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Abstract—This paper proposes an energy and spectrum efficient IoT network for 5G systems where spectrum is shared with the
cellular system for spectrum efficiency and energy harvesting and energy transfer are utilized for energy efficiency. The IoT network,
which consists of sensor nodes and a cluster head with a reliable energy source, reuses part of the cellular band whenever the cellular
network does not utilize it. The cluster head performs spectrum sensing, random scheduling of the sensor nodes, and schedules some
idle time for energy transfer. The sensor nodes harvest RF energy from the cellular traffic and the transferred energy from the cluster
head. Provided the sensor nodes have sufficient energy, they transmit collected sensory data when scheduled. The inter-play between
the cellular and IoT network introduces trade-offs between the spectrum availability, energy availability, information and energy transfer.
This paper shows that for the same cellular traffic level, as the number of sensor nodes in the network increases, the IoT network
utilization increases resulting in a multi-user gain thanks to the broadcast nature of the energy transfer. The results offer insights into
different operational regimes and exposes what type of IoT applications may be feasible with such networks.

Index Terms—Cellular IoT, 5G Systems, Energy Harvesting Systems, Energy Transferring Systems
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1 INTRODUCTION

IN ADDITION to the traditional human-to-human or
human-to-machine communications, we are starting to

increasingly observe a new trend coined as Internet of
Things (IoT) [1], whereby machines around us communicate
with each another with limited or no intervention from hu-
mans towards the general goal of enhanced quality of life. In
this paradigm, low-cost sensors, actuators and other similar
devices automatically generate, exchange and process data
and act upon it towards a common goal. Many applications
are envisioned, such as, healthcare [2], smart grids [3], traffic
management [4], smart cities [5], agricultural systems [6],
environmental monitoring [7], etc.

Use of cellular technologies is essential for wide area
IoT systems [8]. In order to accommodate their unique
challenges such as energy, spectrum, signaling overhead,
upcoming 3GPP releases are targeting new enhancements
for cellular IoT communications. In particular, new low-
complexity, narrowband radio technologies are envisioned
to support massive deployments of low throughput, low
power consuming devices [9].

The motivation of this paper is to propose a unique
cellular IoT system design suitable for the upcoming 5G
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era, where spectrum efficiency is achieved by opportunis-
tically reusing the cellular spectrum and energy efficiency
is achieved by RF energy harvesting of ambient cellular
signals and RF power injection. Such a system reveals many
tradeoffs between spectrum availability, energy availabil-
ity, information and energy transfer. We aim to develop a
through mathematical model to analyze these trade-offs,
and provide the tools to be able to predict operational
regimes under which such networks may be feasible.

Although wide area cellular IoT applications may de-
ploy thousands of sensors, their aggregate traffic might not
be high enough to justify allocation of dedicated cellular
resources. For example, in a climate monitoring application,
each sensor may generate small amounts of data over an
extended period such as an hour or a day, and report all data
at once. Moreover, it may be enough to query only a random
fraction of these sensors and interpolate, for example the
temperature/humidity values for all locations, using the
collected data. Thus, this paper proposes an IoT system that
reuses parts of the cellular bands in an opportunistic manner
whenever the cellular devices do not utilize them [10].

Another important design constraint in massive IoT de-
ployments is the energy. Even though individual nodes in
those networks may consume little energy, their aggregate
consumption may become large, necessitating a green, ex-
tremely low power design. Moreover, most of these devices
are envisioned to be embedded in the environment. It is
necessary to provide a way of operating them perpetually
without requiring power cables or battery replacement.
These requirements lead to increased interest in energy har-
vesting networks [11], [12], [13]. Various types of energy may
be harvested: mechanical, electromagnetic, thermal, solar,
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biological, etc. Among these, energy harvesting from radio
frequency (RF) signals has recently attracted attention [14],
[15]. Although the energy obtained from RF harvesting is
currently much less compared to some other sources such
as solar energy, its availability (indoors, outdoors, day or
night) is advantageous. It is also expected that more efficient
technologies will be developed in the near future [15], [16]
to make RF energy harvesting more feasible. Thus, the
proposed system in this paper consists of cellular IoT nodes
that harvest RF energy from both ambient cellular signals
and injected RF power to the system when the ambient RF
energy is not enough.

The proposed IoT network has two types of nodes. The
majority of the IoT network consists of a swarm of low cost
and low power sensor nodes (SN). The other type is the
cluster head (CLH), which is more powerful, control the
sensor nodes and perform RF power transfer operations,
as will be explained shortly. An actual IoT implementation
may consist of many clusters, each with its own cluster
head. This paper focuses on one such cluster.

The cellular network coexisting with the IoT network is
assumed to be slotted in time and frequency. For example,
LTE networks use OFDM and SC-FDM schemes in the
downlink and uplink, respectively. Standardization efforts
towards the 5G radio access, often referred to as 5G NX,
are on-going [17]. It is foreseen that the 5G NX will be built
on an enhanced, flexible OFDM-like air interface. Then, for
both LTE and 5G, the radio resources are slotted in time
and frequency. The resulting time-frequency slots are called
cellular resource blocks. The cellular base station schedules
these resource blocks to several user and control traffic data
at each transmission time interval (TTI). The IoT network
is assumed to operate in a time slot structure synchronous
to the cellular network TTIs. Since the sensor nodes are
simple and low energy, they are assumed to not use the
same communication technology as the cellular network,
since a requirement such as dynamically tuning to various
resource blocks spanning the whole cellular band would
overly increase the complexity and power consumption of
SNs. Thus, in accordance with the recent IoT proposals in
3GPP [9], we assume SNs’ radios are tuned to a fixed, small
bandwidth, e.g., spanning a few cellular resource blocks,
to communicate with the cluster head using a specialized
simplified physical layer for low power operation.

The proposed IoT network operation is as follows. At
each TTI, the cellular network utilizes the cellular resource
blocks at will regardless of the IoT network. The IoT cluster
head performs spectrum sensing at the tuned bandwidth
at each TTI. Whenever the cellular network is found to not
use this band, the IoT network opportunistically uses it. At
these opportunities, the CLH first decides to use the slot for
RF energy transfer to the SNs, or for information transfer
from the SNs. If the decision is information transfer, the
CLH randomly schedules one SN. On the other hand if the
decision is energy transfer, the CLH transmits a signal for RF
energy harvesting. The SNs perform RF energy harvesting
of both the ambient signals of the cellular network and
injected signal by the CLH, whenever they do not perform
data transmission. The interplay between sensing, energy
harvesting and data/energy transmission operations, the
traffic models of both cellular and IoT networks, the sig-

naling between the CLH and SNs, retransmissions due to
collisions, etc., are explained in detail in Section 3.

In this work we propose for the first time, an energy and
spectrum efficient IoT network for 5G, which differentiates
itself from other 5G IoT proposals since spectrum sharing
with the cellular network is utilized for spectrum efficiency,
while energy harvesting and transmitting is utilized for
energy efficiency. In this framework, we consider a system
where the source of energy for sensor nodes is the RF
signals in the system. We propose the use of cluster head
for IoT network management as well as energy transmission
when necessary. The energy harvested by the IoT devices is
either from the cellular network or the cluster head. This
introduces a trade-off between spectrum availability, energy
availability, information and energy transfer operations:
when the cellular traffic is dense, there is less spectrum
opportunities but more energy from ambient harvesting,
whereas a mostly idle channel presents abundant spectrum
for sensor node transmission but requires more energy
transfer for a feasible operation. In this paper, we also de-
velop a thorough mathematical model to study these trade-
offs where both cellular and IoT traffic are characterized
more realistically compared to most work in the literature.
We show that, for the same cellular traffic level, as the
number of sensor nodes increases, the overall IoT network
utilization increases resulting in a multi-user gain thanks to
the broadcast nature of the energy transfer.

The remainder of the paper is organized as follows. We
give an overview of the related work in Section 2. The
system model is described in Section 3. The Markov chain
modeling of the cellular and IoT traffic is given in Section 4,
and the analysis based on the Markov chain models is
presented in Section 5. Results are given in Section 6 and
conclusions are drawn in Section 7.

2 RELATED WORK

5G has often been labeled as the enabler of the Internet
for everyone and everything. It is anticipated that by 2021
over 28 billion connected devices will exist, over 15 billion
of which are forecast to be machine-to-machine connec-
tions [18]. This makes the provisioning of IoT communi-
cations one of the most important missions of 5G [19]. One
fundamental aspect of IoT communications is to operate the
network in a self-sufficient manner [20]. Energy harvesting
is increasingly seen as a promising approach on this front
[20], [21]. In this paper we propose an energy harvesting
and transmitting IoT network that shares the spectrum with
other services in 5G networks.

RF energy harvesting networks have been drawing sig-
nificant attention in the recent literature. The works in
[22], [23] assert that a practical node may either decode
information or harvest RF signal energy, but not both and
develop optimal switching rules for various scenarios. [24]
considers a cognitive radio network where a secondary user
(SU) with infinitely backlogged traffic and a simple energy
consumption model performs error-free sensing, and finds
the optimal allocation of time between information transfer,
spectrum sensing and energy harvesting operations. [25]
derives rate-energy regions for MIMO systems with three
nodes: a transmitter, a decoder and an energy harvester. [16]
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attempts to maximize the spatial SU throughput subject to
SU transmit power and SU density in a given geography
using stochastic geometry. The work assumes that an SU
harvests energy from a primary user (PU) only if it is
sufficiently close. [26] investigates a network where energy-
harvesting SUs help increase the PU performance by relay-
ing in return for increased spectrum access opportunities.

