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Abstract—Wireless underground sensor networks (WUSNs)
based on magnetic induction (MI) have been recently proposed
as a promising candidate for underground networking. The
benefit of the MI-WUSNs compared to other solutions (e.g.
so-called Through-The-Earth communication) is related to the
substantially lower path loss and lower vulnerability to the
changes of the soil properties. In the past, some efforts have
been made to characterize the signal transmission in MI-WUSNs.
Those investigations, however, refer mostly to the information
transmission. One of the target applications of the WUSNs is the
object localization in the underground medium, which remains
an open issue due to the complicated characteristics of the MI
channels corrupted by the influence of soil. In this work, we
propose a machine learning based solution for localization. In
addition, a novel passive localization technique is introduced,
which requires no signal from the target node and thus proves
useful for rescue operations, where the battery of the node to be
localized is either empty or damaged.

I. INTRODUCTION

Typical applications of Wireless Underground Sensor Net-

works (WUSNs) include earthquake prediction, communica-

tion in mines/tunnels, monitoring of the underground medium

for agricultural purposes, etc. [1]. Due to the harsh propagation

conditions in the soil medium, in particular a high path loss

and time varying changes of soil properties [2], the use of

traditional wireless signal propagation techniques based on

electromagnetic (EM) waves is mostly infeasible.

In order to cope with these problems, magnetic induction (MI)

based WUSNs have been introduced in [3], where induction

coils have been employed as antennas. This technique has

been shown to be less vulnerable to the losses in a conductive

medium, such that the transmission range and coverage of a

sensor network can be significantly improved by using MI

based transceivers. Most of the works in this area aimed

at solving various problems of MI-WUSNs with respect to

information transmission. For example, some efforts have been

made to characterize the transmission channel [3], the signal

quality [4], and the network throughput of MI-WUSNs [5], [6].

In these works, the influence of different environmental and

system parameters on the signal propagation has been studied
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for various conditions. Several groups have also conducted

experiments in order to verify the most common assumptions

for the utilized system models, cf. [7], [8], [9].

In this work, we study localization techniques for MI-WUSNs.

MI based localization has been investigated in some previous

works, e.g. [10], [11], and [12]. However, these works do

not explicitly consider the localization in the underground

environment, which has substantially different characteristics

and challenges compared with the over-the-air transmission, as

known from [2]. Hence, the methods proposed in these works

may not be applicable to MI-WUSNs. The main purposes

of localization in the underground medium are tracking of

animal wildlife (cf. [13], [14]) and positioning of people and

robots in mines (cf. [15], [16]). In [13], MI transceivers are

employed in order to localize little badgers and rabbits in

their natural habitat. However, the localization and tracking

is not based on instantaneous observations, but on a long-

term data gathering, in contrast to our work. A more advanced

scheme is proposed in [14], where large coils deployed above

ground are utilized. Although a good localization accuracy has

been demostrated, the presented method is only applicable to

the localization in very small sized areas, as a consequence

of a very high deployment effort. More relevant studies for

our work are related to the localization of humans trapped in

mines and provided in [15] and [16] which, however, utilize

different transmission techniques (ZigBee, RFID). As argued

in [17], the use of MI transceivers is justified in mines because

of possible disasters and cave-ins. Hence, wearable magnetic

devices attached to the bodies of mine workers can be used to

localize trapped miners in case of possible disasters. For this,

we assume as a worst-case scenario that the whole mine area

collapses and the medium becomes homogeneous.

Typically, the localization systems based on WSNs require a

signal to be transmitted by the target node for the calculation

of relative distances/angles and the most likely target position

[18]. This implies that the target node has to transmit continu-

ously and that the mine worker would be permanently exposed

to a magnetic field. Furthermore, the battery of the wearable

target node can be empty or damaged due to a sudden disaster.

In order to be able to localize such silent nodes, we assume

that the transmit signal from the target node is permanently
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Sensor with MI transceiver
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Fig. 1. Example of MI-WUSN in localization mode and a single target node.
The sink node (lower left corner) collects the data from other nodes and sends
it to a processing unit.

absent and design a localization approach for such a scenario.

Hence, the localization is only based on signals transmitted

by other sensor nodes. For this, the coupling between coils

can be exploited, since the presence of the target node may

significantly change the local strength of the magnetic field.

