1 = x.
If there exists a scheduling policy under which the process
{Q(t); t ∈ Z+} converges in distribution, i.e., there exist an
ε > 0 and a finite integer T > 0 such that for any sequence
of processes { 1

xQx(xT ), x = 1, 2, . . .}, we have

lim sup
x→∞

E[
1
x
‖Qx(xT )‖1] ≤ 1 − ε, (4)

then the queue length process is ergodic and the queueing
system is steady-state stable.

The stability of the queueing network depends on the link
transmission rates and the scheduling constraints. This relation
is captured by the network capacity region as follows.

Definition 4 (Network Capacity Region [1]): The network
stability region Φ of the single-hop queueing system is
depicted by the set of traffic rate vectors as

Φ := {λ ∈ R
F
+|λ ≤ σ componentwise,

for some σ ∈ IntCo(S)}
where IntCo(S) = {∑π∈S γππf |

∑
π∈S γπ < 1,

γπ ≥ 0, ∀π} denotes the interior of a convex hull.
If a rate vector is in the capacity region (i.e., λ can

be covered by a convex combination of feasible schedules),
then the traffic flows with respect to this vector is called
admissible, and there exists a scheduling policy so that the
network is steady-state stable. In the following, we further
define the moment stability, which is a new stability criterion
to characterize the QoS performance under HT traffic [22].

Definition 5 (Moment Stability): Given a single-hop system
described above under a specific scheduling policy. If all
LT flows achieve bounded moments of first-order (i.e., finite
average queue length and HoL packet delay as E[Qf ] < ∞
and E[Wf ] < ∞, ∀f ∈ LT ), and all HT flows achieve
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their bounded queue-length moments of maximum-order
(i.e., E[Qκ(Af (t))−1

f ] < ∞, ∀f ∈ HT ), then the queueing
system is moment stable.

It has been established in [22] that under any scheduling
algorithms, HT traffic flows necessarily experience unbounded
average HoL packet delay (i.e., E[Wf ] = ∞, ∀f ∈ HT ),
if the HT traffic arrivals have the tail index less than two
(i.e., Af (t) ∈ RV(β) with β < 2). Therefore, the network
stability under hybrid LT and HT traffic flows is simply defined
with respect to the delay boundness of LT traffic flows.

Definition 6 (Throughput Optimality): A scheduling algo-
rithm is throughput-optimal under hybrid HT and LT traffic,
if it can achieve moment stability for any admissible rate
vectors (i.e., any rates within the network capacity region).

III. NETWORK INSTABILITY OF DELAY-BASED

MAXWEIGHT SCHEDULING (DMWS)

In this section, we first provide the stochastic model and
fluid model (FM) for the DMWS policy, and then study
the network instability of DMWS under hybrid HT and LT
traffic, which proves that the classical DMWS policy is not
throughput-optimal anymore in the presence of heavy tails.

A. Delay-Based MaxWeight Scheduling (DMWS) Policy

The queueing model (i.e., queueing network equations) of
flow queue f is described by

Qf(t + 1) = Qf (t) + Af (t) − πf (t) + Yf (t), ∀t ∈ Z+.

(5)

Under DMWS, the weight of a feasible schedule is the sum of
the HoL time Wf (t) of all queues of such schedule. Moreover,
the MaxWeight policy activates a feasible schedule with the
maximum weight at any given time slot. Specifically, under
the DMWS policy, the scheduling vector S(t) follows

S(t) = argmax
π∈S

{
∑

f∈F

W
αf

f (t)πf (t)} (6)

with αf = 1 for all f ∈ F . If there are multiple feasible
schedules, S(t) will choose one of them uniformly at random.

The fluid model (FM), i.e., Eqs. (7a)-(7f), is the determin-
istic equivalence of the original stochastic queueing model,
i.e., Eqs. (5)-(6), by substituting mean arrival rates λf and
mean service rates πf , ∀f ∈ F for the corresponding stochas-
tic processes A(t) and S(t), respectively, at every regular time
t ≥ 0 (i.e., the time where derivative exists). That is, we have

qf (t) = qf (0) + λf t −
∑

π∈S

sπ(t)πf + yf (t), ∀f ∈ F ;

(7a)
∑

π∈S

sπ(t)πf ≥ yf (t), ∀f ∈ F ; (7b)

each sπ(·) and yf (·) is non-decreasing; (7c)
∑

π∈S

sπ(t) = t; (7d)

wf (t) > 0 ⇒ dyf (t)
dt

= 0, ∀f ∈ F ; (7e)
∑

f∈F

w
αf

f (t)πf < max
σ∈S

∑

f∈F

w
αf

f (t)σf

⇒ dsπ(t)
dt

= 0, ∀π ∈ S ∀f ∈ F. (7f)

where sπ(t) denotes the total amount of time until t that sched-
ule π has been activated, and yf (t) denotes the cumulative
idling service for flow f until time t.

Eq. (7a) characterizes the queueing dynamic of flows;
Eq. (7b) states that for each flow, the wasted service should
be no more than the activated schedule π provides; Eq. (7c)
gives that for each schedule, the total amount of acti-
vated time should be increasing. Eqs. (7d)-(7e) indicates the
working-conserving discipline. Specifically, Eq. (7d) states that
the service is fully utilized in every time; Eq. (7e) gives
that no wasted service exists when HoL packet delay(s) is
positive. Eq. (7f) is the fluid model equation for delay-based
MaxWeight policy that yields a conditional decision with sev-
eral deterministic variables. Specifically, Eq. (7f) implies that
schedules without the maximum weight receive no service.

B. Fluid Model and Queueing Model Association

In order to use the stability of the FM to show the stability
of the corresponding stochastic system later in Section IV-B,
we employ fluid-limit association to specify the relation
between the queueing model and FM.

Definition 7 (Fluid & Queueing Model Association [32]):
A fluid model is associated with a queueing network, if

• each sequence bj of positive integers with bj → ∞
possesses a subsequence bjn as initial backlog,
i.e., ‖Qbjn (0)‖1 = bjn , on which the components of
scaled sequences Xbjn (bjnt)/bjn from queueing net-
work process X = (Q(·), W (·), Y (·), S(·)) converge
uniformly over compact (u.o.c.);

• this limit, i.e., limn→∞ Xbjn (bjnt)/bjn , satisfies the fluid
model.

In the sense of Definition 7, we respectively define
the fluid-scaled process and fluid limit in terms of initial
backlog bjn as x̄bjn (t) := Xbjn (bjnt)/bjn and x̄(t) :=
limn→∞ Xbjn (bjn t)/bjn where t ≥ 0. Then, using the tech-
niques of [27, Th. 4.1], we can show that, for almost all
sample paths and for all positive sequence bj → ∞, there
exists a subsequence bjn with n → ∞ such that, the following
convergence holds uniformly over compact interval:

1
bjn

Q
bjn

f (bjnt) → q̄f (t); (8)

1
bjn

∫ bjn t

0

πbjn (τ)dτ → s̄π(t); (9)

1
bjn

∫ bjn t

0

Y
bjn

f (τ)dτ → ȳf (t). (10)

Similarly, the following fluid limits hold at every continuous
point of the limit function (which are denoted by “⇒”):

1
bjn

W
bjn

f (bjnt) ⇒ w̄f (t); (11)

1
bjn

U
bjn

f (bjnt) ⇒ ūf (t), (12)
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where Uf (t) � t − Wf (t) denotes the time when the HoL
packet of Qf arrives, and ūf (t) denotes the corresponding
fluid limit. With the aid of fluid-scaled processes and fluid
limits, in the following Lemma 1, we examine the association
details for the fluid model in Eqs. (7a)-(7f).