[27] optimizes transmission parameters of a solar energy
harvesting sensor network to maximize the net throughput
using Markov decision processes. [28] uses 4-D continuous-
time Markov chain model for adaptive duty cycling in
an energy harvesting sensor network to achieve perpetual
operation with QoS provisioning. The channel model used
in the paper follows a two-state Gilbert-Elliot model, akin
to the busy and idle model. However, both of these works
do not consider opportunistic access. The reported work in
[29], [30] analyzes a system where the SUs harvest RF energy
from PU signals and find optimal SU channel access policies
using partially observed Markov decision processes. The
incoming traffic is assumed Bernoulli. [31] considers a slot-
ted system where each slot is divided into three durations
and the SUs perform energy harvesting, spectrum sensing,
and transmission exclusively. Spectrum sensing is energy
detection based and done in a collaborative fashion. The
optimal sensing duration, fusion rule and sensing threshold
is found jointly to maximize SU throughput. No RF energy
transfer is assumed in these works.

[32] considers a cognitive radio network with N SUs
and M channels. Both PUs and SUs perform slotted trans-
mission synchronously, with packets arriving according to
Bernoulli processes and kept in finite queues. The PUs
transmit at their dedicated channels whenever their queues
are not empty. The SUs select a channel randomly, perform
imperfect sensing, and transmit if the channel is found
empty. The model presented in this paper has similarities
to our model, however no energy harvesting, energy trans-
mission or battery levels of the SUs are considered.

In another paper, assuming perfect channel sensing, [33]
analyzes the SU queue length PMF and the packet waiting
times using a 2-D continuous-time Markov chain model
resulting from the assumption of decoupled SU queues. In
[34], the same authors extend the analysis to general multi-
interface setting and include imperfect sensing too. Both
works do not consider energy harvesting or consumption.

This paper has many novelties compared to the previ-
ous literature. First, it proposes a system model for spec-
trum and energy efficient 5G cellular IoT network for the
first time, where the spectrum efficiency is achieved by
reusing part of the cellular band and the energy efficiency is
achieved by harvesting of both ambient cellular RF signals
and the injected RF energy. Second, the resulting tradeoffs
are analyzed using a Markov Chain model that adheres to
a more realistic scenario compared to the previous litera-
ture, where cellular network employs retransmissions, both
networks perform queueing of incoming packets, a bursty
incoming traffic is assumed as opposed to infinite back-logs,
and spectrum sensing is imperfect. Third contribution of the
paper is the novel application of the decoupling methodol-
ogy from the 802.11 literature to the proposed 5G cellular
IoT system, and investigation of its validity and limitations.
As such, the modeling and analysis methodology presented

in this paper can be applied to any similar system modeling.

3 SYSTEM MODEL

The proposed cellular IoT network architecture for 5G is
depicted in Figure 1, where the IoT network coexists with
an OFDM or OFDM-like based cellular network such as LTE
or 5G NX. The IoT network reuses a portion of the cellular
band, e.g., a number of contiguous resource blocks, which
can be at an uplink or downlink FDD band or at a TDD
band. At each transmission time interval (TTI), the cellular
base station schedules user or control traffic to the resource
blocks on this sub-band, without consideration of the IoT
network. We assume a TTI is of duration T . For example in
an LTE network, a TTI is equal to one subframe duration
of 1 ms. In 5G NX, it is anticipated that the TTI value will
be dynamic [17]. The proposed IoT network follows time-
slotted operation synchronously with the TTI structure of
the cellular network, and accesses the channel at the slots
when the cellular network is found not to utilize it.

There are two types of nodes in the IoT network; a
cluster head (CLH) and Ns sensor nodes (SNs). The cluster
head (CLH) is powerful and connected to a reliable source
of energy. An actual IoT implementation may consist of
many clusters, each with its own cluster head. This paper
focuses on one such cluster. At the beginning of IoT network
operation, the CLH synchronizes itself to the TTI structure
of the cellular network using the beacon signals transmitted
by the cellular base station. During the IoT operation, the
CLH is responsible to find the spectrum opportunities in the
cellular sub-band, schedule the transmission of the sensor
nodes at these opportunities to collect their sensory data,
and perform wireless energy transfer to them. Note that
the CLH is assumed to transfer the collected data to an
application database either via a wired connection or over
another band such as an 802.11 connection.

The sensor nodes are less powerful, but much more in
numbers, running on small batteries with tight energy con-
straints. These nodes collect sensory data and store them in
a small buffer. Whenever they are scheduled by the cluster
head, they transmit for one slot duration, given they have
the data and enough energy to transmit it. Otherwise, they
perform energy harvesting, which is assumed to happen in
two ways: from the RF energy transfer from the cluster head,
which we call RF harvesting, or from the transmission of the
cellular base station or UEs, which we call ambient harvesting.

The RF energy transfer is performed at the same sub-
band of the cellular band that is used for IoT data trans-
mission. When this sub-band is sensed empty, the CLH
decides if it will be used for energy or data transmission.
We assume that the signal characteristics of the cellular
signals at this sub-band, and the signal used for RF energy
transfer are similar. For example the OFDM-like signals
mentioned above may also be used for RF energy transfer.
As such, SNs use the same harvesting antenna and circuitry
for harvesting both signals. In a practical setting, if this
assumption is not valid, the IoT devices might be designed
with two harvesting circuits, one for the cellular signals
an the other for the RF transmission, operating in parallel.
Both harvesting methods assume collection of the induced
electrons at the receiving antenna of the sensor nodes in a
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Fig. 1. Proposed spectrum sharing, energy harvesting and transmitting
IoT Network.

capacitor, possibly after matching and voltage multiplying
circuits [15].

The slot structure of the cellular IoT network is given in
Figure 2. At the beginning of each slot, the CLH senses the
channel for cellular transmission for a sensing duration of Ts.
The actual duration of Ts depends on several factors, such
as, SNR, utilized sensing method, CPU power of the CLH,
etc., and is out of scope of this paper. We assume that Ts is a
fraction of 1 TTI. Since the paper proposes a cellular IoT sys-
tem coexisting with 5G systems, as technology progresses,
spectrum sensing is expected to adopt to the slot durations
of 5G systems. The relation between the sensing time and
missed detection / false alarm rates is discussed further in
Section 4.

If the CLH decides the channel to be busy, it does
nothing until the end of the slot duration. This is shown
in Figure 2(a). On the other hand, if the CLH decides the
channel to be free of cellular transmission, it schedules one
of the SNs for transmission with probability p (Figure 2(b)),
or, performs RF energy transfer to the SNs with probability
1 − p (Figure 2(c)). If the decision is to schedule an SN,
it is scheduled uniformly at random, i.e., the probability
that a particular SN gets scheduled given the decision to
schedule an SN is 1

Ns
. This method is chosen over a method

such as scheduling an SN with data and enough energy for
transmission, in order to keep the coordination messages
between the CLH and SNs unidirectional. This will further
be explained below.

The scheduling decision is transmitted to the SN at a
coordination duration of Tc. In the remaining time of the slot,
namely the utilization duration Tu = T −Ts−Tc, CLH listens
for scheduled SN’s transmission. An SN listens to a possible
scheduling message and transmits if scheduled, only when
it has data and enough energy to transmit. Otherwise,
an SN performs energy harvesting by default. As seen in
Figure 2(a) and (b), an unscheduled SN, or a scheduled SN
that does not have data or enough energy, harvests even
when the CLH does not perform RF transmission, due to
possible cellular network transmission. This might occur
when the CLH performs a correct detection of the cellular
transmission or makes a missed detection and schedules
another SN.

The channel access model outlined above assumes that
the coordination messages are uni-directional, from CLH to

1 TTI

Ts Tc

(b) (c)

Transmit Data

Cluster Head

Scheduled 
Sensor Node

Other
Sensor Nodes Harvest Energy Harvest Energy

Schedule a 
Sensor Node Transmit RF Energy

(a)

Harvest Energy

Tu

Fig. 2. Proposed slot structure of the cellular IoT network.

SNs only. This choice is made since the energy resource of
SNs available for transmission is extremely scarce and it
can become severely sub-optimal or even infeasible (in the
energy sense) to assume that all SN nodes transmit their
battery and data buffer status to the CLH periodically. How-
ever, random scheduling is sub-optimal in the achievable
IoT network throughput as SNs without data or energy may
be scheduled and spectrum opportunities may be missed.
We demonstrate in Section 6 that this deficiency is alleviated
as number of SNs increase.