The change of the field strength can be extracted and analyzed

e.g. for channel estimation [19] and disaster detection [17].

We adopt this strategy for the localization of a single target

node. Due to a complicated path loss function, the traditional

trilateration approach may not always provide a sufficient

accuracy, such that a machine learning based localization is

advocated for MI-WUSNs. Furthermore, a hybrid localization

method based on a combination of machine learning and

trilateration is proposed, which additionally reduces the risk

of outliers.

This paper is organized as follows. Section II describes the

underlying system model and the signal acquisition for the

localization of a single silent target node in MI-WUSNs.

The signal processing for the localization via trilateration and

machine learning is addressed in Section III. In Section IV,

numerical results are presented and Section V concludes the

paper.

II. SYSTEM MODEL

In this work, we assume a uniform distribution of Nsn

sensor nodes in the underground medium. The position of

these nodes is random. Furthermore, all sensors have identical

structure and system parameters, in order to simplify the

system design and reduce the realization costs. In addition,

we assume a single target node that needs to be localized by

the sensor network, see Fig. 1. This target node is essentially

a wearable device, which implies that it should be small and

lightweight compared to the sensor nodes deployed stationary

in the soil. Hence, the system parameters of the target node

differ from that of the sensor nodes. In the following, we

add a subscript S to the system parameters of the sensors

and a subscript T to the system parameters of the target

node, respectively. Also, we use the subscript S − S for the

parameters of the coupling between two sensor nodes and

S − T for the parameters of the coupling between a sensor

node and the target node.

Since the focus of this work lies on the detection of a silent

target, we exploit the magnetic coupling between all devices

in the considered MI network (including the target node itself)

and propose a localization approach using the signals trans-

mitted and received at the respective sensor nodes. A similar

approach has been proposed in [19] for channel estimation.

At first, the signal received at the load impedance of the

transmitting device is sampled. Then, a mean value among the

samples within one time slot is obtained, which represents the

expectation value of the detected signal magnitude1 and can be

delivered to the sink node via multihop relaying [5]. The sink

node is assumed to be connected to a central processing unit,

which collects the information from all nodes (and all time

slots) and performs a processing for the localization purpose

using the methods described in Section III.

Each node circuit includes a coil with inductivity LS (or LT ),

a capacitor with capacitance CS (or CT ), a parasitic copper

resistance RS (or RT ), and a load resistor RL,S (or RL,T ). The

capacitor is designed to make the circuits resonant at center

frequency f0 = 1
2π

√
LSCS

= 1
2π

√
LTCT

. Each sensor node k
is connected to a voltage source that operates at resonance

frequency and transmits a sine wave given by uin,S,k(t) =
Re{ûin,S,k · ej2πf0t} with a constant real-valued amplitude2

ûin,S,k. Assuming a transmit power3 Pk ≈ û2
in,S,k

2(RS+RS,L) , ∀k
according to [5], the magnitude of the corresponding transmit

voltage ûin,S,k ≈ √
2Pk(RS +RL,S), ∀k is obtained. Since

the transmit power of all sensor nodes can be assumed

identical, the magnitudes of all transmit voltages are equal,

i.e., ûin,S,k = ûin,S,1, ∀k. The signal uout,S,l(t) received at the

load resistor of the sensor node l is transformed to equivalent

complex baseband, such that only the corresponding amplitude

ûout,S,l is further processed. The copper resistance of the coil

wires can be determined via

RS = ρ · 2aSNS

r2w
, RT = ρ · 2aTNT

r2w
(1)

for the sensors and the target, respectively. Here, NS/T denotes

the number of coil windings, aS/T is the radius of the coil,

and ρ ≈ 1.678 · 10−2 Ωmm2/m is the copper resistivity. For

our investigations, the optimal value for the load resistors of

the magnetic transceivers according to [20] is selected, such

that RL,S = RS and RL,T = RT holds. We model the coils

as magnetic dipoles and correspondingly obtain for the mutual

inductance for the S − S case and S − T case, respectively,

MS−S,k,l = μπN2
S

a4SGS−S,k,l

4r3S−S,k,l

JS−S,k,l, ∀k �= l, (2)

MS−T,k = μπNSNT
a2Sa

2
TGS−T,k

4r3S−T,k

JS−T,k, (3)

1The phase of the signals transmitted by MI-WUSNs does not carry any
relevant information as argued in [19].