Lemma 1: The fluid model, i.e., Eqs. (7a)-(7f), is associated
with the queueing network model, i.e., Eqs. (5)-(6).

Proof: According to Definition 7, we first (i) show that
for the queueing network model, i.e., Eqs. (5)-(6), with delay-
based scheduling and HT traffic, every positive sequence bj

possesses a subsequence bjn as initial backlog, on which
the fluid limit exists and is u.o.c. Next, we (ii) prove
that those fluid limits, i.e., Eqs. (8)-(12), satisfy the FM,
i.e., Eqs. (7a)-(7f).

(i): First of all, consider the initial condition of FM. It is
assumed the existence of a vector q ∈ R

F
+ and of a sequence

of positive numbers {εbjn
; j ∈ N} with respect to initial

backlog bjn that satisfy maxf∈F |q̄bjn

f (0) − qf | ≤ εbjn
. This

implies that the fluid limit (of queue backlog) converges to the
initial condition at time zero, i.e., q̄f (0) = qf , ∀f ∈ F .

Moreover, to ensure the existence of a positive probability
of a certain sample path set with hybrid HT and LT flows,
we define Gbjn

with initial backlog bjn as the set on which
the strong law of large number (SLLN) holds for the arrivals
and service time [33]. Specifically, for ω ∈ Gbjn

and f ∈ F ,
we have

λf = lim
t→∞

1
t

t−1∑

τ=0

Af (τ), πf = lim
t→∞

1
t

t−1∑

τ=0

πf (τ) (13)

where Af and πf follow Eqs. (5)-(6). Also, there exists a
sequence of deviation terms δbjn

∈ R+ so that as bjn → ∞,
it gives δbjn

→ 0 and

Pr( sup
t≤bjn

1
bjn

max
f∈F

|
t−1∑

τ=0

Af (τ) − λf t| < δbjn
) → 1. (14)

As a result, a fluid limit of the queueing network, with
queueing network process X(·) defined in Definition 7, can
be any limit

x̄(t) = lim
n→∞

1
bjn

Xbjn (bjnt), (15)

for any choice of ω ∈ Gbjn
and any sequence bjn satisfying

the above setup. Also, the u.o.c. convergence for each of
fluid limit components of x̄(t) is established by following
[27, Th. 4.1], as mentioned.

(ii): Next, we prove that Eqs. (7a)-(7e) belong to basic fluid
model equations with sample paths in Gbjn

. It is indicated
by [32] that every fluid limit satisfies the basic fluid model
equations. The details in our case are given as follows. First,
to show Eq. (7a) with f ∈ F , we use the limits involving∑t−1

τ=0 A
bjn

f (τ),
∑t−1

τ=0 π
bjn

f (τ), and
∑t−1

τ=0 Y
bjn

f (τ) in Eq. (13)
and Eqs. (9)-(10) as n → ∞. They imply that

1
bjn

t−1∑

τ=0

A
bjn

f (bjnτ) → λf t,

1
bjn

t−1∑

τ=0

π
bjn

f (bjnτ) − Y
bjn

f (bjnτ) →
∑

π∈S

s̄π(t)πf − ȳf (t)

for all t, as n → ∞. A further subsequence is chosen so
that q̄f (0) exists. Hence, the limit q̄f (t) exists and Eq. (7a)
holds. Since the summations of A

bjn

f (·), π
bjn

f (·), and Y
bjn

f (·)
are monotone with u.o.c. convergence, convergence to q̄f (·) is
also u.o.c.

Next, Eqs. (7b)-(7d) as the defining relation for the idling
service Yf (t) and their u.o.c. convergence follow quickly from
Eqs. (9)-(10) and the previous limits, i.e.,

∑t−1
τ=0 π

bjn

f (τ) and
∑t−1

τ=0 Y
bjn

f (τ). In particular, summations in these limits imply
non-decreasing properties in Eq. (7c).

Third, to show Eq. (7e) with f ∈ F , suppose that for
all t ∈ [t1, t2], wf (t) > 0. Since wf (·) is continuous, it is
bounded away from zero on the interval. Convergence to w̄f (·)
is u.o.c., and so for sufficiently large n, W

bjn

f (bjn t) > 0 on
[t1, t2] as well. Due to the working-conserving discipline of
investigated delay-based scheduling in Eq. (6), we must have∑t1−1

τ=0 Y
bjn

f (τ) =
∑t2−1

τ=0 Y
bjn

f (τ). Since the same equality
also holds in the limit as n → ∞, this implies Eq. (7e),
as desired.

Based on the above accomplishments, to show that the
FM is associated with the queueing network model with
delay-based scheduling and hybrid traffic, we still need to
verify that Eq. (7f) is satisfied by all fluid limits. Specifically,
pick a regular time t, and suppose that

∑
f∈F w

αf

f (t)πf <

maxσ∈S

∑
f∈F w

αf

f (t)σf . Then, pick some small interval
I = [t, t + δ] and n sufficiently large such that

∑

f∈F

[w̄bjn

f (τ)]αf πf < max
σ∈S

∑

f∈F

[w̄bjn

f (τ)]αf σf , ∀τ ∈ I.

Rewriting this in terms of the unscaled queueing sys-
tem, we have the following as

∑
f∈F [W bjn

f (bjnτ)]αf πf <

maxσ∈S

∑
f∈F [W bjn

f (bjnτ)]αf σf for all τ ∈ I . By consid-
ering a general delay-based policy in Eq. (6), π will not be
chosen throughout this entire interval. This implies that after
scaling we have s̄

bjn
π (t + δ/2) − s̄

bjn
π (t) = 0, where δ/2 is

selected to sidestep any discretization problems, and taking
the limit gives s̄π(t + δ/2) = s̄π(t). Since s̄π is assumed
to be differentiable at t; the derivative must be zero. To this
end, we have proved that Eqs. (7a)-(7f) associate with the
corresponding queueing model.

Based on the studied FM, i.e., Eqs. (7a)-(7f), and the estab-
lished association in Lemma 1, in the following Lemma 2,
we introduce an extended FM equation that characterizes a
linear relation of fluid model solutions between queue length
qf (t) and HoL packet delay wf (t).

Lemma 2: For any fixed time τF > 0, the condition∑
π∈S sπ(τF )πf − yf (τF ) > qf (0), ∀f ∈ F is equivalent to

the condition uf (τF ) > 0, ∀f ∈ F , where uf (t) denotes the
fluid model solution of stochastic process Uf (t). Moreover,
if such a condition holds, we have

qf (t) = λfwf (t), ∀f ∈ F, (16)

for all time t ≥ τF .
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Proof: Regarding the first part, i.e., the two conditions are
equivalent, we have that

Uf(t) = inf{τ ≤ t|Qf (0) +
τ−1∑

m=0

Af (m)

>

t−1∑

m=0

πf (m) − Yf (m)} (17)

from the definition of Uf(t). Combining this with the associa-
tion of FM and queueing model, it is straightforward to yield
the equivalence of two conditions.