The transmission of today’s cellular networks utilizes
hybrid ARQ mechanism, thus the cellular packets are re-
transmitted up to N − 1 times (i.e., a cellular packet is
transmitted up to N times) when they do not reach their
destination. On the other hand, the overall application run-
ning on the IoT network is robust to packet failures. For ex-
ample, a climate monitoring application usually interpolates
the data collected from many sensors to construct a map
of temperature, humidity, etc. Such operations are usually
designed to utilize redundant data and tolerate missing
data. Moreover, functionalities such as ARQ would increase
the complexity and therefore energy expenditure of the SNs.
Therefore, the SNs utilize forward error correction only, and
their packets are not re-transmitted.

4 MARKOV CHAIN MODELING OF CELLULAR AND
IOT TRAFFIC

According to the model above, there is a trade-off between
the time spent for transmissions and the time spent for
harvesting: if more time is allocated to harvesting, there will
be more energy collected to spend towards transmissions
but less spectrum opportunities to do so. If more time
is allocated to transmissions, there might not be enough
energy. One goal of this paper is to assess this trade-off.
This analysis is performed using Markov chains describing
the cellular and IoT traffic models given above. In order to
construct our models, we first do the following assumptions.

We assume the sensing of the channel is imperfect. The
event that the CLH incorrectly decides the cellular sub-
channel to be empty at a slot when the cellular network
is transmitting is called a missed detection, and happens with
probability pMD independently from other slots. Similarly,
the event that the CLH decides the sub-channel to be busy
while it is not is called a false alarm, and happens with prob-
ability pFA independently from other slots. In the analysis,
the values of pMD and pFA may be chosen to match the char-
acteristics of the sensing procedure that is used by the CLH.
For example, pMD and pFA would be smaller when cyclo-
stationary sensing is used, compared to energy sensing [35].
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At one extreme, a sophisticated CLH may even decode the
scheduling information broadcasted by the cellular BS. In
this case one may assume pMD = pFA = 0, without losing
the generality of our analysis given below. However even in
this case there may be a non-zero probability of the sched-
uled SN not receiving the scheduling information correctly.
This effectively translates into a false alarm. Moreover, if
the IoT sub-band is located at an uplink FDD cellular band,
the CLH may still want to reuse the channel when it is
scheduled to distant cellular user equipments (UEs). In this
case, a missed detection of a nearby UE may happen [36].

When a missed detection occurs and the CLH schedules
an SN for transmission and the SN does so (i.e., it has
the data and enough energy), a collision occurs and both
cellular and SN packets are assumed to be lost. The cellular
packet is also lost when the CLH performs a missed de-
tection and a subsequent RF energy transfer. As mentioned
in the system model, in this case the cellular packets are
assumed to be re-transmitted up to N − 1 times. The sensor
nodes on the other hand utilize forward error correction,
and their packets are not re-transmitted.

We assume that aggregate cellular incoming packet traf-
fic is generated according to an on-off process, which is
widely used in the literature for bursty traffic modeling [37],
[38], [39]. According to this, given no cellular packet arrived
in this slot, the probability that a head-of-line packet of a
burst arrives in the next slot is α. Given a packet arrived
in this slot, the probability that no packet arrives in the
next slot is β. The cellular packets are stored in a finite
queue of size M until transmission. If a new packet arrives
during the transmission of a previous packet, it is put in the
queue. If the queue is full, the new packet is dropped. When
the transmission of a packet is successful or maximum
number of transmissions is reached, the next packet from
the queue is transmitted in the next slot. Note that, since
cellular transmissions are scheduled by a base station at
both the uplink and the downlink, we assume an aggregate
incoming traffic and a single queue for both the uplink
and the downlink. Also, although we follow the previous
literature to model the bursty incoming traffic via on-off
Markov chain, a semi-Markov model utilizing more realistic
dwelling times (compared to the geometric dwelling time
of on-off Markov chain) could also be used. However, the
retransmissions and queuing of the incoming packets in our
model makes the transmitted traffic more realistic than the
plain on-off model.

Similar to the cellular traffic, the data packet arrival
process of an SN is also modeled according to an on-off
process with head-of-line packet arrival probability of αs

and burst ending probability of βs. Each SN is also assumed
to utilize a finite queue of size S. As mentioned before, the
SNs are assumed to use forward error correction and their
packets are not retransmitted in case of a collision.

At a given slot, if the CLH finds the channel to be
empty and decides to perform RF energy transmission, all
SNs perform RF harvesting. RF harvesting happens even
when a missed detection is made. In this case, RF energy
transmission collides with cellular transmission.

In the following, all energy units are defined relative to
the energy collected in one slot from ambient harvesting.
We assume a total of L units of energy is collected by each

SN during a slot at which RF transfer is performed. This
is equivalent to assuming collected energy is L times the
energy from ambient harvesting. If an SN is scheduled for
transmission, has data to transmit, and has enough energy,
it sends a packet. In this case we assume the SN spends
K units of energy. If no RF transmission is performed and
if an SN does not get scheduled or it does not have the
energy or the data to transmit, then it performs ambient
harvesting. If the cellular network is also simultaneously
transmitting, one unit of energy is collected due to ambient
harvesting. Note that even when an SN gets scheduled for
transmission, if this happened after a missed detection by
the CLH, another SN may still perform ambient harvesting.
Total battery capacity of an SN is assumed to be B units. We
assume K , L and B are integers. If all energy quantities
are not integer multiples of ambient harvesting energy,
one can define a smaller quantization level without losing
generality of the analysis. Also, it is possible incorporate
the variation of harvested energy levels due to variability
of signal strengths into our analysis by defining multiple
harvested energy levels. For example, given RF energy
transfer is performed, an SN can be assumed to harvest
energy that is equal to one of L1, L2, . . . , Lh units, each
with an associated probability. These will introduce more
branches in our Markov Chain models below. For simplicity,
we assume one level of harvested energy for each type of
harvesting operation.

All major parameters defined above are also listed in
Table 2 in Section 6. We refer the reader to the table for a
reminder of the parameters’ meanings in the modeling and
analysis that follow.

4.1 Decoupling Assumption
Since both networks utilize finite queues, the cellular net-
work performs packet retransmissions and IoT network per-
forms RF energy transfer and harvesting from the cellular
traffic, the cellular and IoT networks’ behaviors are highly
inter-dependent. The missed detections and subsequent RF
or data transmissions of the IoT network causes collisions
and forces the cellular network to perform retransmissions
and queueing of its incoming data. On the other hand, the
ambient harvesting and spectrum opportunities available to
the IoT network depend on the cellular network’s trans-
mission activity. Due to this dependence, a joint Markov
chain with states representing the queue levels and the
packet arrival process status of the cellular network and
each sensor node, the retransmission status of the cellular
network and stored energy levels of each sensor node is
needed. This amounts to O(N2

sMNBS) states, which may
be prohibitively large for any numerical analysis.

In order to overcome this hurdle, we decouple the single
joint Markov chain into Ns + 1 separate chains, namely one
cellular network and Ns sensor node (SN) chains. This way,
instead of one huge chain with O(N2

sMNBS) states, one
cellular network chain with O(MN) states and Ns identical
SN chains with O(BS) states are obtained, which need to
be analyzed jointly. The details on these chains and the
analysis are given in the following sections. Below, we state
the underlying assumptions that we make for decoupling.

The decoupling assumption first appears in the seminal
work by Bianchi [40], where several performance metrics of
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a single-cell 802.11 network are analyzed using a Markov
chain model of the CSMA/CA back-off window. In this
work, the key (decoupling) assumption is that the packet
collision probability that all nodes experience is constant and
therefore the individual back-off processes are independent. Under
this assumption, given the collision probability, an attempt
probability for each node is computed, which in turn is
used to compute the collision probability. This results in a
fixed point equation (FPE), which is solved for the unknown
collision and attempt probabilities.

The decoupling assumption and the resulting FPE
method have been utilized in several following papers on
the performance analysis of wireless networks, e.g., [38],
[41], [42]. Therefore, the validity of such an assumption
has been investigated. To this end, it has been shown that
a scaled version of the back-off Markov chain model con-
verges to a non-linear ordinary differential equation (ODE)
when the number of nodes in the network N grows [43].
Since the stationary point of this ODE is the same as the
solution of Bianchi’s FPE, the validity of the decoupling
assumption turns into stability of the ODE. While it has
formerly been assumed that uniqueness of the FPE solu-
tion implies validity of decoupling assumption, Cho et al.
recently have shown that this is not always true [44]. More-
over, they have proposed a condition, which they called
“Mild Intensity (MINT),” that implies the stability of the
ODE. The MINT condition simply states that the attempt
probability of each node at back-off stage k should scale
with qk/N, where qk is a constant with qk ≤ 1 and N is the
number of nodes in the network.

As detailed in Section 4.2, we decouple the cellular
network Markov chain from the SN Markov chains by
assuming that the collision probability ρ, that the cellular
network experiences due to the transmissions of SNs, is
constant. As a result of this assumption, we also solve an
FPE to compute the steady-state probability mass functions
(PMFs) of the decoupled Markov chains (see Section 5.2).

