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Abstract—Wireless underground sensor networks enable many of the applications, in particular, in oil reservoir digging,
applications, such as mine and tunnel disaster prevention, oil require the knowledge of location information of the randomly
upstream monitoring, earthquake prediction and landslide detec- deployed sensor nodes. However, the challenged underground

tion, and intelligent farming and irrigation among many others. . . L .
Most applications are location-dependent, so they require precise environments prevent the direct application of the conventional

sensor positions. However, classical localization solutions basedlocalization solutions based on the propagation properties of
on the propagation properties of electromagnetic waves do not electromagnetic (EM) waves because of the extremely short
function well in underground environments. This paper proposes communication ranges, highly unreliable channel conditions,
a magnetic induction (Ml)-based localization that accurately and and large antenna sizes [2]

efficiently locates randomly-deployed sensors in underground . . .
environments by leveraging the multi-path fading free nature of Magnetic induction (MI)-based underground communica-

MI signals. Specifically, the MI-based localization framework is tiOn is a promising wireless communication solution [3], [4]
first proposed based on underground MI channel modeling with that utilizes time-varying magnetic fields to deliver the in-

additive white Gaussian noise, the designated error function, and formation in challenged underground environments, including
semidefinite programming relaxation. Next, the paper proposes a g - ol reservoir, and underground water pipelines. Differ-

two-step positioning mechanism for obtaining fast and accurate . N
localization results by: first, developing the fast-initial positioning ent from conventional EM-based communication, Ml-based

through an alternating direction augmented Lagrangian method communication exhibits highly reliable and constant channel
for rough sensor locations within a short processing time, and conditions with sufficiently large communication ranges in

then proposing fine-grained positioning for performing powerful  underground [5]-[7]. First, contrary to EM waves, whose
search for optimal location estimations via the conjugate gradient performance is highly dependent on numerous environmental

algorithm. Simulations confirm that our solution yields accurate " h ¢ tent i K . d
sensor locations with both low and high noise and reveals properties such as water contents, soil makeup (i.e., sand,

the fundamental impact of underground environments on the Silt, or clay) and density, and specific crude oil composition,
localization performance. underground mediums (such as soil, sand, water, and crude oil)

Index Terms—Wireless underground sensor network, mag- Cause little vgriation in the.attenuation. rate of mag_netic fields
netic induction communication, localization algorithms, semidef- from that of air, due to similar magnetic permeability of each
inite programming (SDP), alternating direction augmented La- of these mediums [5]. Second, the multi-path fading is negli-
grangian method (ADM), conjugate gradient algorithm (CGA).  gible in underground MI systems [6], because communication

ranges in these systems are within one wavelength and even if
there exist multiple paths between the transceivers, the phase
. INTRODUCTION shifting of multiple paths is so small that the coherence band-

width is much larger than the system bandwidth. Third, large-
IRELESS underground sensor networks (WUSNs) aze antennas are necessary for efficient propagations of EM
a network of wirelessly-interconnected sensor nod

deploved in a variety of underaround environments. such Waves in underground environments, since the path loss of low
ploy Y grot . ' qguency signal is small. However, large antenna sizes make
soil, underground tunnels, and oil reservoir [1]. They can : . -
X . L underground sensors impractical. In MI-based communication,
enable a wide range of emerging applications, such as m