Next, we focus on the second part of the proof, i.e., if∑
π∈S sπ(τF )πf − yf (τF ) > qf (0), ∀f ∈ F , then Eq. (16)

follows. Suppose that
∑

π∈S sπ(τf )πf − yf (τf ) > qf (0) for
a certain flow f ∈ F . Then, by the definition of uf (t),
we have

∑
π∈S sπ(t)πf − yf (t) = qf (0) + λfuf(t) for

all t ≥ τf . This, combining with Eq. (7a), implies that
qf (t) = [qf (0)+λf t]−[qf(0)+λfuf (t)] = λfwf (t), ∀t ≥ τf .
The existence of such τF > 0 for all f ∈ F can be further
obtained through similar arguments in [6].

Note that Lemma 2 relates queue lengths and HoL delays in
the fluid domain and thus plays a crucial role in the analysis
of delay-based policies. These novel results are widely used
in the rest of the paper.

C. Network Instability Analysis of DMWS

In the following, we first show the sufficient conditions of
having unbounded average delay for HT traffic through the
argument with fictitious queue. Then, through fluid model,
we prove the network instability the DMWS policy by showing
the LT traffic may experiences unbounded average queueing
delay as well.

Theorem 1 (Unbounded Delay of HT Traffic): Under the
DMWS policy, HT traffic flow h has unbounded average
delay (i.e., E[Wh] = ∞, ∀h ∈ HT ), if the HT traffic flow
Ah(t) is with tail index smaller than two, i.e.,

κ(Ah(t)) < 2. (18)

Proof: We construct a fictitious queue h̃ with queue
length Qh̃(t) and HoL packet waiting time Wh̃(t) at time
slot t, which has the same packet arrivals and initial queue
lengths as HT traffic h ∈ HT , but is served at unit rate
whenever it is not empty. It is easy to verify that during
the same time interval, more packets are served in fictitious
queue h̃ than in queue h (i.e., Qh(t) dominates Qh̃(t) at all
time slots). This implies

Pr(Qh(t) > q) ≥ Pr(Qh̃(t) > q), ∀q ∈ Z+, t ∈ Z+. (19)

Furthermore, since the arriving traffic is assumed admissible
in Section II-B and queue length processes converge in distrib-
ution, we have that E[Qh] ≥ E[Qh̃] by taking t → ∞. So it is
sufficient to show that E[Qh] = ∞ as long as E[Qh̃] is infinite
for the result of E[Qh] = ∞. This follows immediately from
the Pollaczeck-Khinchine (P-K) formula, as queue h̃ can be
seen as a M/G/1 queue with variance σ2

Sh̃
of service time.

If the HT arrival Ah(t) has a tail index smaller than two

(i.e., Ah(t) ∈ RV(β), β < 2), then the variance σ2
Sh̃

is infinite.
Moreover, we have

E[Qh̃] = ρh̃ +
λ2

hσ2
Sh̃

+ ρ2
h̃

2(1 − ρh̃)
(20)

where ρh̃ = λhE[Sh̃]. It implies that E[Qh] is infinite. Similar
results can be obtained for the HoL packet delay. In particular,
E[Wh] ≥ E[Wh̃] and E[Wh̃] = ∞ from P-K formula, which
also implies that E[Wh] is infinite.

While Theorem 1 shows HT traffic can experience
unbounded average delay under DMWS policy, Theorem 2
below shows that DMWS policy can lead to unbounded
queueing delay for LT traffic; thus it is not throughput optimal
with respect to moment stability.

Theorem 2 (Network Instability): Consider the DMWS
policy under single-hop hybrid HT and LT traffic, where LT
flows conflict with HT flows.1 Then, LT traffic flow l has
unbounded delay (i.e., E[Wl] = ∞, ∀l ∈ LT ), if a HT traffic
flow Ah(t) is with tail index smaller than two, i.e.,

min
f∈F

κ(Af (t)) < 2. (21)

Proof: Intuitively, when LT traffic competes the service
with HT traffic using DMWS policy, LT traffic will not be
served until the bulky arrivals of HT traffic are served because
those arrivals trend to have longer waiting time in the queue.
In this case, the queueing delay of the LT traffic will be at the
same order as the HT traffic, which has unbounded queueing
delay as shown in Theorem 1. In the following, the formal
proof is based on the sample-path analysis.

Assume the considered queueing system is in the steady
state, where the queue length process is a positive recurrent
regenerative process. Define T as the time interval between
two consecutive instances when all queues are empty. Then,
we have E[T ] < ∞, due to the positive recurrent system.
Consider the set Edjn

of sample paths, where at time slot
zero, queue h, having the HT arrival with the smallest tail
index, i.e., κ(Ah(t)) = min

f∈F
κ(Af (t)), receives a file of size

djn > 0 packets, and all other queues receive no traffic.
Let {Qdjn (·); j ∈ N} be the sequence of stochastic queue
backlog processes. It implies that a sequence of single-hop
queueing systems, indexed by j ∈ N, with initial queue lengths
Q

djn

h (0) = djn and Q
djn

l (0) = 0, ∀l �= h is examined.
Moreover, as the arrival processes of different traffic flows are
mutually independent, the probability of having the set Edjn

is as follows

Pr(Edjn
) = Pr(Ah(0) > djn)

∏

l �=h

Pr(Al(0) = 0)

≥ Pr(Ah(0) > djn)
∏

l �=h

(1 − Pr(Al(0) > 0)). (22)

Pr(Edjn
) is positive because djn is in the support of Ah(0),

and Pr(Al(0) > 0) < 1.
Furthermore, we define a new set of sample paths Êdjn

=
Gbjn

⋂ Edjn
, where Gbjn

defined with Eqs. (13)-(14) is a set

1Two flows are conflicted if there is no schedule that includes both
flows [23].
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sequence of sample paths of arrival processes that satisfy the
SLLN. Due to the i.i.d. nature of arriving traffic, it implies
that

Pr(Êdjn
) = Pr(Gbjn

) Pr(Edjn
) > 0. (23)

Consider a sample path in Êdjn
and that other flows (∀l ∈ F,

l �= h) conflict with HT flow h. Let Tdjn
be the first time

slot when the HoL packet delay of queue h becomes less
than or equal to the HoL delay of one of the queues l ∈ F
and l �= h, i.e.,

Tdjn
:= min{t > 0|Wl(t) ≥ Wh(t), l ∈ F, l �= h}. (24)

Under the DMWS policy, queue l receives no service until
time Tdjn

, and queue h is served at an unit rate while all initial
traffic of queue h is served at time slot Tdjn

. The reason is
that all packets from initial traffic djn of queue h have one
time slot more delay than any other HoL packet in any LT
queue. Hence, queue h keeps sending until all djn packets are
sent out. This implies that ∀l �= h

Ql(Tdjn
) =

Tdjn
−1

∑

t=0

Al(t); Tdjn
≥ djn . (25)

For sample paths in Gbjn
from the SLLN with Eqs. (13)-(14),

we have
∑Tdjn

−1

t=0 Al(t) ≥ λlTdjn
− δbjn

, with probability 1.
Thus, there exist positive constants 0 < c < 1 and d0 such
that for every sample path in Êdjn