As explained in Section 3, a collision happens when
the CLH performs a missed detection, and either performs
energy transfer or schedules a sensor node with data and
enough energy to transmit. For a large number of SNs,
as shown by the results in Section 6, the CLH schedules
an SN most of the time. Since the CLH schedules an SN
uniformly at random, and since the scheduled SN might not
always have data or enough energy to transmit, the attempt
probability of an SN satisfies the MINT condition given
above. Since our decoupling assumption is similar to the
decoupling assumption in 802.11 back-off chain analysis, we
conjecture that our decoupling assumption may be valid for
large number of SNs and for reasonable collision probability.
This is indeed observed in our results (Section 6), where
the Monte-Carlo simulations of the actual model and the
theoretical results using the decoupling assumption agree
best when the number of SNs is large and probability
of missed detection pMD is low. On the other hand the
deviation becomes larger as the number of SNs gets smaller
or as pMD gets larger.

4.2 Cellular Network Markov Chain Model
The Markov chain model for the cellular network operation
is given in Figure 3. The states of the cellular network chain

are three dimensional. State (i, j, k) denotes that there are i
packets in the cellular network queue (i ∈ {0, 1, . . .M}),
the current packet is transmitted for the jth time (j ∈
{0, 1, . . . N}, j = 0 means there is no transmission), and
k ∈ {0, 1} denotes the status of the packet arrival process.
k = 0 means the packet in the next slot, if arrives, is a
continuation packet of an ongoing burst; where as k = 1
means it is the first packet of a new burst.

The variable ρ that appears in the transition probabilities
of the cellular network Markov chain is the probability of
packet collision, given an ongoing cellular transmission.
With the decoupling assumption, we assume ρ is a constant
function of the SN chain PMF. The computation of ρ requires
solving the cellular and SN chains’ PMFs jointly, which is
explained in Section 5.2.

All the transitions from the states (0, 0, 1), (0, j, 1) (valid
for 1 ≤ j < N ), (0, N, 1), (i, j, 0), (i, j, 1) (valid for 1 ≤ i <
M and 1 ≤ j < N ), (i, N, 0), (i, N, 1) (valid for 1 ≤ i < M ),
(M, j, 0), (M, j, 1) (valid for 1 ≤ j < N ), (M,N, 0) and
(M,N, 1) are given in Figure 3. With the said ranges for i
and j, these represent all states including the corner cases.
The states from which the transitions originate are shaded
in the figure to distinguish them from the destination states.

The state (0, 0, 1) is the idle state, since the queue is
empty and there is no cellular transmission. The next packet
is head-of-line, and if it arrives (with probability α), the
state moves to (0, 1, 0) since the following packet will be
a continuation packet. At state (i, j, k), if a collision occurs,
the state moves to the next column since the cellular packet
is retransmitted. If a new packet arrives at the same time,
the queue is incremented and the following packet will be a
continuation packet, so the state moves to (i+1, j+1, 0). The
probability of this event is αρ if k = 1 and (1−β)ρ if k = 0. If
a collision occurs but a new packet does not arrive, the next
packet will be head-of-line, so the state moves to (i, j+1, 1).
The probability of this event is (1 − α)ρ if k = 1 and βρ if
k = 0. If the packet is sent successfully, the state moves to
the first column since the next packet will be transmitted
for the first time. If no new packet arrives, and there are no
packets in the queue, the state moves to idle state (0, 0, 1).
If no new packet arrives but there is at least one packet in
the queue, the queue is decremented, the packet from the
queue is transmitted for the first time, and the following
packet will be head-of-line, so state moves to (i − 1, 1, 1).
The probabilities for both events are (1− α)(1− ρ) if k = 1
and β(1 − ρ) if k = 0. If a new packet arrives, the queue
stays the same, and the next packet will be continuation, so
the state moves to (i, 1, 0). The probability of this event is
α(1− ρ) if k = 1 and (1− β)(1− ρ) if k = 0.

Note that in the first row, the states (0, j, 0) do not exist
for j > 1 since here, the queue is empty and cellular
network is retransmitting, thus any new packet must be
head-of-line. On the other hand, the state (M, 1, 1) does
not exist in the last row since (i, 1, 1) nodes have incoming
transitions only from the nodes in the row below. Thus, there
are a total of 2MN +N + 1 states.

4.3 Sensor Node Markov Chain Model

The Markov Chain model for the operation of an SN is
given in Figure 4. Given the random scheduling scheme of
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Fig. 3. Cellular network Markov chain. State (i, j, k) denotes there are i packets in the cellular network queue, the current packet is transmitted for
the jth time, and k denotes the status of the packet arrival process. k = 0 means the packet in the next slot, if arrives, is a continuation packet of
an ongoing burst; whereas k = 1 means it is the first packet of a new burst. ρ denotes the probability of packet collision, given an ongoing cellular
transmission.

the SNs and the decoupling assumption, there are a total of
Ns identical and independent Markov chains as in Figure 4
running in parallel, each modeling the behavior of one SN.
In the figure, state (i, j, k) denotes there are i packets in
the queue (i ∈ {0, 1, . . . S}), the battery level is B − j,
(j ∈ {0, 1, . . . B} and j = 0 means a full battery), and
k ∈ {0, 1} denotes the status of the packet arrival process,
which is defined in the same manner to the cellular network
chain.

In Figure 4, p1 through p5 are probabilities that are
defined below. These are functions of the cellular network
chain, and with the decoupling assumption they are as-
sumed constant.

p1 = P(SN is not scheduled for transmission and
does not perform energy harvesting.) (1)

p2 = P(SN is not scheduled for transmission and
performs ambient harvesting.) (2)

p3 = P(SN is not scheduled for transmission and
performs RF harvesting.) (3)

p4 = P(SN is scheduled for TX, doesn’t have
the energy, does not perform harvesting.) (4)

p5 = P(SN is scheduled for TX, doesn’t have
the energy, performs ambient harvesting.) (5)

It is shown in the Appendix that these probabilities are
given by

p1 = π0

(
pFA + (1− pFA)p

Ns − 1

Ns

)
, (6)

p2 = (1− π0)

(
1− pMD + pMDp

Ns − 1

Ns

)
, (7)

p3 = (1− p) ((1− π0)pMD + π0(1− pFA)) , (8)

p4 = π0(1− pFA)
p

Ns
, (9)

p5 = (1− π0)pMD
p

Ns
, (10)

where π0 is the steady-state probability of the channel being
free of cellular transmission, which is equal to the steady-
state probability of the cellular network chain state (0,0,1).
The computation of π0 requires solving the cellular network
and SN PMFs jointly. This is explained in Section 5.2. Note
that, in addition to the events defined above, the probability
of an SN getting scheduled is p4 + p5, since the CLH
schedules a sensor if the channel is empty and no missed
detection is performed, or is not empty and a false alarm
happens, and no energy transfer is performed.

The transitions from the states that are representative of
all cases are given in Figure 4. In the first and the second
rows, the SN has enough energy for one transmission,
whereas, it cannot transmit due to insufficient energy in
the last row. The states (i, 0, 0) and (i, 0, 1) in the first row
represent all states with 0 < i < S; the states (0, j, 0)
and (0, j, 1) in the second row represent all states with
0 < j ≤ B −K ; the states (i, j, 0) and (i, j, 1) in the second
row represent all states with 0 < i < S and 0 < j ≤ B −K ,
and the states (i, j, 0) and (i, j, 1) in the third row represent
all states with 0 ≤ i < S and B −K < j ≤ B. There are a
total of 2BS + 2(B + S) + 1 states.

For example, let us examine the (i, j, k) states in the
second and third rows. At the the second row, the SN has
enough energy for transmission. Thus, if no packet arrives,
SN is not scheduled and no harvesting occurs (there is no
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Fig. 4. SN Markov chain. State (i, j, k) means there are i packets in the queue, battery level is B − j.k = 0 means the packet in the next slot, if
arrives, is a continuation packet of an ongoing burst; where k = 1 means it is the first packet of a new burst.

ongoing cellular transmission), the next packet will be head-
of-line, so the state moves to (i, j, 1). The probability of
this event according to the definitions above is (1 − αs)p1
if k = 1 and βsp1 if k = 0. If no packet arrives, SN
is not scheduled, and ambient harvesting occurs, battery
charges by one unit and the state moves to (i, j − 1, 1). The
probability of this event is (1 − αs)p2 if k = 1 and βsp2
if k = 0. If no packet arrives, SN is not scheduled, and RF
energy transfer harvesting occurs, battery charges by L units
the state moves to (i, [j − L]+, 1). Here [x]+ := max{0, x}
since when the battery becomes full, it stops charging. The
probability of this event is (1 − αs)p3 if k = 1 and βsp3 if
k = 0. If no packet arrives and SN is scheduled, it transmits
one packet from the queue and the battery drains by K
units so the state moves to (i− 1, j +K, 0). The probability
of this event is (1 − αs)(p4 + p5) if k = 1 and βs(p4 + p5)
if k = 0. When there is not enough energy for transmission
(third row of states in the figure), the SN always performs
harvesting whether or not it is scheduled. So, if a new
packet arrives and no harvesting occurs, the queue increases
by one, the state moves from (i, j, k) to (i + 1, j, 0), with
probability αs(p1 + p4) if k = 1 and (1 − βs)(p1 + p4)
if k = 0. A comprehensive list of all possible events, the
corresponding state transitions and associated probabilities

ic, jc, 1, is, js, 1

ic + 1, jc + 1, 0,

is + 1, js − L, 0

ic + 1, jc + 1, 0,

is, js − L, 1

ic, jc + 1, 1,

is + 1, js − L, 0

ic, jc + 1, 1,
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ic, 1, 0,
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pMDp̄ᾱαs

pMDp̄ᾱᾱs

pMDpααs pMDpαᾱs pMDpᾱαs pMDpᾱᾱs

Fig. 5. Transitions from joint Markov chain state (ic, jc, 1, is, js, 1). It
is assumed there is one SN, both cellular and SN queues are neither
empty nor full (0 < ic < M, 0 < is < S), the SN has enough energy to
transmit and its battery is at least L units depleted (L ≤ js ≤ B − K),
and the cellular network is currently transmitting but has not reached
maximum number of transmissions (0 < jc < N ). For brevity, x̄ is used
instead of 1− x in the transition probabilities.

are given in Table 1.