. . . . transmission and reception are accomplished via small-size
and tunnel disaster prevention, oil gas extraction, undergrounI e coils. There is no cutoff frequency as in the EM wave-
power grid monitoring’. ea}rthqyake .ar.1d I.andslide foreca%{‘ised tec;hnique [7]. Hence, small coil antennas are enough
border patrol and security, intelligent irrigation, and etc. Mo%r Mi-based communication and low frequency signals.
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erties of Ml channel [5], [6], we derive the mutual distanc&imulation results show that the proposed solution achieves
estimation between sensor nodes in such AWGN channelsry accurate positioningn avery short timdor both low and
Note that this AWGN modeling is validated through severdligh noise conditions, as well as under different underground
experiments of MI-based communication in an undergroutiannel settings. Note that the time-efficiency of our algorithm
in-lab testbed [8]. Next, based on such distance estimatioissparticularly important for localization in large-scale systems,
we propose a MI-based localization framework by formulatinguch as densely-deployed sensor network for oil reservoir
it as a semidefinite programming (SDP) relaxation problemonitoring, and for localization with mobile objects, such as
with the designated error function. In particular, the errgreople in mines or tunnels.
function depicts the mismatch between actual and estimated’he remainder of the paper is organized as follows. Sec-
transmission distances, and SDP relaxation further reforntien 1l introduces the related work and Section Il presents the
lates the error minimization into a convex relaxation problesystem model. Section IV introduces our MI-based localization
for accurate sensor positioning. To realize the introducé@mework. Under the proposed framework, Section V presents
framework, two successive positioning algorithms are prehe fast-initial positioning and Section VI presents the fine-
posed for fast and accurate localization. In particular, a fagfrained positioning. Section VII evaluates the localization
initial positioning scheme is first proposed through alterngperformance in a practical scenario of randomly-deployed
ing direction augmented Lagrangian method (ADM) [9] t&WUSNSs and Section VIII concludes the paper.
obtain rough sensor locations within short processing time.
To improve the accuracy of the initial positioning results,
a fine-grained positioning solution is then proposed through
conjugate gradient algorithm (CGA) [10] to perform powerful In the literature, the majority of the localization algorithms
search for optimal location estimations. focus on terrestrial wireless sensor networks. In [13], an
It is worth to note that the SDP relaxation and optimizatioaverview of localization strategies is provided with the per-
scheme has been applied in solving terrestrial localizatiG@rmance evaluation of several existing localization systems.
problem [11]. However, this scheme suffers from a podrhere are three prominent approaches for sensor localization:
convergence speed and therefore is not suitable for largedltidimensional scaling (MDS), simulated annealing (SA),
scale underground sensor networks. The reason is that it daed SDP. Regarding MDS, in [14], a distributed weighted
not explore the inherited optimization structure and therefokdDS (dwMDS) is proposed that allows a distributed imple-
can be only solved by the conventional primal-dual converentation with minimal required communication, accounts for
optimization tool (e.g., SeDuMi [12]). By our solution, we in-prior location information, and uses a weighted cost function
tentionally exploit the proposed localization problem structute give heavier weights for accurate pair-wise measurements.
by transforming the SDP relaxation formulation into a suitable [15], a collaborative localization is given where MDS is
format in such way that it is solvable via a fast-convergemted as an initialization method and maximum likelihood
algorithm, i.e., alternating direction augmented Lagrangiastimation further improves the initial results with its fast
method (ADM) [9] that has recently been used to provideonvergence. However, the drawback of MDS is its high
a powerful leverage for the algorithm analysis resulted frosomputation complexity and the requirements of much infor-
convex relaxation. What is more important, all the existingation for its procedures. The poor noise resistance of MDS
localization solutions fail to address the unique challengatso makes an additional design a must, limiting its practical
faced by wireless channels in underground environmentsages. In [16], the analysis of flip ambiguities and the robust
which will inevitably induce high localization errors if with- localization are provided to address the distance measurement
out proper underground channel modeling. Towards this, cenrors in centralized SA-based algorithm. However, several
proposed localization solution jointly applies ADM and CGAcritical issues exist in these heuristic-based algorithms, such as
with regards of Ml-based communication channel to achietiee convergence rates, the feasibility to the optimal objective
high positioning accuracy in WUSNs, while maintaining higlvalues, signaling exchange overhead, and etc.
computational efficiency. In [17], a fast convex relaxation method is employed for a
The major contributions of this paper are as follows: distributed localization implementation that largely depends
1) By using a limited number of two anchors we conduan the computation capacity of network devices to locally
received magnetic field strength measurements and oapture an optimal gradient direction of the objective via
troduce a localization algorithm based on error functiomformation broadcasting, which is impossible for WUSNs
and semidefinite programming relaxation for undergrouwthere the sensors’ capabilities and the number of anchors
wireless networks. are often very limited. In [11], the convex relaxation tech-
2) We also propose two successive fast positioning (i.@igue is applied to transform the non-convex problem into
alternating direction augmented Lagrangian method a- SDP relaxation for localization with high noisy distance
conjugate gradient algorithm) for fast and accurate loneasurements. Instead of employing SDP, another convex
calization. relaxation technique, namely the sum of squares (SoS) method,
3) We finally evaluate the performance of the proposas proposed in [18] that provides highly accurate localization
algorithms with respect to measurement errors from bagserformance at the cost of high computational complexity.
ground noises and underground channel impacts, suchRegher than focusing on convex relaxation, a polynomial-
medium conductivity and volumetric water contents. time non-convex optimization is further proposed in [19] for