2The phase of the transmitted signal is irrelevant, since only one sensor
node transmits at a time.

3The factor 2 in the denominator is due to the calculation of the effective
value of the sinusoidal voltage uin,S,k(t).
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where μ is the magnetic permeability, and rS−S,k,l and rS−T,k

denote the distance between sensor k and other sensor l or

between sensor k and the target node, respectively. Further-

more, GS−S,k,l and GS−T,k represent an additional attenua-

tion due to the conductive medium (soil) for the respective

signal transmissions. We assume that all nodes are placed in

homogeneous medium, such that G{·} = e−r{·}
√
πf0μσ holds

with a constant soil conductivity σ. In addition, we assume that

all coils’ axes are orthogonal to the ground surface, such that

the polarization factors JS−S,k,l and JS−T,k for the respective

S − S and S − T cases are equal to 1, cf. [5]. Of course, in

practice, the orientation of the wearable target node can be

random. However, the influence of the coil orientation on the

localization accuracy is beyond the scope of this work, since

it requires a more extensive and deeper analysis.

Obviously, MS−S,k,l = MS−S,l,k holds, such that we define

ZS−S,k,l = ZS−S,l,k = j2πf0MS−S,k,l and ZS−T,k =
j2πf0MS−T,k using (2)-(3). In addition, the inner impedance

of the sensor and target node circuits at the resonance fre-

quency f0 is given by Zin,S = RS + RL,S = 2RS and

Zin,T = RT + RL,T = 2RT , respectively. For convenience,

we stack all input voltages of the sensor nodes in a vector

uS = [ûin,S,1, . . . , ûin,S,Nsn
]T . Similarly, the current vector iS

contains the complex-valued current amplitudes of the sensor

node circuits. Since we assume that the target node does not

transmit any signal, ûin,T = 0 holds. In addition, iT denotes

the complex-valued amplitude of the current in the target node.

In order to calculate the currents in all circuits, a set of voltage

equations[
uS

0

]
= Ztotal ·

[
iS
iT

]
=

[
ZS−S ZS−T

ZT
S−T Zin,T

]
·
[

iS
iT

]
(4)

needs to be solved, where the impedance matrices in (4) are

given by

ZS−S =

⎡
⎢⎢⎢⎣

Zin,S ZS−S,1,2 · · · ZS−S,1,Nsn

ZS−S,1,2 Zin,S · · · ZS−S,2,Nsn

...
...

. . .
...

ZS−S,1,Nsn
ZS−S,2,Nsn

· · · Zin,S

⎤
⎥⎥⎥⎦, (5)

ZS−T =
[
ZS−T,1 ZS−T,2, . . . ZS−T,Nsn

]T
. (6)

The solution of this set of equations is found by calculating

the inverse of Ztotal. Hence, we obtain

iS = Z−1
S−SuS + AuS , (7)

cf. [21], with

A = Z−1
S−SZS−T

(
Zin,T − ZT

S−T Z−1
S−SZS−T

)−1
ZT
S−T Z−1

S−S .
(8)

The received signal at node l corresponds to the voltage

ûout,S,l = iS,lRL,S = eTl Z−1
S−SuSRL,S + eTl AuSRL,S , where

el = [0, . . . , 0, 1, 0, . . . , 0]T with the ’1’ at the lth position.

Obviously, the first component ûout,S,l,known =
eTl Z−1

S−SuSRL,S of ûout,S,l only depends on the

stationary deployed sensor nodes and can be

assumed to be perfectly known to the processing

unit4. Hence, it can be easily subtracted from the

received signal, similarly to [19]. The remaining part

Δûout,S,l = ûout,S,l − ûout,S,l,known = eTl AuSRL,S

corresponds to the influence of the target node on the signal

transmission and on the received signals at the sensor nodes.

For the localization, the data collection is done in multiple

time slots, where only one sensor node is allowed to transmit

per time slot5. Hence, the voltage vector uS in time slot l
can be expressed as uS = elûin,S,1.