4.4 An Example Case of a Joint Markov Chain
In order to compare the decoupled Markov chains to the
joint Markov chain, as an example, the transitions and
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TABLE 1
The SN Markov chain transitions. Below, use γs = αs when k = 1, and γs = 1− βs when k = 0.

Origin st. Enough Sched? Harvesting? New pack. Next state ProbabilityTX energy? arrives?

(i, j, k) – (i, j +K, 0) γs(p4 + p5)

(i, j, k) – (i− 1, j +K, 1) (1− γs)(p4 + p5)

(i, j, k) No (i+ 1, j, 0) γsp1

(i, j, k) Ambient (i+ 1, j − 1, 0) γsp2

(i, j, k) RF (i+ 1, [j − L]+, 0) γsp3

(i, j, k) No (i, j, 1) (1− γs)p1

(i, j, k) Ambient (i, j − 1, 1) (1− γs)p2

(i, j, k) RF (i, [j − L]+, 1) (1− γs)p3

(i, j, k) – No (i+ 1, j, 0) γs(p1 + p4)

(i, j, k) – Ambient (i+ 1, j − 1, 0) γs(p2 + p5)

(i, j, k) – RF (i+ 1, [j − L]+, 0) γsp3

(i, j, k) – No (i, j, 1) (1− γs)(p1 + p4)

(i, j, k) – Ambient (i, j − 1, 1) (1− γs)(p2 + p5)

(i, j, k) – RF (i, [j − L]+, 1) (1− γs)p3

corresponding transition probabilities from the joint state
(ic, jc, 1, is, js, 1) is given in Figure 5. For the sake of illus-
tration, only one SN is assumed to exist in the IoT network,
since assuming more SNs would result in a prohibitively
large state and complex transitions. Here, similar to the
decoupled chains, ic and is denote the number of packets
in the cellular and SN queues, respectively, jc denotes the
transmission attempt number for the currently transmitted
cellular packet, js denotes the battery level of the SN. 1’s de-
note the packet arrival process status; meaning for this state,
next arriving packet is head-of-line for both the cellular
network and the SN. Here, it is assumed that both cellular
and SN queues are neither empty nor full (0 < ic < M,
0 < is < S), the SN has enough energy to transmit and its
battery is at least L units depleted (L ≤ js ≤ B −K), and
the cellular network is currently transmitting but has not
reached maximum number of transmissions (0 < jc < N ).

The transitions to the top row of states correspond
to the cases when the CLH does a correct detection of
the cellular transmission, and therefore the SN performs
ambient harvesting and cellular transmission is successful.
The transitions to the bottom row of states correspond to
the cases when the CLH makes a missed detection, and
schedules the SN for transmission. Since the SN has at least
a packet in its queue and has enough energy, it attempts
transmission and collision occurs. The transitions to the
states in the middle left and right correspond to the cases
when the CLH performs a missed detection and energy
transfer. Again the cellular transmission is not successful
but the SN performs RF harvesting.

In the transition probabilities, x̄ is used instead of x
for brevity. All transition probabilities in the joint Markov
chain are constant and thus, no need for the assumptions in
decoupling. However, even when there is only one SN, the
joint MC state is large, resulting in many different cases.
Note that, Figure 5 depicts only one specific case. For a
practical IoT system with many nodes, the joint chain would
be prohibitively complex for any analysis, which illustrates
the necessity of decoupling assumption.

5 ANALYSIS

We define the channel utilization levels of the cellular or IoT
networks as the long term averages of the ratios of slots with
successful packet transmissions to total number of slots. By
this definition, we do not discount for the time that the IoT
network loses for sensing and coordination. However, one
may alternatively scale IoT utilization appropriately.

In this section, the channel utilization levels of the cel-
lular and IoT networks are derived. First, an approximate
analysis that does many simplifying assumptions will be
presented to provide a baseline understanding of the trade-
offs in the operation of a cellular IoT network employing
opportunistic spectrum access, RF energy transfer and har-
vesting. Then a more realistic analysis that uses the Markov
chain models given above will be presented in Section 5.2.

5.1 Simple Approximation

It is possible to calculate cellular and IoT utilization levels
easily for a simplified system model. Assume a system
where all SNs are infinitely backlogged. Furthermore, as-
sume that the cellular network retransmits collided packets
until they are successfully transmitted. This is equivalent
to assuming that the cellular network has an infinite queue
and the maximum number of cellular retransmissions goes
to infinity. In the absence of any collisions, the cellular
utilization due to the incoming traffic is

QC =
α

α+ β
. (11)

Assuming that the SNs are infinitely backlogged and
they have enough transmission energy, a collision occurs
each time the CLH performs a missed detection. Thus,
accounting for the collisions, the portion of the channel that
is occupied by the cellular network should be equal to

CC = QC

∞∑
n=0

(pMD)
n =

α

α+ β

1

1− pMD
, (12)
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since retransmissions occur every time there is a collision.
The portion of the channel where collisions are experienced
is then equal to

CX = CC −QC =
α

α+ β

pMD

1− pMD
. (13)

Note that, since the CLH performs RF energy transmis-
sion with probability (1 − p) when it detects the channel
to be empty, a fraction of (1 − p)CX of these collisions are
due to CLH RF energy transfer and a fraction of pCX of
these collisions are due to SN transmissions. The channel
remains idle when the cellular network does not transmit
and the CLH performs a false alarm. Then, the portion of
the channel that is idle is equal to

CI = (1− CC)pFA. (14)

In addition to the (1 − p)CX term above, CLH performs
RF energy transfer with probability (1 − p) whenever the
channel is empty and the CLH does not perform a false
alarm. Thus, the total portion of the channel occupied by
the CLH for RF energy transfer is equal to

CRF = (1− CC) (1− pFA)(1− p)︸ ︷︷ ︸
channel empty

+(1− p)CX︸ ︷︷ ︸
collisions

. (15)

SNs also perform ambient harvesting at the portion of
the channel utilized by the cellular network and not collided
with the CLH, thus, ambient harvesting is performed in the
CC−(1−p)CX portion of the channel. Since for a unit time,
the energy harvested from RF transfer is L times, and the
energy spent for transmission is K times the energy gained
from ambient harvesting, respectively, we get an energy
limit on the portion of the channel that may be utilized by
SN transmissions as

Ue
S =

LCRF + CC − (1− p)CX

K
. (16)

On the other hand, the spectrum availability gives the
other limit. That is, an SN may utilize a fraction 1

Ns
of the

portion of the channel that is sensed correctly to be free and
scheduled for SN transmission

Us
S =

(1− CC)(1− pFA)p

Ns
. (17)

Minimum of these two limits give the overall portion of the
channel utilized by one SN for transmissions. Since there are
Ns SNs, the portion of the channel utilized by all Ns SNs is
equal to,

Uapprox
S = Ns min {Ue

S , U
s
S} , (18)

which is an approximation to the IoT network utilization
level.

We observed in the simulations that as there are more
SNs (Ns → ∞) and as the SN data generation becomes
more bursty (βs → 1), this simplified approximation be-
comes more realistic. However it is quite far from being
realistic when these are not the case, as shown in the Results
(Section 6). Next, we present the analysis of the full model
where SN traffic is not infinitely backlogged but bursty, and
the cellular network has a finite queue size and performs
a finite maximum number of retransmissions for collided
packets.

5.2 Markov Chain Analysis

Given the decoupling assumption, the cellular and SN
Markov chains are finite-state, irreducible, and aperiodic,
implying that all states are positive recurrent and ergodic.
Thus, there exist unique steady-state PMFs of the states of
these Markov chains [45]. The cellular or SN utilizations are
defined as the long-term averages of the ratios of slots with
successful packet transmissions to total number of slots. Due
to ergodicity, this is equal to the probability that a slot is
used for a successful transmission of a packet. Since the
short-term transients get averaged out in the long-term,
the steady-state PMFs of the Markov chains are used to
compute the probabilities to find the utilization levels. The
steady-state PMFs are calculated as follows.

First, define ΠC
i,j,k as the steady-state probability of the

cellular network chain to be in the state (i, j, k). Since Ns SN
Markov chains are identical, all of their steady-state PMFs
are the same. Thus, define ΠSN

i,j,k as the probability of any
SN chain to be in the state (i, j, k) in steady state.