, Ql(Tdjn
) ≥ cdjnλl,

∀djn ≥ d0, l �= h. Following the property of regenerative
process in steady-state with cycle length T , we have

Pr(Ql >
cdjnλl

2
) = lim

t→∞
1
t

t−1∑

τ=0

I{Ql(τ)>
cdjn

λl
2 }

=
E[

∑T
t=0 I{Ql(t)>

cdjn
λl

2 }]

E[T ]
. (26)

Moreover, by Eq. (23), it implies that

E[
T∑

t=0

I{Ql(t)>
cdjn

λl
2 }] ≥ E[IÊdjn

T∑

t=0

I{Ql(t)>
cdjn

λl
2 }]

≥ Pr(Gbjn
) Pr(Ah(0) > djn)

∏

l �=h

(1 − λl)

×
cdjn∑

t=
cdjn

2

Pr(Ql(t) >
cdjnλl

2
|Êdjn

). (27)

By the queueing dynamic in Eq. (5) and Ql(0) = 0, we have
Ql(t) =

∑t−1
τ=0[Al(τ) − πl(τ)I{Ql(τ)>0}]. This implies that

lim
djn→∞

1
djn

cdjn∑

t=
cdjn

2

Pr(Ql(t) >
cdjnλl

2
|Êdjn

)

≥ lim
djn→∞

1
djn

cdjn∑

t=
cdjn

2

Pr(
t−1∑

τ=0

Al(τ) >
cdjnλl

2
) =

c

2
.

(28)

The last equality in Eq. (28) holds due to the fact that
HT traffic flow h occupies the entire service of a DMWS

schedule during the time interval 0 ≤ t ≤ cdjn/2. Combining
Eq. (26) with Eqs. (27)-(28), it follows from the assumption
κ(Ah(t)) = min

f∈F
κ(Af (t)) < 2 that

lim
djn→∞

log[Pr(Ql >
cdjn λl

2 )]

log[ cdjn λl

2 ]
≥ −min

f∈F
κ(Af (t)) + 1 ≥ −1

which, by applying moment theorem [34], implies E[Ql] is
infinite. By Little’s law, we thus have E[Wl] = ∞.

IV. DELAY-BASED MAXIMUM POWER-WEIGHT

SCHEDULING (DMPWS)

In this section, we study the throughput optimality of the
proposed DMPWS policy for hybrid HT and LT traffic. Then,
we propose a DMPWS variant, namely IU-DMPWS, which
only requires infrequent HoL delay updates and show that
this IU-DMPWS policy still guarantees throughput optimality
under hybrid traffic, facilitating the practical implementation
due to less signaling overhead.

A. Delay-Based Maximum Power-Weight
Scheduling (DMPWS) Policy

Intuitively speaking, the key problem of DMWS is that
both LT and HT traffic flows are assigned with the same
priority or weight (i.e., αf = 1 for all f ∈ F in Eq. (6)).
In this case, the HT traffic flow may receive more services
because it has the higher probability to have long queues and
high HoL delay, which leads to long waiting time in the queue
for the LT traffic. To solve this problem, DMPWS assigns
different weights to different flows. More specifically, as the
name suggests, the power-weight of a feasible schedule is the
sum of the HoL packet delay Wf (t) up to αf order, and the
DMPWS policy activates a schedule that has maximum power-
weight at any given time slot. Specifically, under the DMPWS
policy, the scheduling vector S(t) satisfies Eq. (6), i.e.,

S(t) = argmax
π∈S

{
∑

f∈F

W
αf

f (t)πf (t)}

and the power-weight assigned to each flow should be set to
be proportional to the maximum order of the finite moments
of the arrival processes A(t) to ensure the network stability.
In particular, we set the power-weight of flow f ∈ F as
follows:

αf =

{
κ(Af (t)) − 1, ∀f ∈ HT ;
cf > 2, ∀f ∈ LT,

(29)

where κ(·) is the tail coefficient defined in Eq. (3) and cf is an
arbitrary constant larger than two. Such power-weight assign-
ment is inspired by the queue length-based maximum power-
weight scheduling (QMPWS) algorithm [25], [26], which
can achieve throughput-optimality with respect to moment
stability under hybrid HT and LT traffic. Because of the
linear relation between queue backlog and queueing delay
in fluid domain, it is expected that the proposed DMPWS
policy with the designated power-weight in Eq. (29) is also
able to provide the desired throughput optimality under HT
environment. However, the analysis tools for QMPWS cannot
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be applied in DMPWS because DMPWS has to be analyzed
in the fluid domain. The detailed proofs are shown in the
following Section IV-B and Section IV-C.

B. Throughput Optimality of DMPWS

To prove the throughput optimality of DMPWS, it is equiv-
alent to show that DMPWS can achieve moment stability,
i.e., all the LT traffic flows have bounded average queueing
delay, as long as the incoming traffic flows are within the
network capacity region. Towards this, we first show that
DMPWS can achieve steady-state stability by proving that the
corresponding fluid model, i.e., Eqs. (7a)-(7f) and Eq. (29),
is stable. With such a condition satisfied, we then show
that DMPWS can achieve moment stability by exploiting
fluid model-based moment analysis under the condition that
incoming traffic flows are within the network capacity region.

In the following, we first prove the steady-state stability in
Theorem 4 by the Lyapunov technique in fluid domain and by
exploiting Theorem 3.

Theorem 3 [32]: The queueing network is steady-state
stable (i.e., positive Harris recurrent) whenever an associated
fluid model is stable (i.e., there exist time T > 0 such that
qf (t) = 0 for all f ∈ F and t ≥ T ).

Theorem 4 (Steady-State Stability): If the incoming traffic
rates reside in the network capacity region, the corresponding
queueing system is steady-state stable with the DMPWS policy
under hybrid HT and LT traffic.

Proof: The idea is to show that a Lyapunov function in
fluid domain of the system has a negative drift, which implies
that the FM is stable and so is the original queueing system.
We define the Lyapunov function as follows:

L(q(t)) =
∑

f∈F

Lf (qf (t)) =
∑

f∈F

qf (t)αf +1

(1 + αf )λαf

f

, (30)

where q(t) is assumed Lipschitz continuous. It is sufficient
to show that for any χ2 > 0, there exists χ3 > 0 so
that at any regular time t ≥ τF , L(q(t)) ≥ χ2 implies
d+

dt+ L(q(t)) ≤ −χ3. Choose χ4 > 0 such that L(q(t)) ≥ χ2

implies maxf∈F w
αf

f (t) ≥ χ4. Since q(t) is differentiable for
any regular time t ≥ τF , the derivative of L(q(t)) is given as

d+

dt+
L(q(t)) =

∑

f∈F

qf (t)αf

λ
αf

f

(λf −
∑

π∈S

dsπ(t)
dt

πf +
dyf (t)

dt
)

=
∑

f∈F

λfw
αf

f (t) −
∑

f∈F

w
αf

f (t)
∑

π∈S

dsπ(t)
dt

πf

(31)

=
∑

f∈F

λfw
αf

f (t)−max
σ∈S

∑

f∈F

w
αf

f (t)
∑

σ∈S

dsσf
(t)

dt
σf

(32)

=
∑

f∈F

w
αf

f (t)λf − max
σ∈S

∑

f∈F

w
αf

f (t)σf (33)