II. RELATED WORK
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the initial node locations that are sufficient to recover trugvailable to the localization systems. In particular, as shown in
locations. However, above localization solutions suffer fromRigure 1, the channel models provide the estimated distances
poor convergence speed for large-scale networks. The reascemi®ng sensors, i.e;l}-j, 1<i< Nandj € NH, whereNH;
that they does not explore the inherited optimization structu@gnote the neighbor set of sengpand between anchors and
but simply adopt optimization packages (e.g., SeDuMi in [11Bensors, i.e.dy, 1 < i < N and1 < k < K, from the
for their cumbersome problem formulations. In our solutiomespective RMFS. Since anchors can be directly connected
we intentionally investigate the proposed localization probleta external power sources, they can achieve sufficiently long
and transform our SDP relaxation formulation so that it isommunication ranges such that the direct communication
solvable via a fast-convergent algorithm, such as ADM [9inks exist for each anchor to every sensor, which is different
that has recently been used to provide a powerful leverage favm conventional multi-hop sensor localization problem. As
the algorithm analysis resulted from convex relaxation. a result, this centralized localization system aims to provide
What is more important, all of existing localization solutionsinknown sensor locations from the given anchor locations and
fail to address the unique challenges faced by wireless ch#éme estimated sensor-to-sensor and sensor-to-anchor distances.
nels in underground environments [20], which will inevitably
induce high localization errors if without proper underground
channel modeling. Towards this, our proposed localization
solution, performed by the data sink, jointly applies ADM W first introduce MI channel modeling and then formulate
and CGA with regards of Ml-based communication channgle Mi-based localization framework through the designated
to achieve high positioning accuracy in WUSNs, while maircost function and SDP relaxation. The entire framework of the
taining high computational efficiency. proposed underground localization is shown in Figure 2.

IV. MI- BASED LOCALIZATION FRAMEWORK

I1l. SYSTEM MODEL
First of all, underground localization systems can be clad- MI-Based Communication and Channel Model

sified by the space dimensionality. For example, in Figure 1,\with MI communication, data information is carried by a
mine or tunnel disaster prevention [21] belongsblocaliza-  time varying magnetic field. Such a magnetic field is generated
tion, oil reservoir monitoring [7] needX localization. Specif- by a modulated sinusoid current along an MI coil antenna
ically, for 1D system in mine or tunnel, the backbone deviceg the transmitter. The receiver retrieves the information by
are anchors with large loop antennas that mount in tunngismodulating the induced current along the receiving coil
and are apart from each other by a certain distance. Mingistenna. Since the magnetic field does not exhibit multi-
carry small Ml transceivers to be tracked their positions bﬁlath behavior, given the RMFS, the distance between the
the remote control center. Fab system in reservoir fracture, ransmitter and receiver can be uniquely estimated with regards
the anchors are large dipole antennas inside the drilling well AWGN channels in MiI-based communication. Specifically,
to communicate with sensors, which are randomly deployg@m our previous studies [5], [6], transformer circuit models
in an entire oil reservoir. Recently, such in-situ monitoringan pe applied to accurately obtain the path loss of Mi-based
techniques based on underground sensor networks have drag@imunication, thus providing required estimated distances
lots of attention from the industry and research parties. Fgjy |ocalization systems. The details are given in the following.