Due to large transmission distances between any two sensor

nodes in the network (typically distances between 20 m and

40 m), we can assume weak couplings between them, such

that we can use the approximation ZS−S ≈ I · 2RS with the

identity matrix I. Hence, A can be simplified as

A ≈ ZS−T ZT
S−T

(2RS)
2
(
Zin,T − ZT

S−T ZS−T

2RS

) . (9)

With the definition of ZS−T from (6), we obtain

ZT
S−T ZS−T =

∑Nsn

n=1 Z
2
S−T,n and

Δûout,S,l ≈ eTl ZS−T ZT
S−T elûin,S,1

2
(
4RSRT −∑Nsn

n=1 Z
2
S−T,n

)

=
Z2
S−T,lûin,S,1

2
(
4RSRT −∑Nsn

n=1 Z
2
S−T,n

) . (10)

Via summation of Δûout,S,l and reformulation, we arrive at

Nsn∑
n=1

Z2
S−T,n ≈ 8RSRT

∑Nsn

l=1 Δûout,S,l

ûin,S,1 + 2
∑Nsn

l=1 Δûout,S,l

. (11)

The substitution of (11) in (10) leads to

Z2
S−T,l ≈

8RSRTΔûout,S,l

ûin,S,1 + 2
∑Nsn

n=1 Δûout,S,n

, (12)

from which the mutual inductance MS−T,l and correspond-

ingly the distance between sensor l and the target node can

be deduced using (3).

Due to the network deployment in a dense medium with a

substantial electrical conductivity, the influence of the signals

from other communication systems on the signal detection in

MI-WUSNs can be neglected. Hence, we focus on the thermal

noise as the main source of disturbance, which is generated

in the resistors RS and RL,S of the sensor nodes’ circuits

and represented by additional voltage sources unoise,in,l(t), ∀l.
Using the results from [22] and [5], the variance of the noise

4In practice, the coupling between sensor nodes can vary as well. Hence,
ûout,S,l,known may deviate from its assumed value. However, this deviation
would only become significant, if the distance between sensor node l and any
other sensor node is shorter than the distance between node l and the target
node. Since the sensor nodes are typically deployed in substantial distance
from each other for a better coverage, this situation may only occur at the
sensor nodes far away from the target node. The respective receive signals
are very weak and therefore not used for localization.

5Multiple simultaneous transmissions would cause mutual interference and
dramatically reduce the localization performance.
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unoise,out,l(t), ∀l received at the respective load impedance

can be given by

Var{unoise,out,l(t)} ≈ 4KT (RS +RL,S)
R2

L,S

(RS +RL,S)
2 ,

(13)

where K stands for the Boltzmann constant and T = 290 K

(� 17◦ C) is the assumed temperature in Kelvin. As observed

in [19], this low-power noise can still significantly degrade

the system performance, if the useful signal is acquired at the

load resistor of the transmitter. Hence, in order to improve the

reliability of the signal detection, Δûout,S,l, ∀l is sampled and

averaged within each time slot, such that a reasonable level of

noise suppression is achieved. In our simulations, we assume

a noise suppression of 30 dB corresponding to an averaging

over 1000 samples.

III. LOCALIZATION IN MI-WUSNS

In the following, we study two localization techniques. The

first technique is the well-known trilateration, which is used

in the traditional positioning systems. Unfortunately, a closely

related method, triangulation, based on the angular diversity of

the received signal cannot be employed in MI-WUSNs, since

only one coil with an omnidirectional transmission pattern6 is

employed per sensor node. Therefore, we utilize a machine

learning based localization technique as our second method,

which might provide sufficient localization accuracy if the

trilateration fails.

A. Trilateration

Due to its simplicity and robustness, trilateration is em-

ployed in almost all existing positioning systems. This ap-

proach utilizes the measurements of the signal strength ac-

quired at different locations and deduces the distances from

these locations to the target to be localized based on the

measurements.

In order to obtain a unique localization solution in a three-

dimensional space, four signals are required. However, addi-

tional information, for instance that the target node is sup-

posed to be located on the earth surface, is usually available.