≤
∑

f∈F

w
αf

f (t)
∑

π∈S

γππf − max
σ∈S

∑

f∈F

w
αf

f (t)σf

(34)

≤
∑

π∈S

γπ max
σ∈S

∑

f∈F

w
αf

f (t)σf − max
σ∈S

∑

f∈F

w
αf

f (t)σf

(35)

≤ (
∑

π∈S

γπ − 1)max
σ∈S

∑

f∈F

w
αf

f (t)σf (36)

≤ −χ4(1 −
∑

π∈S

γπ) := −χ3 < 0 (37)

where d+

dt+ L(q(t)) = limδ↓0
L(q(t+δ))−L(q(t))

δ , and the first
equality is from queueing dynamic in Eq. (7a). Eq. (31) is
from Eq. (7e) and the FM Little’s law in Eq. (16). Eq. (32) and
Eq. (33) result from the DMPWS policy defined by Eq. (7f)
and Eq. (29); Eq. (34) follows from the assumption that arrival
rate vector λ is strictly inside stability region Φ given in
Definition 4. Note that Eq. (36) gives the drift inequality as
d+

dt+ L(q(t)) ≤ −(1 − ∑
π∈S γπ)maxσ∈S

∑
f∈F q

αf

f (t) σf

λ
αf
f

,

which implies that the fluid model solution q(t) will drain
in finite time without inducing an exponential decay. Also,
Eq. (37) indicates that L(q(t)) ≥ χ2 implies d+

dt+ L(q(t)) ≤
−χ3 for all regular time t ≥ τF . Hence, it immediately
follows that for any χ1 > 0, there exists finite T1 ≥ τF > 0
such that ‖q(t)‖1 ≤ χ1 for all t ≥ T1. Moreover, given
the traffic rate vector λ, we set a sufficiently small number
ε > 0 such that (1 + ε)λ is also strictly inside the region Φ,
and choose χ1 < ε minf∈F λf . As a result, for all t ≥ T1,
we have

∑
π∈S

dsπ(t)
dt πf ≥ (1 + ε)λf − χ1 by Definition 4

and d+

dt+ qf (t) = λf − ∑
π∈S

dsπ(t)
dt πf ≤ −ελf + χ1 < 0 if

qf (t) > 0 from Eq. (7a) and Eq. (7e). This implies that there
exists a finite T ∗ > T1 ≥ τF > 0 such that ‖q(t)‖1 = 0 for
t ≥ T ∗. The discussed FM is thus stable, which by Theorem 3,
implies that its associated queueing network model is also
stable.

Remark: Theorem 4 proves that DMPWS can achieve
steady-state stability, which only means that the queue length
process converges in distribution. However, under HT envi-
ronments, this does not imply that the converged distribution
of queue lengths has finite mean. For example, by letting
all queues have the same weight (e.g., αf = 1, ∀f ∈ F ),
DMPWS becomes conventional DMWS and Theorem 4 still
holds. This means DMWS can achieve steady-state stability
as long as the incoming traffic rates are within the network
capacity region. However, even if such steady-state stability
holds, as proved in Theorem 2, DMWS can have unbounded
average queueing delay for all LT traffic flows and thus is not
throughput-optimal (with respect to moment stability). In the
following Theorem 5, we show that the DMPWS policy is
throughput-optimal, which ensures that the queue length and
queueing delay of all LT traffic flows are of finite mean as
long as traffic rates are within the network capacity region.

Theorem 5 (Throughput Optimality): Consider the DM-
PWS policy under hybrid HT and LT traffic. The
corresponding queueing system is throughput-optimal
with respect to moment stability by ensuring that all LT
traffic flows have bounded average queue length and queueing
delay (i.e., E[Qf ] < ∞ and E[Wf ] < ∞, ∀Af (t) ∈ LT ) and
all HT traffic flows have bounded queue-length moments of

maximum-order (i.e., E[Qκ(Af (t))−1
f ] < ∞, ∀Af (t) ∈ HT ).
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Proof: We extend and employ the fluid model-based
moment analysis in [35] to study the impact of HT traf-
fic on the moment boundness of LT traffic as follows.
First of all, the stable fluid model from DMPWS in The-
orem 4 implies that there exists T ∗ > τF such that
limbjn→∞ 1

bjn
‖Qbjn (bjnT ∗)‖1 = 0, with probability 1.

In addition, since 1
bjn

Q
bjn

f (bjnT ∗) ≤ 1 + 1
bjn

∑bjn T∗

τ=0 Af (τ)

and E[Aαf +1
f (t)] < ∞ by Eq. (29) and Eq. (3), it fol-

lows from [36] that the collection of random variables
{ 1

b
αf +1
jn

Q
bjn

f (bjnT ∗)αf +1 : bjn ≥ 1} is uniformly integrable.

Hence, we have the following: ∀f ∈ F

lim
bjn→∞

1

b
αf+1
jn

E[Qf (bjnT ∗)αf +1]

= lim
bjn→∞

1

b
αf +1
jn

∫

Qf (bjn T∗)

yαf+1 Pr(dy) = 0, (38)

where dy is within a Borel field on Qf .
Next, we show that the mean return time to a compact

set has a strong bound with respect to each flow queue.
Specifically, regarding flow f ∈ F , given some δ > 0 and a
subset Mf of the state space Qf , we define the return time as
τMf

(δ) := inf{t ≥ δ : Qf (t) ∈ Mf}. By following Eq. (38),
there exists a compact set of the form Mf := {bjn : bjn ≤ B}
such that

E[Qf (bjnT ∗)αf +1] ≤ 1
2
b
αf+1
jn

, bjn ∈ M c
f , (39)

where M c
f is the complement of set Mf . Letting t(bjn) =

T ∗ max(B, bjn), we rewrite Eq. (39) as
∫

Qf (t(bjn ))

yαf+1 Pr(dy) =
∫

Mc
f

· · · +
∫

Mf

. . .

≤ 1
2
b
αf +1
jn

+ cIMf
,

where c is a finite constant. Moreover, since Q
bjn

f (t) ≤
Q

bjn

f (0) +
∑t

τ=0 Af (τ) and E[Aαf

f (t)] < ∞, by [36], there
exists a constant c1 so that

E[(
t∑

τ=0

Af (τ))αf ] ≤ c1(tαf + 1), t ≥ 0.

Hence for constants c0, c2, c3 ≤ ∞, using the strong Markov
property, we have

E[
∫ t(bjn )

0

Qf(t)αf dt] ≤ c2t(bjn)(Qf (0)αf + t(bjn)αf )

≤ c0(b
αf +1
jn

+ 1),

which shows that E[
∫ t(bjn )

0 (1+Qf(t)αf )dt] ≤ c3(b
αf+1
jn

+1).
Since t(bjn) ≥ τMf

(T ∗B), by Fubini’s theorem, we yield the
following: for some constants cαf+1 < ∞, δ > 0, and a
compact set Mf ⊂ Qf ,

E[
∫ τMf

(δ)

0

(1 + Qf (t)αf )dt] ≤ cαf +1(b
αf+1
jn

+ 1). (40)

By applying the strong Markov property and [35, Proposi-
tion 5.4], we have that for constant χ < ∞ and t > 0,

E[
∫ t+τMf

(δ)

t

(1 + Qf(s)αf )ds]

= E[
∫ τMf

(δ)

0

. . . ] − E[
∫ t

0

. . . ] + E[
∫ t+τMf

(δ)

τMf
(δ)

. . . ]

≤ E[
∫ τMf

(δ)

0

(1+Qf(t)αf )dt]−
∫ t

0

E[1 + Qf (s)αf ]ds+χt.