example, the small and robust sensors oil reservoir monitoringl) Distance estimation for Ml-based communicatidfirst
have been developed [22]. Such micro wireless sensor noges,|| pased on our Ml channels [6], we have

have been successfully deployed into oil reservoirs [23].

In this paper, we focus on the more challengiz lo- 105/10 = 10(P=Larn)/10 4y, 1)
cal!zat|op in oil reservorr environment. Figure 1 shqws th\(/avherePT [dBm] and P; [dBm] are the RMFS and transmitted
typical oil reservoir environment. The wellbore is drilled to ower, respectivelyL [dB] is the path lossJV, a zero
the underground oil reservoirs at the depth of arousdkm. " ean , Gaupssian gistﬁéuted randomp variable' vx;ith standard
The hydraulic fracturing process utilizes high pressure flug}

to generate several long but very narrow fractures, which ac(?viation ¢, accounts for the background noise. With
) 9 y ' cqllected RMFS measurements, i.B.q, ..., P.,, EQ. (1) im-

as the tunnels between the wellbore and the targeted rog : : .
. : ies that these measurements are independent and identically
formations. By such a way, the oil and natural gas can lge . s . . . ,
. stributed (i.i.d.) Gaussian variable with meaand variance
extracted. The fracture generally has the length reaching up b . : oo .
. . ; . Towards this, we can derive the likelihood functidu-)
100 [m] and typically has the width and height 6f01 [m] ;

. ) o . of mean valud, i.e., RMFS, fromm measurements as
and1 [m], respectively. Since the sensors are injected into the
fractures based on hydraulic fracturing process, their locations L(O|P Po) = ﬁ exp (—(Pri — 9)2/2¢2)
are fully random. Consider a randomly-deployed WUSNs Ty frm) /2m 2 '

.. . . =1
consisting of N sensors with random positions denoted by .
the set{x; € R? : 1 <i < N} and K anchors with known Considering the maximum likelihood estimatg;;,, we have
positions denoted by the sét, € R? : 1 < k < K}. These d% log L(O|Pr1, ..., Prm) = 0. This implies that
anchor locations provide the reference points for other sensors. m
In addition, based on the MI channel models (details will Orrr = i} :P”-. ©)
m
=1

be explained in Section IV-A), two types of information are

)

|9ML
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Fig. 1: Randomly-deployed WUSNSs for different undergroupgleations:1D localization in mines or tunnels [21] arkD
localization in oil reservoirs [7].

Problem Formuation soP SR by exploiting the unique propagation of multi-path fading free
Underground Localization: relaxation | Fast Initial Positioning: H i
Error Fnctonand SDP P Alternating Direction property of Ml-based signals, we aim to propose an accurate
i H 3 . . . .
- “’f —— I v and fast localization algorithm for underground environments.
distances Section IV
MI-Based Communication
and Channel Model Initial sensor . . .
Section II-A | positions B. Underground Localization: Error Function and SDP
v
1 Fine-Grained Positioning: - I i I
——— Conrn oo Ao | Final sensor Based on the RM FS bqsed distance estimation strategy,
Section It (CGA) positions we formulate the localization framework through an error
Underground environments Section V

function and SDP relaxation, which aims to minimize the
Fig. 2: The entire localization framework for randomly£rrors between estimated positions and the actual ones. In
deployed WUSNSs with regard to sections in this paper. ~ Other words, we aim to find the sensor positions that minimize
the designated error function given the estimated distances in
Eq. (4). Towards this, the estimation errors in our localization