This information allows for a reduction of the complexity

of the problem and an exclusion of some of the erroneous

solutions. Hence, three signals are typically sufficient in or-

der to determine a small region of possible locations in a

three-dimensional space. In our work, we consider a two-

dimensional space and three signals would yield a unique

solution. Unfortunately, no additional information is available

that would prioritize the selection of certain locations. Hence,

we utilize three signals from the three sensor nodes k, l,
and m, which receive the strongest signals among all sensor

6Since we assume that all coils’ axes show to the ground surface, an
omnidirectional signal propagation from/to each coil results.

nodes7. The distances from these nodes to the target node are

denoted as rS−T,k, rS−T,l, and rS−T,m, respectively. Hence,

the following set of quadratic equations needs to be solved:

(xT − xS,k)
2 + (yT − yS,k)

2 = r2S−T,k,

(xT − xS,l)
2 + (yT − yS,l)

2 = r2S−T,l,

(xT − xS,m)2 + (yT − yS,m)2 = r2S−T,m,
(14)

where (xT , yT ), (xS,k, yS,k), (xS,l, yS,l), and (xS,m, yS,m) are

the x- and y-coordinates of the target node and the three sensor

nodes k, l, and m, respectively.

In MI-WUSNs, the use of trilateration may not always be

accurate due to the non-linearity of the channel model with

respect to the distance between any two coils. In order to show

this, we deduce the mutual inductance from (12):

M2
S−T,l ≈ − 8RSRTΔûout,S,l(

ûin,S,1 + 2
∑Nsn

n=1 Δûout,S,n

)
4π2f2

0

. (15)

The substitution of (3) into (15) yields

erS−T,l

√
πf0μσ r3S−T,l = α (16)

with α ≈
√
− (f0μπ2NSNT a2

Sa2
T )2(ûin,S,1+2

∑Nsn
n=1 Δûout,S,n)

32RSRTΔûout,S,l
.

Unfortunately, no closed-form solution for this type of equa-

tions is known. Instead, a numerical calculation using the

so-called Lambert-W function can be applied, cf. [23]. In

this context, the additive noise can dramatically reduce the

localization performance, since even a small error in the

signal magnitude can lead to a dramatically wrong distance

estimation.

B. Machine Learning based Localization

The main principle of machine learning based localization in

WSNs has been described in [18] and [24], according to which

the whole plane is split into possible positions or areas, which

represent different classes. If the target node is located in one

of these areas, the received signal at the sensor nodes may have

some properties, that are typical for such a situation. Hence,

it might be possible to distinguish between the areas based on

the received signal and to determine the most likely area, at

which the target node is located. For this, a machine learning

algorithm can be used. Due to the stationary deployment of the

MI-WUSNs, the supervised learning is preferable over other

types of machine learning (e.g. unsupervised learning), since

the training of the classifier can be done offline and the relevant

properties of the received signals can be accurately learned.

In particular, the use of Support Vector Machines (SVMs)

seems promising. An SVM is a classifier that determines

the optimal separating hyperplane between two classes of

vectors, such that the closest distance between any vector

from both classes and the hyperplane is maximized. Hence, the

7Theoretically, more than three signals can be used for trilateration (the
so-called multilateration approach). However, due to much weaker signals
received at the respective additional sensor nodes, the accuracy improvement
does not justify the complexity increase. In many cases, even a worse
localization accuracy can be observed, which is due to the impact of the
received noise signals.
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diversity of the available signal properties (so-called features)

is fully exploited. In [24], the localization in WSNs using

SVMs with multiple classes has been described. For this,

an iterative method has been proposed. In each iteration, the

field with possible positions is split into two classes, left and

right half fields, respectively. Using an SVM, the most likely

half field is selected and then analyzed in the same way in

the next iteration. The procedure repeats itself for a given

number of iterations, which corresponds to the granularity

of the localization. Then, the middle of the finally retained

field is selected as the most likely position of the target. The

benefit of this strategy lies in the reduced complexity, since

more and more positions are excluded from the analysis with

each iteration. For example, after the first iteration, the focus

of the classification is on the selected (e.g. right) half field,

which means that the other (left) half field is not considered

anymore. Unfortunately, this strategy is very vulnerable to the

classification errors in each iteration, since wrong decisions

lead to a selection of the wrong half field, which can cause

a substantial deviation of the estimated position from the true

one.

C. Proposed Method

In this work, we make use of SVM based localization

similar to [24]. However, in order to increase the accuracy,

the so-called ”One-Against-One” classification with multiple

classes is applied, cf. [25]. In this approach, the whole field of

possible positions is split into multiple areas. Each area (e.g.

area q) is compared with all other areas using the respective

SVMs and the received signal. Moreover, each area is assigned

a weight �q = 0, ∀q, initially. If the classifier chooses area q
over area s, its weight increases by one, i.e., �q ← �q + 1.