Define one-to-one mappings �C : Z
3
+ → Z+ and

�S : Z3
+ → Z+ that map the three dimensional indices of the

cellular and SN Markov chain states, respectively, to one di-
mensional indices. Here, Z+ denotes the set of non-negative
integers. Then, given ρ, which is the probability of packet
collision with an SN given an ongoing cellular transmission,
the steady state PMF of cellular network Markov chain can
be found as the unique Perron-Frobenius left eigenvector of
the state transition matrix PC(ρ),

πT
CP

C(ρ) = πT
C, (19)

where

m := �C(i
′, j′, k′), n := �C(i, j, k) (20)

[PC(ρ)]n,m := P(XC(t+ 1) = (i′, j′, k′)|
XC(t) = (i, j, k)). (21)

Above, XC(t) denotes the cellular network Markov chain, t
denotes time index, the transition probabilities in Equation
(21) are specified in Figure 3, and πC is assumed to be
normalized such that its elements sum to one. Then ΠC

i,j,k

are simply elements of πC, i.e., ΠC
i,j,k = πC[n].

Similarly, given π0, which is simply equal to ΠC
0,0,1 , and

the decoupling assumption, the steady state PMF of SN
Markov chain can be found as follows

πT
SNP

SN(π0) = πT
SN, (22)

where

m := �S(i
′, j′, k′), n := �S(i, j, k) (23)

[P SN(π0)]n,m := P(XSN(t+ 1) = (i′, j′, k′)|
XSN(t) = (i, j, k)). (24)

Above, XSN(t) denotes the SN Markov chain, the transition
probabilities are given in Figure 4 and in Table 1, and πSN

is assumed to be normalized such that its elements sum to
one. Then ΠSN

i,j,k are simply elements of πSN, i.e., ΠSN
i,j,k =

πSN[n].
The parameter ρ is the probability of collision given the

cellular network is transmitting, which happens if the CLH
performs a missed detection, and then either decides to do
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an RF energy transfer or schedules an SN that has a packet
to send and enough energy to do so, which in turn happens
if the SN has enough energy (j ≤ B − K) and if it has at
least one packet in its queue (i ≥ 1) or a new packet arrives.
Thus ρ is given by

ρ = pMD

⎡
⎣(1− p) + p

⎛
⎝(1− βs)

B−K∑
j=1

ΠSN
0,j,0 +

αs

B−K∑
j=0

ΠSN
0,j,1 +

S∑
i=1

B−K∑
j=0

1∑
k=0

ΠSN
i,j,k

⎞
⎠
⎤
⎦ . (25)

We numerically solve the equations (19), (22) and (25)
jointly to compute the cellular and SN Markov chain PMFs,
as well as the parameters π0 = ΠC

0,0,1 and ρ. Then these
PMFs are used to compute the utilization levels as follows.

5.2.1 Cellular Network Utilization

Note that a cellular packet is not transmitted if one of the
following mutually exclusive events happen.

i) Queue Overflow (QO): Cellular queue is full, a new
packet arrives, the current transmission collides with an
SN, maximum number of cellular transmissions have
not been reached.

ii) Maximum Retransmissions (MR): A collision happens
after maximum number of cellular retransmissions is
reached.

Thus, the probability of a cellular packet to be successfully
transmitted (ST) is

P (ST) = 1− P (QO)− P (MR) . (26)

Given the steady-state PMF of the cellular network Markov
chain, the probabilities above are given by

P (QO) = (1− β)ρ
N−1∑
j=1

ΠC
M,j,0 + αρ

N−1∑
j=2

ΠC
M,j,1 , (27)

P (MR) = ρ
M∑
i=1

ΠC
i,N,0 + ρ

M∑
i=0

ΠC
i,N,1 . (28)

The cellular channel utilization is then the cellular utiliza-
tion in the absence of opportunistic IoT network access,
times the success probability,

UC =
α

α+ β
P (ST) . (29)

5.2.2 IoT Network Utilization

An SN performs a successful transmission at a slot if one of
the following mutually exclusive events happen:

i) ST1: Cellular network is not transmitting, CLH does not
make a false alarm, SN is scheduled for transmission, it
has enough energy to transmit, SN queue is empty but
a new packet arrives.

ii) ST2: Cellular network is not transmitting, CLH does not
make a false alarm, SN is scheduled for transmission, it
has enough energy to transmit, SN queue is not empty.

The probabilities of these events are given by

P (ST1) := π0(1− pFA)
p

Ns

⎡
⎣(1− βs)

B−K∑
j=1

ΠSN
0,j,0

+ αs

B−K∑
j=0

ΠSN
0,j,1

⎤
⎦ (30)

P (ST2) := π0(1− pFA)
p

Ns

S∑
i=1

B−K∑
j=0

1∑
k=0

ΠSN
i,j,k . (31)

Thus, for Ns SNs, the IoT network utilization is given by

US = Ns
αs

αs + βs
(P (ST1) + P (ST2)). (32)

6 RESULTS

In this section we present results obtained through our
detailed Markov chain model for different system param-
eters, comparing them with Monte Carlo simulations. In the
experiments, the system parameters used by default, unless
otherwise stated, are given in Table 2. The Monte Carlo
simulations have been conducted for 1,000,000 time slots
and repeated 25 times. The simulations are time-driven.
Ns+1 packet arrival processes, one for the cellular network
and Ns processes for the SNs are simulated. Each slot, when
the cellular network has packets in its queue or when the
queue is empty but a new packet arrives, it attempts to send
a packet. If the packet collides with any SN transmission,
then it is retransmitted in the next slot. A maximum of N
transmission attempts are done for a packet. The arriving
packets during transmissions are placed in the queue. If the
queue is full, the incoming packets are dropped.

For each run, the initial battery levels of the individual
SNs are assumed to be i.i.d. and uniform over [0, B]. The
incoming packets of an SN are also put in a queue to be
sent when the SN is scheduled and has enough energy for
transmission. The SNs don’t retransmit collided packets.
The incoming packets are dropped when their queues are
full. According to the nature of the IoT application, one
may alternatively think that the oldest packet is dropped
to make room for a new packet, when the SN queue is
full. This makes no difference on the following results. The
sensing, scheduling, RF energy transfer, energy harvesting
and data transmission operations are performed by the CLH
and SNs as explained in Section 3. For a given run, the
cellular or IoT utilization levels are calculated as the ratio
of the number of slots resulted in successful transmissions
to the total number of slots. The average utilizations over
25 Monte-Carlo runs are reported in the figures. For the IoT
network, sum utilization levels of all SNs are reported. The
standard deviations observed for each simulated utilization
level are found to be much smaller than the corresponding
mean values. We demonstrate in the results presented below
that the Markov chain analysis closely follows the Monte-
Carlo simulations especially for large number of sensor
nodes and small missed detection probability, as explained
in Section 4.1.

First, we investigate the IoT network utilization as a
function of the SN scheduling probability, p. This is illus-
trated in Figure 6 for 1, 50 and 500 sensor nodes present in
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TABLE 2
Default parameters used in the simulations, unless specified otherwise.

Param. Description Default
α Cellular head-of-line packet probability 0.5
β Cellular burst ending probability 0.5
M Cellular queue size 10
N Max number of tx. of a cellular packet 7

pMD Prob. of CLH performing a missed detection 0.05
pFA Probability of CLH performing a false alarm 0.05
p Prob. sched. SN, given channel found empty 0.5
αs SN head-of-line packet probability 0.01
βs SN burst ending probability 0.99
B SN battery capacity 110
S SN queue size 3
K Energy consumed by SN to txmit one packet 100
L Energy gained by RF energy transfer 1

the network. We observe that there is an optimal scheduling
probability p∗, in each case. For values of p < p∗, the perfor-
mance of the IoT network is limited by insufficient available
spectrum, as the portion of the channel not occupied by the
cellular network is largely used for energy transfer for these
p values. When p > p∗ on the other hand, the IoT utilization
becomes bounded by available energy at the sensor nodes.
As p increases, energy transfer becomes less frequent, and
as a consequence the SN utilizations decrease. For large
number of sensor nodes (say, 500 as in Figure 6(c)), even
though p∗ → 1, the sensor nodes are never energy limited
since they are scheduled less, energy obtained from ambient
harvesting is enough.

The figures also include the IoT utilization calculated
using the simple approximation in the previous section.
Similar to the above discussion, the IoT network utilization
first increases with p, since the spectrum availability limits
the utilization, i.e., Us

S ≤ Ue
S in Equation (18). When the

energy is the limiting factor, i.e., Us
S > Ue

S , the utilization
decreases as p increases. As seen, the simple approxima-
tion overestimates the IoT utilization for given SN traffic
patterns, however, it becomes more accurate as the number
of sensor nodes increases. In the figures, we also observe
that the SN traffic pattern plays an important role in the
IoT utilization levels, especially when the number of sensor
nodes in the network is small. In this case, an SN traffic with
shorter bursts (larger βs) provides a higher utilization level
than a pattern with longer bursts since queue overflows
occur less frequently.

A final note on Figure 6 is on the accuracy of the de-
coupling assumption. Although the Markov chain analysis
follows the Monte Carlo results in all plots, the deviation is
largest when there is only one SN. When number of SNs are
50 or 500, the difference is not significant. This observation
coincides with the analysis of Section 4.1.