(41)

Then, by combining Eq. (40) and Eq. (41), it implies that
there exists a constant χαf

< ∞ for flow f ∈ F and bjn ∈ Qf

such that
1
t

∫ t

0

E[Qf (s)αf ]ds ≤ χαf
(
1
t
b
αf+1
jn

+ 1), t > 0. (42)

That is, for each initial condition, we have

lim sup
t→∞

1
t

∫ t

0

E[Qf (s)αf ]ds ≤ χαf
, f ∈ F.

With the fact that a finite union of compact sets in R
1 is

compact, we obtain the following:

lim sup
t→∞

1
t

∫ t

0

E[
∑

f∈F

Qf(s)αf ]ds < ∞. (43)

We further claim that E[
∑

f∈F Q
αf

f ] < ∞ from the contradic-
tion arguments as follows. Suppose that E[

∑
f∈F Q

αf

f ] = ∞.
It implies that for every constant M > 0, there exists a time
T > 0 so that

∫
T×Ω

1
T |Ω|

∑
f∈F Qf(t, ω)αf > M . Hence,

1
T

∫ T

0
E[

∑
f∈F Qf(t)αf ] > M . Since it is true for any M > 0,

it implies that lim supt→∞
1
t

∫ t

0 E[
∑

f∈F Qf (s)αf ]ds = ∞,
which brings the contradiction. This indicates that for LT
flow l, we have E[Q2

l ] < ∞ and E[Ql] < ∞, which,
by Little’s law, yields E[Wl] < ∞. For HT flow h, we have
E[Qαh

h ] = E[Qκ(Ah(t))−1
h ] < ∞ and end the proof.

C. Infrequent Queue State Measurements
Both DMWS and DMPWS policies depend on queue state

information (particularly, the HoL packet waiting time) of
all flow queues. However, it is impractical to acquire such
information at every time slot due to high signaling overhead.
To address such challenges, we propose a variant DMPWS
policy, IU-DMPWS, which only requires infrequent queue
information updates and prove that the IU-DMPWS policy is
throughput-optimal under hybrid HT and LT traffic. It is worth
to note that such infrequent updates of queue information have
been exploited for conventional QMWS [30], [31]. However,
the impact on the proposed DMPWS is still unknown and is
quite involved to analyze.

Let the time slots be grouped into interval of time T I .
It implies that the (k + 1)th interval consists of slots
kT I , . . . , (k + 1)T I − 1. Although queue states can change
in each slot, these are measured only at the beginning of each
interval (i.e., at the beginning of slot kT I , for k = 0, 1, . . . ).
Therefore, the interval length T I denotes the duration between
successive sampling instances of the HoL packet delay, and
the IU-DMPWS policy follows the DMPWS and only updates
the schedule at each time interval T I . Specifically, under the
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IU-DMPWS policy, the scheduling vector S(t) belongs to
the set:

S(kT I + l) = argmax
π∈S

{
∑

f∈F

W
αf

f (kT I)πf (t)}

where k = 0, 1, . . . and l = 0, 1, . . . , T I − 1. If the set on
the right-hand side includes multiple schedules, one of them
is chosen uniformly at random. Similarly, the FM equation of
the IU-DMPWS policy is yield as
∑

f∈F

w
αf

f (kT I)πf < max
σ∈S

∑

f∈F

w
αf

f (kT I)σf

⇒ dsπ(kT I + n)
dt

= 0, ∀π ∈ S, 0 ≤ n ≤ T I − 1.
(44)

It implies that schedules without the maximum power-weight
at the beginning of a interval receive no service during
that interval. Moreover, the queue dynamic equation is also
rewritten as

Q((k + 1)T I) = Q(kT I)+A(kT I)−T I[S(kT I) − Y (kT I)],

where its counterpart FM is provided as follows:

qf ((k + 1)T I) − qf (kT I) = λfT I

−
T I−1∑

l=0

(
∑

π∈S

dsπ(kT I)
dt

πf − dyf(kT I)
dt

), ∀f ∈ F.

(45)

Therefore, given the IU-DMPWS policy in fluid domain,
we prove the throughput optimality of IU-DMPWS under the
hybrid traffic in the following Theorem 6. It is easy to see
that the DMPWS policy is a special case of the IU-DMPWS
policy, by considering the case T I = 1.

Theorem 6: The IU-DMPWS policy is throughput-optimal.
Proof: To show the throughout optimality of IU-DMPWS,

it is sufficient to show that the corresponding FM still provides
a negative Lyapunov drift, and then follows the same analysis
steps in Section IV-B to obtain the desired results. However,
the difficulty here is that instead of dealing with the continuous
(regular) time system as in the DMPWS case, we build a
discrete-time system for the IU-DMPWS policy and need to
utilize the difference equation for characterizing the negative
drift. In particular, using the same Lyapunov function in
Eq. (30), we consider the difference of Lyapunov drift upon
the successive time intervals in fluid domain by exploiting the
first-order Taylor expansion of Lyapunov function [22], [23]
as follows.

Case (i) 1 ≤ αf : Consider the first-order Taylor expansion
around qf (kT I),

Lf (qf ((k + 1)T I))

=
1

(1 + αf )λαf

f

[qf (kT I) + λfT I

−T I(
∑

π∈S

dsπ(kT I)
dt

πf − dyf (kT I)
dt

)]αf +1

=
q

αf +1
f (kT I)

(1 + αf )λαf

f

+ Δf (kT I)wαf

f (kT I) +
Δ2

f (kT I)

2λ
αf

f

αf

× γαf−1(kT I)

where Δf (kT I) = λfT I − T I(
∑

π∈S
dsπ(kT I )

dt πf −
dyf(kT I )

dt ) and γ(kT I) ∈ [qf (kT I)−T I(
∑

π∈S
dsπ(kT I )

dt πf −
dyf(kT I )

dt ), qf (kT I) + λfT I ]. Therefore, by the fact that
Δ2

f (kT I) ≤ (λfT I)2 + (T I)2 and (qf (kT I) + λfT I)αf−1 <

2αf−1(qαf−1
f (kT I) + (λfT I)αf−1), we have the following:

Lf (qf ((k + 1)T I)) − Lf (qf (kT I))

= Δf (kT I)wαf

f (kT I) +
Δ2

f (kT I)

2λ
αf

f

αfγαf−1(kT I)

≤ Δf (kT I)wαf

f (kT I) + 2αf−2αfΔ2
f (kT I)

× [qαf−1
f (kT I) + (λfT I)αf−1]λ−αf

f .

Then, the Lyapunov drift upon successive intervals becomes

1
T I

[L(q((k + 1)T I)) − L(q(kT I))]

=
∑

f∈F

Δf (kT I)wαf

f (kT I)
T I

[1 + 2αf−2αfΔf (kT I)

× (
1

qf (kT I)
+

(T I)αf−1

λfw
αf

f (kT I)
)] (46)

Case (ii) αf ≤ 1: Consider the zeroth-order Taylor expan-
sion around qf (kT I) (i.e., the mean value theorem),

Lf(qf ((k + 1)T I)) =
1

(1+αf)λαf

f

[qf (kT I)+Δf(kT I)]αf +1

=
q

αf +1
f (kT I)

(1 + αf )λαf

f

+
Δf (kT I)γαf (kT I)

λ
αf

f

.