Eq. (3) shows that the maximum likelihood RMFS estimat@ystem are defined as
from m meaSl_Jrem_ents is the sarr_lplq mean of coIIec_te(_i mea- eij = |lwi — £le|2 _ A?j; e = || — axl|? - d?kv (5)
surements. With this unbiased estimatgrr,, the transmission

distanced can be uniquely estimated from the MI path loswhere{z;}i<;<x is the set of sensor position§a }1<k<x

model [6] as is the set of anchor positions, araf;,lj (d;x) are estimated
R Pe—dars node-to-node distances, obtained from Eq. (4). Givéen=
d= arg{d‘(l() oo —1)= [z1,..., 2], we minimize error functionf(X) to estimate

sensor positions (i.eX) as follows. Specifically, we have
16RE(T)Ry(T)d? @) .
W2p2(T)N¢Nya}a3G? (o(T,€),w,d) |’ X =argmin fF(X)

wherew is the operating angular frequengy[H/m] the mag- :=arg min Z (|| — z;]|* — d“?.)2
) ., R ) X R ij

netic permeability,l’ [°K] the working temperatures [F/m] {(6,j):1<i<N,jENH;}

the electrical permittivitys [S/m] the electrical conductivity, 9 9.9

G(-) an additional loss factor from the skin depth effet, * Z (s = anl|” = diy)*, ©6)

(N;) number of turns of the transmittér(receiver;) coil, a; {(ER):1<isNISk<K}

(a;) [m] the radius, and?} (Ré) [©/m] unit length resistance. where the first portion off(X) is from the estimation mis-
Note that the estimated distandén Eq. (4) indicates that as match among sensors and the second portiofy &f) is from

the transmission distanaé increases, RMFS decreases witithe mismatch among sensors and anchors. Eq. (6) implies that
a rate of1/d>. Also, in 2D oil reservoir environments, thethe error functionf(X), seen as thé., norm of errors from
angle between the transmitter (receiver) coil radial and the linegiven guess o, is a polynomial function of degree four.
connecting two coils becomes zero. Last but not the least, thiBased on this error function minimization in Eq. (6), we ap-
derived MI channel model [5], [6] is validated through severaglly the SDP relaxation to obtained the proposed underground
experiments in an underground testbed in our lab [8]. Thusgcalization framework as
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denote two auxiliary matrices with respect to constraints in

min 2 4 D €2 Eq. (7). Same as the interpretation of original SDP, in Eq. (8),
{(i,§):1<i<N,jENH,;} “ (G, k) 1<i<N1<k<K} the objective function aims to minimize mismatch errors from
st (0jei—e;))TZ(05e; —ej) = €5 + Jgj V(i ) location estimation, and the constraint functions indicate two
(ar; —ei)T Z(ay; —e;) = ein + Cigk (i, k) (") causes of estimation mismatch as well as the SDP relaxation.
I X Furthermore, we combine the constraints Af and A4;;; in
Z= ( xT vy =0 Eq. (8) into a single constraint as:
where the relaxation means that the last equation relaxes from AZ) = [(Aij. Z), (A, 2))"
Y =XTX toY = XTX, and! denotes the identity matrix. = ey +d2 e + d%]"T = b(e) (10)

On the one hand, the SDP relaxationdof- X7 X makes the

non-convex optimization problem defined in Eq. (7) becomd§ere A(Z) is a linear map ofZ. Finally, we formulate the

a convex one, which is easier to solve. On the other hand, t#ederground localization problem as a specific SDP, which can
high-rank property of SDP relaxation [24fts the obtained be further solved by ADM [9] in Section V-B, as follows:
solution into a higher dimensional space, i.e., higher than min Te

in Eq. (7), which results in estimation errors. This, in turn, st. A(Z)=ble); Z=0 " (11)

necessitates the design ofunding operation to obtain the o o )
solution into the correct dimensionality, i.&2. To optimize sensor localization, we make the following