In the subsequent plots, for each data point, the optimal
scheduling probability, p∗ is calculated numerically and the
corresponding utilization levels under such optimal energy
transfer policies are reported.

In Figure 7, we investigate the cellular, IoT and sum
utilization levels as a function of the number of sensor
nodes. We observe that, as the number of nodes increases,
the IoT network utilization increases. This increase is due to
a multiuser gain, observed thanks to the broadcast nature
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Fig. 6. IoT network utilization levels with respect to scheduling probability
p, for βs ∈ {0.1, 0.5, 0.99}. (a) Ns = 1, (b) Ns = 50 and (c) Ns = 500
sensor nodes are present. Note that βs = 0.99 and βs = 0.5 curves
are too close to discern in (c). Other parameters are set to the defaults
given in Table 2.

of energy transmission. In other words, as the number of
nodes increases, more sensor nodes harvest the ambient or
transferred energy. Even though the increase in the number
of nodes inversely impacts the probability of scheduling for
a given sensor node and lowers its individual utilization
level, the total IoT network utilization increases. If the
broadcast gain in the total harvested energy were absent, the
IoT network utilization would have remained unchanged
with respect to the number of sensor nodes.

The presence of the opportunistic IoT network is ob-
served to have no impact on the cellular utilization, since the
cellular utilization curve in the presence of opportunistic IoT
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Fig. 7. The cellular, IoT and sum utilization levels with respect to number
of sensor nodes present. Here, p is numerically optimized for each point.
Other parameters are set to defaults given in Table 2. The blue diamonds
and red triangles respectively denote the cellular and IoT utilization
results of the Monte-Carlo simulations. The cellular utilization curve in
the presence of opportunistic IoT network overlaps with the utilization
curve without the IoT network presence.

network overlaps with the utilization curve without the IoT
network presence, thanks to the retransmissions employed
by the cellular network. As shown in the results below, the
effect of the IoT network presence on the cellular network
utilization becomes more pronounced as the missed detec-
tion probability increases and maximum number of retrans-
missions decreases. The IoT network is shown to achieve a
sum utilization level of more than 40% and a total cellular
and IoT channel utilization of more than 90% for a network
with as high as 500 sensor nodes without any impact on
the cellular network utilization. This example demonstrates
that this type of operation is suitable and feasible in green
and spectrally efficient IoT networks, where there are many
nodes with very low and bursty individual traffic loads.

Next, we consider an IoT network with a single SN,
in order to investigate the effect of increasing SN traffic
load demand on cellular and IoT utilization levels. This
is illustrated in Figure 8. We observe that there is a max-
imum possible IoT utilization level for a given cellular
traffic utilization and pattern (here, cellular load is 50%
with α = β = 0.5). As the SN traffic demand increases,
p∗ decreases to provide more energy for SN transmissions
via energy transfer. However, beyond a certain point, the
SN utilization level is bounded by the available spectrum,
which is limited by the cellular traffic load and the min-
imum necessary spectrum for energy transfer by CLH to
satisfy this utilization level. This example illustrates that,
with RF energy harvesting and transfer, high individual
traffic loads for SNs are infeasible; once again confirming
that the system presented herein is most suitable for an IoT
operation with very low and bursty individual traffic loads.

Next, we investigate the behavior of the cellular and
IoT utilization levels as a function of increasing cellular
traffic load. This is illustrated in Figure 9. Clearly, when
the cellular traffic load increases, there is less spectrum
available for the IoT network. When there is a single sensor
node in the IoT network (Figure 9 (a)-(b)), the impact of
the cellular traffic load increase on the IoT utilization is
negligible, since the utilization of a single sensor node is
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Fig. 8. The cellular, IoT and total utilization levels with respect to the
SN traffic parameter αs. Here, there is Ns = 1 SN present, β = 0.5,
α = 0.5, βs = 0.99. p is numerically optimized for each point. Other
parameters are set to defaults as given in Table 2. Note that the total
utilization and both cellular utilization curves are too close to discern.
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Fig. 10. The cellular and IoT utilization levels with respect to missed
detection probability for varying maximum number of allowed cellular
transmissions. Here, there are Ns = 500 SNs present, β = 0.5, α = 0.5,
βs = 0.99. p is numerically optimized for each point. Other parameters
are set to defaults as given in Table 2.

bounded by limited available energy and it is too small to
be impacted by any increase in the cellular traffic load. For
both Figures 9 (a) and (b), the traffic demand of the sensor
node is αs/(αs + βs) = 1%, however, the actual αs and βs

values in Figure 9 (a) represent a burstier traffic compared
to Figure 9 (b). The conclusion is different, however, when
there are many sensor nodes in the IoT network (Figure 9
(c)-(d)). We observe that increasing the cellular traffic load
negatively impacts the sum IoT utilization level, since this
increase lowers the available spectrum that sensor nodes
could enjoy, due to the observed multiuser gain previously.

Last, we investigate the impact of sensing performance
on the utilization levels. In Figure 10, we plot the cellu-
lar and IoT network utilization levels with respect to the
probability of missed detection pMD, for varying maximum
number of allowed cellular transmissions N . Without loss
of generality, pMD is swept between 0 and 0.5, since any
decision function that results in a pMD > 0.5 can be flipped
to achieve pMD ≤ 0.5. In the figure, the dashed black
horizontal line at utilization=0.5 (visible toward the right of
the figure) represents the cellular network utilization level
when no IoT operation exists.
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Fig. 9. The cellular, IoT and total utilization levels with respect to the cellular traffic parameter α for various Ns, αs and βs values. p is numerically
optimized for each point. Other parameters are set to defaults as given in Table 2. The blue diamonds and red triangles respectively denote the
cellular and IoT utilization results of the Monte-Carlo simulations. Note that both cellular utilization curves are too close to discern in all plots. They
are also very close to total utilization curves in (a) and (b).

As mentioned earlier, for low pMD and for high N, the
impact of IoT operation on the cellular network is small even
though the IoT network achieves about 40% utilization. Due
to the retransmissions by the cellular network, most packets
can be eventually transmitted. However as pMD increases
and N decreases, the impact of the IoT network on the
cellular utilization is clearly visible. The IoT utilization also
drops with larger pMD, since collided packets are assumed
to be lost for both networks. On the other hand for larger
pMD, IoT utilization increases with smaller N, as the IoT
network finds more spectrum opportunities.

Another important observation is the increase in the
deviation of cellular network utilization levels between the
Markov Chain model’s prediction and Monte-Carlo sim-
ulations as pMD increases. This is in agreement with the
discussion in Section 4.1; when the collision probability
increases, the decoupling assumption starts to fail. However
it is notable that even until pMD is as high as 0.3, which is
arguably too high for any practical opportunistic spectrum
reuse scenario, the Markov Chain analysis and Monte-Carlo
results are very close. Therefore, for our simulation setting,
we conclude that the decoupling assumption is reasonable
for practical systems.

7 CONCLUSION

We propose, for the first time, a cellular IoT network that
performs RF energy harvesting and transfer, and shares

its spectrum opportunistically with other cellular network
services. The proposed slot-synchronous IoT network is
composed of two types of nodes: a cluster head (CLH) with
a reliable source of energy that conducts error-prone sens-
ing of the cellular traffic and randomly schedules energy-
harvesting sensor nodes (SNs) for information transfer. The
CLH also randomly allocates some of its perceived idle
channel time for energy transfer to SNs, which harvest
energy either from the transmission of the cellular network
or from the energy transfer of the CLH. In this framework,
we demonstrate the interplay between the spectrum avail-
ability, energy availability, information and energy transfer
operations using an inter-dependent Markov chain analysis
and observe that there is a multi-user gain in the sum
utilization due to the broadcast nature of the energy trans-
mission; as the number of sensor nodes increases, IoT net-
work utilization increases although individual utilizations
decrease. We demonstrate that the proposed cellular IoT
network is a feasible candidate for 5G, especially for a green,
energy and spectrally efficient sensor network operation
with high number of nodes demanding very low and bursty
individual traffic loads.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future direc-



1536-1233 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2017.2740378, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, XXXX 2017 15

tions,” Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660,
Sep. 2013.

[2] S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, and G. Mar-
rocco, “RFID Technology for IoT-based Personal Healthcare in
SmartSpaces,” IEEE Internet Things J., vol. 1, no. 2, pp. 144–152,
2014.

[3] N. Bui, A. P. Castellani, P. Casari, and M. Zorzi, “The internet of
energy: A web-enabled smart grid system,” IEEE Netw., vol. 26,
no. 4, pp. 39–45, 2012.

[4] L. Foschini, T. Taleb, A. Corradi, and D. Bottazzi, “M2M-based
metropolitan platform for IMS-enabled road traffic management
in IoT,” IEEE Commun. Mag., vol. 49, no. 11, pp. 50–57, 2011.

[5] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
“Internet of Things for Smart Cities,” IEEE Internet Things J., vol. 1,
no. 1, pp. 22–32, 2014.