Similarly, the difference of Lyapunov functions is

Lf (qf ((k + 1)T I)) − Lf (qf (kT I)) =
Δf (kT I)γαf (kT I)

λ
αf

f

≤ Δf (kT I)[wαf

f (kT I) + (T I)αf ]

= T I [λf − (
∑

π∈S

dsπ(kT I)
dt

πf − dyf (kT I)
dt

)]

× [wαf

f (kT I) + (T I)αf ]

Hence, the Lyapunov drift for this case is obtained as

1
T I

[L(q((k + 1)T I)) − L(q(kT I))]

=
∑

f∈F

[(λf −
∑

π∈S

dsπ(kT I)
dt

πf +
dyf (kT I)

dt
)wαf

f (kT I)

×(1 +
(T I)αf

w
αf

f (kT I)
)] (47)

Summarizing our findings from Case (i) and Case (ii),
Eq. (46) and Eq. (47) imply that

1
T I

[L(q((k + 1)T I)) − L(q(kT I))] < 0,

following similar arguments in the proof of Theorem 4 with
the IU-DMPWS policy in Eq. (44). Regarding this negative
Lyapunov drift, it is easy to show that there exists a finite
k∗T I > τF such that ‖q(mT I)‖1 = 0 for m ≥ k∗. Therefore,
the FM is stable, which by Theorem 3, implies that its



2550 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 4, AUGUST 2017

Fig. 1. Simulation of the models for hybrid HT and LT traffic with various initial starting points. (a) Stochastic model: queue lengths. (b) Fluid
model: queue lengths. (c) Stochastic model: HoL delay. (d) Fluid model: HoL packet delay.

Fig. 2. Queue lengths and packet delay under the DMWS policy, where network is unstable. (a) Evolution of queue lengths. (b) Tail distribution of queue
lengths. (c) Tail distribution of packet delay.

associated queueing network model is stable. The rest of the
proof for throughput optimality follows exactly the same steps
as for the DMPWS policy, and thus is omitted here. Note that
for Eq. (43) in IU-DMPWS, it follows from more general
results in [37] for discrete-time countable Markov chains.

V. PERFORMANCE EVALUATION

In this section, we provide simulation results to verify our
theoretical analysis. We choose Pareto and log-normal distribu-
tions to represent HTs, and Poisson distribution to depict LTs.
A random variable X ∈ PAR(α, xm), if it follows Pareto
distribution with parameters α and xm (i.e., P (X > x) =
(xm/x)α). Also, a random variable X ∈ lnN(μ, σ2), if it
follows log-normal distribution with parameters μ and σ
(i.e., P (X > x) = 1/2 − 1/2 × erf[(ln x − μ)/

√
2σ]).

On the other hand, a random variable X ∈ Poisson(λ),
if it follows Poisson distribution with parameter λ

(i.e., P (X > x) = 1 − e−λ
∑	x


i=0 λi/i!, where �x� is the
floor function). In the following, we first consider a scenario
with two flows (i.e., f ∈ {h, l}) in the evaluation of fluid
model in Section V-A, and then investigate a scenario with
five flows (i.e., f ∈ {h1, h2, l1, l2, l3}) for the performance
comparison under various scheduling policies in Section V-B
and Section V-D.

A. Evaluation of Stochastic Model and Fluid Model

We first compare the behavior of a FM and a stochas-
tic model under the DMWS policy. Consider a LT traffic
with traffic arrival process Al(t) ∈ Poisson(3) and a HT
traffic with Ah(t) ∈ PAR(1.5, 1) sharing a single schedule

under DMWS. The goal is to compare the behaviors of the
original system and its fluid-limit approximation. Towards this,
we simulate the stochastic system and the FM, starting from
various initial values of queue lengths (i.e., (Ql(0), Qh(0))).
Figure 1 shows evolution results of both queue lengths and
HoL packet delay. Specifically, by comparing Figure 1a with
Figure 1b (and Figure 1c with Figure 1d for HoL delay),
except for fluctuations because of arrival variations, queue-
length evolution of the FM successfully mimics that of the sto-
chastic model independent of initial conditions. This suggests
that queue behavior under various scheduling policies can be
well approximated by the behavior of the corresponding FM.

B. Throughput Optimality of DMPWS

We consider a scenario where two HT flows and three
LT flows sharing a single schedule (i.e., Ah1(t), Ah2(t) ∈
PAR(1.5, 1) and Al1(t), Al2(t), Al3(t) ∈ Poisson(3)). All
the following tail distribution results are plotted on log-log
coordinates, by which HT distribution with tail index κ can
manifest itself as a straight line with the slope equal to −κ.
We first investigate the performance of hybrid HT and LT
traffic under the DMWS policy in Figure 2. Figure 2a shows
that large queue lengths are introduced for LT traffic due to the
scheduling sharing with HT flows, particularly when HT flows
have large queue lengths themselves. Moreover, as shown
in Figure 2b and Figure 2c that under the DMWS policy,
both queue lengths and packet delay of all LT flows follow
heavy tailed distribution with a tail index smaller than one,
since their tail distributions decay slower than the reference
Pareto distribution with tail index one. This means the LT
traffic flows also have unbounded queue lengths and delay.
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Fig. 3. Queue lengths and packet delay under the DMPWS policy, where network is stable. (a) Evolution of queue lengths. (b) Tail distribution of queue
lengths. (c) Tail distribution of packet delay.

Fig. 4. Packet delay under queue length-based scheduling. (a) Tail distribution
of packet delay under QMWS. (b) Tail distribution of packet delay under
QMPWS.

Fig. 5. Packet delay of LT traffic under the QMWS, QMPWS,
DMWS, and DMPWS policies. (a) Ah1(t), Ah2(t) ∈ PAR(1.5, 1).
(b) Ah1(t), Ah2(t) ∈ PAR(1.2, 1).

This is consistent with Theorem 2, which indicate under the
DMWS policy with hybrid traffic, the LT flows necessarily
has infinite average HOL delay (thus infinite average packet
delay) and it results in the unstable network.

We next show that the throughput optimality and bounded
delay can be achieved with hybrid traffic by applying the
DMPWS policy with Eq. (29). More specifically, we assign
the queues of HT flows and LT flows with weight 0.5 and 2,
respectively. As indicated by Theorem 4 and Theorem 5,
under such settings, the DMPWS policy can guarantee that
LT traffic flows have bounded average queue lengths and
delay, which cannot be achieved by applying the DMWS
policy. In particular, Figure 3a shows that there is no large
queue length for LT flows during the evolution. Figure 3b and
Figure 3c further indicate that for both the tail distributions of
queue lengths and delay of LT flows have a slope or decaying
rate greater than one, which implies that the queue lengths and

Fig. 6. Packet delay of LT traffic under the QMWS, QMPWS, DMWS,
and DMPWS policies. A scenario that a LT flow conflict with four HT
flows (i.e., Al1(t) ∈ Poisson(3) and Ah1(t), Ah2(t), Ah3(t), Ah4(t) ∈
PAR(1.5, 1)).

packet delay of LT flows will have finite mean and thus bring
the stable queueing network.