In the following, we first propose a fast convergent schenftssumption 1 for localization problem throughout the paper.

for the problem in Eg. (7) through alternating direction augsssumption 1. The optimal solution exists for localization in
mented Lagrangian method in Section V, which has cogq. (7); that s, the matrice$A,;, A1} ;.x have full row rank

trollable computation complexity. After that, we propose @nd the Slater condition [24] holds for Eq. (11).
time-efficient search algorithm through conjugate gradient

algorithm in Section VI to yield a highly accurate localization F'om the above Assumption 1, the existence of optimal
solution withinR? for randomly-deployed sensors in WUSNsSolution for sensor localization holds.

V. FAST-INITIAL POSITIONING: ALTERNATING DIRECTION g oot jnitial Positioning through ADM

AUGMENTED LAGRANGIAN METHOD (ADM) _ ) )
. To solve the SDPproblem in Eq. (11), we exploit the widely-
When the number of constraints of SDP problem approacflitf

he order of unk o ; hods 1 opted ADM framework [25]. However, the framework
the order of unknown parameters, interior point methods [ [25] cannot be directly applied to our special underground

as th_e (l:oglvinponal solut]:ons to SD_P pr_oblem,dbecome "Wealization formulation, i.e., a specific SDP problem in Eq.
practical both in terms of computation time and storage 1), without further detailed examinations and derivations.

each iteration. On the contrary, ADM [9], a fast first-orde pecifically, first while the analysis in [25] works on the dual

method, provides much less computation and storage a;ﬂ%blem of the standard SDP, the considered objective function

COUld. further ta!<e_ advantagg of problem stru_cture such i s[25] is linear. However, ours is nonlinear (quadratic) and
sparsity. Thus, it is more suitable and sometimes the on

tical choice f ing | le SDPs. In the foll us complicates the primal iteration efas indicated by Eq.
practical choice for solving large-scale s- In he foflowin 14). Second, the constraint related to the semi-definiteness
we first examine a specific SDP form of localization proble

o L ondition is different between [25] and ours. More specifically,
We then propose a fast-initial positioning through ADM fog, [25], a semi-definite matrix is added to the output of the

the SDP problem. Finally, we analyze the convergence rateat{ﬁoint operator of linear map* (i.e., addition operations),

verify fast convergence of the proposed solution. where A*(y) == 3°,(3, yinj + 32, yF Ayy,) from Eq. (10).
However, in our work, Jthe semi-definite matri is the input

) N , of linear map A (i.e., functional operations), which brings
To effectively utilize fast-convergent ADM for solving the; o ed iterations of primaZ and dualA as in Eq. (16) and

IocaIi_zation SDP prot_)I_em, we ne_ed to transform the originglq' (17), respectively. In the following, we present an ADM-
SDP in Eq. (7). Spemﬂcglly, we first reformulate Eq. (7) intQaqeq “rigorous, and fast-convergent positioning algorithm
a matrix form as follows: with the specific SDP formulation in Eq. (11).

A. Underground Localization SDP Problem

T

min €€ First, the transformation from the SDP formulation in Eq.
st (A, Z) =€ + d?j Y(i,7) (®) (11) to an augmented Lagrangian function is standard [9], [25]
(A, Z) = e + d2, (i, k)’ and can be derived &, (Z, ¢, A) = €T e+ (A, A(Z) —b(e)) +
Z =0 21—p||A(Z) — b(e)||%, wherep > 0 is related to thepenalty
) parameterand A is the dual variable. Next, ADM works with
where € := [ei;]" denotes the error vector with ransposg, | to yield the updating rules of primal and dual variables.
operationT’, and Specifically, we solve the problem afin, zso L,(Z, ¢, A) on
0 them!" iteration forZ™*! ande™*!, starting from dual\® =
Aij = < ei— € (0 ei—ej), 0. We 1then upgate the dual variablg, ,; by A™*1 = A™ 4
i ay _ ©) w. Moreover, inspired by [25], to avoid time
k= e (ar —ei) consuming operation of jointly minimizing, with primal Z
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and ¢, we minimize the augmented Lagrangian functibp adjoint operator. With the above accomplishments, we propose
for Z ande iteratively. Specifically, updating rules for primalthe ADM-based fast-initial positioning iAlgorithm 1.
and dual variables are