[6] K. Fleming, P. Waweru, M. Wambua, E. Ondula, and L. Samuel,
“Toward Quantified Small-Scale Farms in Africa,” IEEE Internet
Comput., no. May/June, pp. 63–67, 2016.

[7] M. T. Lazarescu, “Design of a WSN platform for long-term en-
vironmental monitoring for IoT applications,” IEEE Trans. Emerg.
Sel. Topics Circuits Syst., vol. 3, no. 1, pp. 45–54, 2013.

[8] H. S. Dhillon, H. Huang, and H. Viswanathan, “Wide-
area Wireless Communication Challenges for the Internet
of Things,” ArXiv e-prints, Apr. 2015. [Online]. Available:
https://arxiv.org/abs/1504.03242

[9] J. Gozalvez, “New 3GPP Standard for IoT [Mobile Radio],” IEEE
Veh. Technol. Mag., vol. 11, no. 1, pp. 14–20, March 2016.

[10] E. Borgia, “The internet of things vision: Key features, applications
and open issues,” Comput. Commun., vol. 54, pp. 1–31, 2014.

[11] R. V. Prasad, S. Devasenapathy, V. S. Rao, and J. Vazifehdan, “Rein-
carnation in the Ambiance: Devices and networks with energy
harvesting,” IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 195–
213, 2014.

[12] T. Rault, A. Bouabdallah, and Y. Challal, “Energy Efficiency in
Wireless Sensor Networks: a top-down survey,” Comput. Netw.,
vol. 67, no. 4, pp. 104–122, 2014.

[13] S. Ulukus, A. Yener, E. Erkip, O. Simeone, M. Zorzi, P. Grover,
and K. Huang, “Energy Harvesting Wireless Communications: A
Review of Recent Advances,” IEEE J. Sel. Areas Commun., vol. 33,
no. 3, pp. 360–381, 2015.

[14] S. Kitazawa, H. Ban, and K. Kobayashi, “Energy harvesting from
ambient rf sources,” in Proc. of IEEE MTT-S, May 2012, pp. 39–42.

[15] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless
networks with RF energy harvesting: A contemporary survey,”
IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 757–789, 2015.

[16] S. Lee, R. Zhang, and K. Huang, “Opportunistic wireless energy
harvesting in cognitive radio networks,” IEEE Trans. Wireless Com-
mun., vol. 12, no. 9, pp. 4788–4799, September 2013.

[17] A. Osseiran, J. F. Monserrat, and P. Marsch, Eds., 5G Mobile and
Wireless Communications Technology. Cambridge University Press,
June 2016.

[18] Ericsson, “Ericsson Mobility Report on the Pulse of
the Networked Society,” Tech. Rep., November 2015.
[Online]. Available: http://www.ericsson.com/res/docs/2015/
mobility-report/ericsson-mobility-report-nov-2015.pdf

[19] E. Hossain and M. Hasan, “5G cellular: Key enabling technologies
and research challenges,” IEEE Trans. Instrum. Meas., vol. 18, no. 3,
pp. 11–21, 2015.

[20] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. M.
Leung, and Y. L. Guan, “Wireless Energy Harvesting for the
Internet of Things,” IEEE Commun. Mag., no. 6, pp. 102–108, 2015.

[21] M. Garlatova, G. Grebla, M. Cong, I. Kymissis, and G. Zussman,
“Movers and Shakers: Kinetic Energy Harvesting for the Internet
of Things,” IEEE J. Sel. Areas Commun., no. 8, pp. 1624–1639, 2015.

[22] L. Liu, R. Zhang, and K.-C. Chua, “Wireless information transfer
with opportunistic energy harvesting,” IEEE Trans. Wireless Com-
mun., vol. 12, no. 1, pp. 288–300, January 2013.

[23] S. Luo, R. Zhang, and T. J. Lim, “Optimal save-then-transmit
protocol for energy harvesting wireless transmitters,” IEEE Trans.
Wireless Commun., vol. 12, no. 3, pp. 1196–1207, March 2013.

[24] S. Yin, E. Zhang, L. Yin, and S. Li, “Optimal saving-sensing-
transmitting structure in self-powered cognitive radio systems
with wireless energy harvesting,” in Proc. of IEEE ICC, June 2013,
pp. 2807–2811.

[25] R. Zhang and C. K. Ho, “Mimo broadcasting for simultaneous
wireless information and power transfer,” IEEE Trans. Wireless
Commun., vol. 12, no. 5, pp. 1989–2001, May 2013.

[26] G. Zheng, Z. Ho, E. A. Jorswieck, and B. Ottersten, “Information
and energy cooperation in cognitive radio networks,” IEEE Trans.
Signal Process., vol. 62, no. 9, pp. 2290–2303, May 2014.

[27] M.-L. Ku, Y. Chen, and K. J. R. Liu, “Data-Driven Stochastic Mod-
els and Policies for Energy Harvesting Sensor Communications,”
IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1505–1520, 2015.

[28] W. H. R. Chan, P. Zhang, I. Nevat, S. G. Nagarajan, A. C. Valera,
H.-X. Tan, and N. Gautam, “Adaptive Duty Cycling in Sensor Net-
works With Energy Harvesting Using Continuous-Time Markov
Chain and Fluid Models,” IEEE J. Sel. Areas Commun., vol. 33,
no. 12, pp. 2687–2700, 2015.

[29] D. T. Hoang, D. Niyato, P. Wang, D. I. Kim, and S. Member,
“Opportunistic Channel Access and RF Energy Harvesting in
Cognitive Radio Networks,” IEEE J. Sel. Areas Commun., vol. 32,
no. 11, pp. 2039–2052, 2014.

[30] D. T. Hoang, D. Niyato, P. Wang, and D. I. Kim, “Performance
Optimization for Cooperative Multiuser Cognitive Radio Net-
works with RF Energy Harvesting Capability,” IEEE Trans. Wireless
Commun., vol. 14, no. 7, pp. 3614–3629, 2015.

[31] S. Yin, Z. Qu, and S. Li, “Achievable Throughput Optimization in
Energy Harvesting Cognitive Radio Systems,” IEEE J. Sel. Areas
Commun., vol. 33, no. 3, pp. 407–422, 2015.

[32] J. Kim and G. Hwang, “Stability Analysis of Multi-Channel Cog-
nitive Radio Networks Based on Decoupling Approach,” in Proc.
of Ubiquitous and Future Netw., 2015, pp. 645–650.

[33] N. Tadayon and S. Aı̈ssa, “Multi-Channel Cognitive Radio Net-
works: Modeling, Analysis and Synthesis,” IEEE J. Sel. Areas
Commun., vol. 32, no. 11, pp. 2065–2074, 2014.

[34] N. Tadayon and S. Aı̈ssa, “Modeling and Analysis Framework for
Multi-Interface Multi-Channel Cognitive Radio Networks,” IEEE
Trans. Wireless Commun., vol. 14, no. 2, pp. 935–947, 2015.

[35] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms
for cognitive radio applications,” IEEE Commun. Surveys Tuts.,
vol. 11, no. 1, pp. 116–130, 2009.

[36] M. Sahin, I. Guvenc, M. R. Jeong, and H. Arslan, “Handling
CCI and ICI in OFDMA femtocell networks through frequency
scheduling,” IEEE Trans. Consum. Electron., vol. 55, no. 4, pp. 1936–
1944, 2009.

[37] S. Geirhofer and L. Tong, “Dynamic Spectrum Access in the Time
Domain : Modeling and Exploiting White Space,” IEEE Commun.
Mag., no. May, pp. 66–72, 2007.

[38] M. Levorato, U. Mitra, and M. Zorzi, “Cognitive interference
management in retransmission-based wireless networks,” IEEE
Trans. Inf. Theory, vol. 58, pp. 3023–3046, May 2012.

[39] M. Levorato, S. Firouzabadi, and A. Goldsmith, “A learning
framework for cognitive interference networks with partial and
noisy observations,” IEEE Trans. Wireless Commun., vol. 11, pp.
3101–3111, September 2012.

[40] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed
coordination function,” IEEE J. Sel. Areas Commun., vol. 18, pp.
535–547, March 2000.

[41] A. Kumar, E. Altman, D. Miorandi, and M. Goyal, “New Insights
From a Fixed-Point Analysis of Single Cell IEEE 802.11 WLANs,”
IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 588–601, June 2007.

[42] V. Ramaiyan, A. Kumar, and E. Altman, “Fixed point analysis of
single cell IEEE 802.11e WLANs: uniqueness, multistability and
throughput differentiation,” in ACM SIGMETRICS Perform. Eval.
Rev., vol. 33, no. 1. ACM, 2005, pp. 109–120.

[43] G. Sharma, A. Ganesh, and P. Key, “Performance analysis of
contention based medium access control protocols,” IEEE Trans.
Inf. Theory, vol. 55, no. 4, pp. 1665–1682, 2009.

[44] J.-w. Cho, J.-Y. Le Boudec, and Y. Jiang, “On the asymptotic
validity of the decoupling assumption for analyzing 802.11 MAC
protocol,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6879–6893,
2012.

[45] A. Leon-Garcia, Probability, Statistics, & Random Processes for Elec-
trical Engineering, 3rd ed. Prentice Hall, 2007.