To further illustrate the merits of delay-based designs,
we extend the discussion by comparing packet delay of
DMWS and DMPWS policies with their queue length-based
counterparts. More specifically, QMWS policy adopts the
queue length as flow weight, and QMPWS policy based on
queue lengths utilizes the same power-weight as DMPWS
(i.e., HT and LT flows with weight 0.5 and 2, respectively,
in our discussed scenario). It is shown in Figure 4a that
under the QMWS policy, both LT and HT flows have infinite
average delay due to their heavy tailed distributions with a
tail index smaller than one. In particular, these distributions
exhibit themselves as a straight line parallel to that of the
reference Pareto distribution with tail index 0.5. On the other
hand, in Figure 4b that under QMPWS, the bounded delay for
LT flows can be guaranteed as similar to the cases of DMPWS
policy. Moreover, we provide the comprehensive delay com-
parison among these policies in Figures 5-6. As mentioned
previously, while QMWS and DMWS make LT flows experi-
ence heavy-tailed queueing delay, in Figure 5, both QMPWS
and DMPWS can support bounded delay for those LT flows.
The DMPWS policy can further reduce much more delay as
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Fig. 7. Average packet delay of three short-lived flows As1, As2, As3 that conflict with two HT flows Ah1, Ah2 under the QMPWS and DMPWS policies,
respectively. (a) QMPWS with Ah1(t), Ah2(t) ∈ PAR(1.5, 1). (b) DMPWS with Ah1(t), Ah2(t) ∈ PAR(1.5, 1). (c) QMPWS with Ah1(t), Ah2(t) ∈
lnN(3, 1). (d) DMPWS with Ah1(t), Ah2(t) ∈ lnN(3, 1).

Fig. 8. Average packet delay of a short-lived flow As1 that conflicts with four
HT flows Ah1, Ah2, Ah3, Ah4 under the QMPWS and DMPWS policies,
respectively, where As1(t) ∈ EXP (1/3), starting around time zero for
10 time slots; Ah1(t), Ah2(t), Ah3(t), Ah4(t) ∈ PAR(1.5, 1).

compared to the QMPWS policy. Furthermore, we consider a
scenario where four HT flows and a LT flow sharing a single
schedule in Figure 6. Similar results are obtained as DMPWS
provides the shortest delay for LT traffic among all scheduling
policies.

C. Performance Under Flow Dynamics

As the main motivation for delay-based scheduling, flow
dynamics, where certain flows only have a finite number of
packets to transmit, easily make queue length-based schedul-
ing lose throughput optimality and result in the well-known
last packet problem. To this end, in this section, we evaluate
the delay performance of short-lived flows that conflict with
HT flows under QMPWS and DMPWS, respectively.

We consider a scenario where two HT flows {h1, h2}
and three short-lived flows {s1, s2, s3} sharing a sched-
ule, i.e., Ah1(t), Ah2(t) ∈ PAR(1.5, 1) or lnN(3, 1);
As1(t), As2(t) ∈ EXP (1/3), starting from time zero for
10 time slots; As3(t) ∈ EXP (1/3), starting from time
5 × 104 for 10 time slots. A random variable X ∈ EXP (λ),

if it follows exponential distribution with parameter λ
(i.e., P (X > x) = e−λx). Also, QMPWS and DMPWS
policies assign weight 0.5 for HTs and weight 2 for short-lived
flows. Figure 7 shows average packet delay of short-lived flows
under the two scheduling policies, where Figures 7a-7b are for
HTs with Pareto distributions and Figures 7c-7d are for HTs
with log-normal distributions. In Figure 7a, the results show
that under QMPWS, the delay of short-lived flows will linearly
increase as time proceeds, no matter the flows start from the
beginning or the middle of the evaluated time period. The
reason is that these short-lived flows cannot bring sufficiently
large queue lengths to establish desired queueing dynamics.
(Note that Figure 7a implies that under QMPWS there might
be a chance for a single short-lived flow, starting from the
beginning, to exit the system. This will happen only when the
following two conditions sustain simultaneously in the very
beginning of queueing dynamics: (i) the conflicting HT flows
have not built-up large queue lengths and (ii) the duration
of the short-lived flow is extremely short.) On the other hand,
under DMPWS in Figure 7b, the delay of short-lived flows can
be maintained in very small values with some small bursts
at time around flow arrivals. This indicates the advantage
of delay-based scheduling with respect to flow dynamics,
as the delay (or packet weighting time) now is the trigger for
queueing dynamics, and short-lived flows will have chances
to exit the system when time evolves.

Figures 7c-7d also shows the delay performance with the
consideration of HT flows from log-normal distributions. Simi-
larly, the results show that DMPWS can still provide bounded
delay for all short-lived flows that conflict with HT flows,
while QMPWS cannot guarantee bounded delay anymore.
At this time, no short-lived flow can exit the system when
conflicting with HT flows from heavy tailed distributions,
i.e., log-normal distributions. Furthermore, we consider a
scenario where four HT flows and a short-lived flow sharing
a single schedule in Figure 8. The results still show that
DMPWS preserves bounded average delay for short-lived
traffic flow when it competes with HT traffic flows. Hence, all
of above numerical results suggest the preference of DMPWS
than QMPWS when considering flow dynamics.

D. Performance of Infrequent Measurement Update

While we successfully demonstrate the superiority of
DMPWS, in the following, we evaluate the impact of
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Fig. 9. Queue lengths and packet delay under the IU-DMPWS policy with T I = 2. (a) Evolution of queue lengths. (b) Tail distribution of queue lengths.
(c) Tail distribution of packet delay.

Fig. 10. Queue lengths and packet delay under the IU-DMPWS policy with T I = 4. (a) Evolution of queue lengths. (b) Tail distribution of queue lengths.
(c) Tail distribution of packet delay.

Fig. 11. Packet delay of LT traffic under the IU-DMPWS policy with various
update frequencies T I .

infrequent update of state measurements (i.e., from T I = 1 to
T I > 1) by simulating the IU-DMPWS policy. Figure 9 and
Figure 10 show the performance of IU-DMPWS policies with
T I = 2 and T I = 4, respectively. Both policies can provide
bounded queue lengths and delay for LT flows and achieve the
stable network. It is consistent with Theorem 6 that such an
infrequent update will not affect the throughput optimality and
network stability. Moreover, we further compare the packet
delay under IU-DMPWS policies with various update fre-
quency in Figure 11. It is shown that as the update frequency
increases, the delay of LT flows will also slightly increase but
still have finite mean, which confirms our theoretical finding.

These outstanding performances accompanied with infrequent
updating facilitate practical implementation of IU-DMPWS.

VI. CONCLUSION

This paper develops a throughput-optimal and delay-based
maximum power-weight scheduling for single-hop flows with
heavy-tailed traffic. Delay-based scheduling provides a simple
way to reduce packet delay that plagues its queue length-
based counterpart. We first prove the network instability of the
conventional DMWS policy. Then, we propose a DMPWS and
its variant IU-DMPWS and prove their throughput optimality
with respect to moment stability. The IU-DMPWS policy
is favored among these scheduling algorithms for practical
implementation because of its immunity to the impact of HT
traffic along with limited signaling overhead.
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