"l .= argmin L,(Z™, e, A™); (12a) Algorithm 1: ADM-Based Fast-Initial Positioning
+1 +1 . 7 ij ik
Z = argIZnéléLp(Z,e ,A™); (12b) 1 <i<N.j EJNHi,l k<K

Output: z;,1 <i< N
1 Initialize primal Z° = 0 and dualA® = 0

. for m=20,1,... do
Note that the order of above Egs. (12a)-(12c) is not relevaht »
ve Egs. (12a)-(12¢) | v Calculate €™t from Eq. (14)

as similar convergence results and numerical performance ¢an el prmal o .

be yielded through any order [9], [25]. Upon this stage, thé Calcrlilf}e 4 ;ngl , eigenvalue decomposition

proposed SDP relaxation in Eq. (7) is completely solved bg/ ofU ’ an(jnZH from Eg. (16)

this time-efficient updating approach in Egs. (12a)-(12c). Calculated A from Eq. (17)
To further ease the computational complexity of updating

rules [25], we exploit several mathematical operations for

primal variabless and Z. More specifically, we applyi) the

first-order optimality [10] to Eq. (12a) for an explicit solution Convergence Analysis éigorithm 1

and(ii) the eigenvalue decomposition to ease the minimization

problem in Eq. (12b). First, we derive the optimality condition !N thiS section, we perform the convergence analysis, which
for e+1 in Eq. (12a) as shows thatAlgorithm 1 converges fast towards the optimal

solutions. In particular, we firsti) prove the algorithm is
VL, (Z™, emt Am)=2¢m+1 — A" 1 [A(Z™) — b(e™ )] globally convergent and thefii) show that the algorithm
P converges to the optimal solutions at r&él/m).

A = Am+%[A(zm+1)—b(em+l)]. (12c)

=0.
_ _ _ _ Theorem 1. [Global Convergence of Algorithm 1] Let Z
Thus, we obtain the updating rule of primal variable™ = genote the set of primal and dual solutions for the pri-
e(Zm,A™) as mal problem in Eq. (11) and the corresponding dual prob-
i i 0 .0 10 0
«(Z,A) = —(2p+ 1)V [D — A(Z) — pA], (14) lem. Then, from any starting pointZ°, e, T°(A%)) where

Il = (A*A)~tA*(A™+1), Algorithm 1 achieves the con-
whereb(e) = e+ D from Eq. (10). As mentioned, Eq. (14) isvergence of sequendgZ™, ™, T"™(A™))} to a set solution
re-derived because of the nonlinear objective function of ouz* ¢, I'*(A*)) € Z.