Obviously, the area with the largest final weight corresponds

to the most likely position of the target node, since the

features of the received signal fit best to this area. Hence,

this strategy provides on average a better accuracy than the

approach in [24]. However, the number of pairs of areas to test

increases with the squared number of dedicated areas, which

may become a crucial factor for the system complexity and

computational effort.

In order reduce the system complexity while preserving the

localization accuracy, we consider multiple subfields and apply

the mentioned ”One-Against-One” localization method to each

subfield separately. Hereafter, the most promising subfield is

determined and the respective estimated position is selected.

For this, a square subfield of a moderate size around each

sensor node is considered. This subfield is then split into

Nareas areas, which may correspond to a potential target

location. In each area, a set of Ntrain positions is selected,

with which the training data is obtained. An example of the

total arrangement of the subfields, areas and training positions

is shown in Fig. 2. Since the areas in different subfields are

not compared with each other directly, the complexity of the

proposed method is substantially reduced compared to the

original ”One-Against-One” localization technique.

Sensor with MI transceiver

Subfield with 8 areas

Area with 9 training positions

Training position

Fig. 2. Example of MI-WUSN with overlapping subfields divided into 8
areas each for the training of SVMs. From each area, 9 training positions are
selected.

1) Training mode: In each subfield, Nareas · (Nareas − 1)
SVMs need to be trained. The training of the SVMs is

done offline, as mentioned earlier. For this, the target node

is assumed to be in one of the Ntrain dedicated positions

of one area, which implies that the couplings between all

coils are calculated for this scenario. Correspondingly, the

received signals Δûout,S,l, ∀l, are determined according to

Section II. These signals are processed in order to extract the

most relevant features. The choice of relevant features and its

representation is a non-trivial task, which is usually handled by

an experienced system designer for each particular application.

Unfortunately, no optimal method of feature extraction for MI-

WUSNs is known to date. Hence, we propose our own strategy

below.

2) Feature extraction: According to the previous discus-

sion, there are multiple issues that need to be taken into

account for the feature selection. Typically, the importance

of the feature increases with increasing signal strength. Cor-

respondingly, the features carried by a weak signal (low

signal strength) might be suppressed since they do not have

enough weight for the classification. In order to take into

account as many features as possible, the magnitude of all Nsn

received signals is replaced by its logarithmic representation.

Basically, the logarithmic scale ensures that multiple signals

with different orders of magnitude can be fairly compared. In

addition, signal elements that are lower than a certain threshold

τ are clipped to 0. This yields an additional noise suppression,

since the low-power fluctuations of the weak and noisy signals

are mitigated. The value of τ is set to 50 dB below the maximal

signal strength among all received signals. The resulting set of

the clipped logarithmically scaled signal magnitudes is stacked

in a vector (called feature vector) and used for training and

classification.

3) Prediction mode: After all SVMs in all subfields are

trained, the classification of the actual received feature vector

(called prediction) can be performed. This procedure is usually

called prediction. Using the received feature vector, each SVM
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decides between the respective two areas. This binary decision

is then used in the mentioned ”One-Against-One” algorithm

in each subfield. Hence, the most likely area of each subfield

is determined and the respective middle points of the selected

areas indicate the most likely position of the target node in the

considered subfield. This yields a total set of Nsn predicted

positions. In order to select the most likely position from this

set, we assume the presence of the target node in all Nsn

positions of the set and calculate the respective feature vectors.

Using these vectors a position of the target is selected, which

yields the lowest squared error with respect to the true feature

vector based on the actual received signal.

D. Hybrid Localization

The accuracy of the proposed localization based on SVMs

is governed by many parameters. In some situations, despite

a noise suppression of 30 dB, the noise might corrupt the

features of the received signals so much, that the machine

learning based localization becomes infeasible. On the other

hand, there might be situations where the trilateration is very

accurate. Therefore, we investigate a hybrid scheme, where

both methods (trilateration and SVMs) are combined and the

overall most likely position of the target is determined. For

this, we first execute both methods and obtain the estimated

target positions with them. Then, the respective feature vectors

based on the estimated positions are determined similarly to

the prediction mode. These vectors are compared with the true

received feature vector and the method resulting in the smallest

deviation is selected. The corresponding position of the target

node is the final estimate of the target location.

IV. NUMERICAL RESULTS

In our simulations, we consider sensor networks with ran-

domly distributed sensor nodes deployed in a square field of

100 m × 100 m size. We assume a common resonance fre-

quency8 f0 = 1 MHz and equal transmit power Pk = P = 10
mW in each sensor node k. For the sensor coils, we assume

NS = 1000 turns and a radius aS = 25 cm. For the target

node, we assume NS = 100 turns and a radius aT = 5 cm.

The wire radius is set to 0.5 mm for all coils. The conductivity

of soil is set to σ = 0.01 S/m according to [7]. All SVMs

are trained using a Gaussian kernel with optimized scaling

via cross-validated SVMs. The size of the subfields to be

investigated in the neighborhood of each sensor node is 25
m × 25 m. Each subfield is split into Nareas = 49 areas with

identical size. The number of training vectors is Ntrain = 25
for each area. In each simulation, we consider 100 different

networks and 20 possible positions of the target for each

network. For each position, we perform the localization using

the discussed methods and calculate the resulting localization

error. In the following, the performance is shown in terms of

the cumulative distribution function (CDF) of the localization

error.

8In general, this choice of the resonance frequency does not maximize the
localization accuracy or the network throughput [5]. However, the optimization
of the system parameters for these criteria is beyond the scope of this work.

Fig. 3. Cumulative distribution of the localization error with Nsn = 15
sensor nodes.

Fig. 4. Cumulative distribution of the localization error using hybrid method
and different numbers of nodes.

At first, we discuss results for the localization using Nsn = 15
sensor nodes according to Fig. 3. We observe a huge possible

localization error of up to 100 m for all considered schemes.

For the SVM based localization (and correspondingly for the

hybrid method), large errors result from the possible selection

of wrong subfields due to the noise influence. However, this

performance degradation has occurred only in 5% of the

considered cases. The SVM based localization outperforms

the trilateration in up to 71% of the cases (as observed using

additional simulations) and obviously reduces the maximum

localization error significantly. The hybrid method combines

the benefits of both methods and therefore its CDF converges

to the CDF of the trilateration for small localization errors and

to the CDF of the SVMs for large localization errors.

Due to the obvious advantage of the hybrid scheme, we show

its performance for different numbers of sensor nodes in Fig.

4. We observe a substantial decrease of the localization error

with increasing number of sensor nodes. This is expected,

since more features can be utilized for classification. Also,

the average distance between the target node and the nearest
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sensor node in the network reduces. Hence, both methods, i.e.,

trilateration and SVM based localization, perform better and

the hybrid scheme can localize 50% of targets with an error

≤ 1 m for 20 nodes, ≤ 3.6 m for 15 nodes, and ≤ 10.5 m

for 10 nodes, respectively. Moreover, 20% of the targets can

be localized with an error of ≤ 4 cm for 20 nodes, ≤ 55
cm for 15 nodes, and ≤ 2.3 m for 10 nodes, respectively. In

order to further improve the performance of localization in

MI-WUSNs, either larger coils have to be employed or the

transmit power has to be increased. However, these system

parameters are bounded by the constraints of system design

and need to be carefully optimized. This optimization remains

for future investigations.

V. CONCLUSION

In this work, a novel passive localization technique for MI-

WUSNs has been presented, which enables the localization

of a silent target node without any explicit signaling from this

node. The presence of the target node is detected by exploiting

the coupling between all magnetic devices and extracting the

relevant information from the received signals at the respective

sensor nodes. Here, the distances between sensor nodes and

the target node cannot always be precisely deduced from

the extracted received signals due to a complicated path loss

function, which includes polynomials and exponentials. Cor-

respondingly, the traditional localization approach based on

trilateration becomes inaccurate and a machine learning algo-

rithm employing Support Vector Machines has been presented.

For a further improvement of the localization accuracy, this

approach has been combined with the trilateration by selecting

the more precise result based on the relative receive signal

error, such that a hybrid method results. This hybrid method

shows a good performance in terms of localization accuracy

in most of the investigated cases. In addition, by increasing

the number of sensor nodes, the localization accuracy can be

substantially improved.
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