ific SDP f lation in Eq. (11).
spectic (.)rmliilloln in Eq. (11) Theorem 1 shows the global convergenceA@jorithm 1,
Next, regflrdmgz in Eq. (12b), we rearrange the termsy hich implies that the proposed iterative method converges for
of L,(Z,¢™", A™) and verify that Eq. (12b) is equivalent 1o arpitrary initial approximation. The proof of Theorem 1 is
ming [|A(Z) — VL2, based on a similar fixed-point argument [25] with regards of
s.t. Z =0 ) (159 our specific localization formulatiom Eq. (11). To simplify
it el A the readability of this paper, the details of the proof can be
whereV " = V(e ™, A™) andV (¢, A) := b(e)—pA. Note  found in our technical report [26, Appendix A].
that the equivalent problem here is different from [25] because|, addition, because of the difference in problem for-
Ofn*}tr]le dlfferfncis n s?nTll-def_lmteness conditions. Als*o, I&tulations, we cannot directly apply the convergence speed
gmtt = (A"A)7 A*(V™) with the adjoint operatorl”,  4najysis of the generic SDP problems in [25] for our specific
and A* A is invertible from Assumption 1. By the eigenvaluéspp problem. This is mainly because the convergence of
decomposition, we thus obtain thle explicit solution of thgye gual variables in our algorithm is not straight-forward
updating rule of primal variabl&™** as as that in [25]. In particular, the convergence of dual part
gm+l _ UTmH _ PTE+PTT (16) ?n Theorem 1 involves a deriveq function of .dual variables,
i.e., [(A) = (A*A)~1A*(A), while the work in [25] only
(i.e., PLPT is the spectral decomposition of the mattiX' ™!  deals with the dual variables themselves. Hence, we analyze
with nonnegative_ | and negativel_ eigenvalues. Moreover, the convergent rate oklgorithm 1 as follows.

we can reexamine the updating rule in Eq. (12c) as follows;
P g a- (12c) Theorem 2. [Global Linear Convergence of Algorithm 1.]

A1 _ A@m) v (17) LetW” =[U"—U*|} and D™ = [U™ ! —U™|%. Under
P ' the same assumption of TheoremI'! is non-increasing and
It implies that A*(A™+1) = %(A*A)(Zmﬂ _ gty = g"; < WO{(mf+ 1) for all m. That is,Algorithm 1 has an
%(A*A)(U;"*l), where U"*! := —P;%_P!' and can be (1/m) rate of convergence.

solved in polynomial-time from a simple linear matrix inequal- The key ideas of proving Theorem 2 af€ examining
ity (LMI). Specifically, while the generic work in [25] has athe relationship between primal, dual infeasibility and the
direct implication, our LMI involves both linear mapping andlifference between matricdé/™} from Section V-B andi7)
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using the Saddle Point Theorem [24] and Assumption 1, theThrough the above gradient-based search, we are able to
Lyapunov functiond™, and the nonincreasing™ to address round the high-dimensional (rank) solution from the proposed
linear convergence. Again in order to simplify the readabilithDM to the desired dimensionality of sensor location. In
of this paper, the details of the proof can be found in odhe following, we introduce a more sophisticated search that
technical report [26, Appendix B]. achieves optimal points much faster than the steepest descent
method and avoids possibly being stuck in local optima.

VI. FINE-GRAINED POSITIONING: CONJUGATE GRADIENT
ALGORITHM (CGA)

As mentioned in Section IV-B, the solution obtained from
SDP relaxation has the high-rank property. For exampl2Din  The basic concept of the conjugate gradient algorithm [10]
oil reservoir, the high-rank optimal solution from the proposeid to minimize the objective function, e.gf(X) in Eq. (18),
ADM should be translated int@D location solution without along with the corresponding conjugate direction (CD) of each
losing the optimality. In other words, we can fine-tune thigeration, e.g.d® and d™*Y, m > 0 in Eq. (22), instead
sensor positioning to further increase the location accuracy, adhering to the gradient direction, like in the steepest
based on the results of fast-initial positioning. This idea igescent method. Specifically, rather than adopting Eq. (19) in
easily realized through the design of search algorithm fewch iteration, the CGA provides that givaf?), the search
the optimal location solution in the correct dimensionality. literation follows
the following, we first examines the straightforward method, (m+1) _ 3 (m) (m)
steepest descent (SD), which utilizes the gradient of objective X = X"+ amd (21)
function for searching the minimum. Then, we apply a moighere 4(© = —Vf(X©) applies the gradient direction
sophisticated search approach based on the conjugate gragiginthe first iteration and the step size,, is determined
algorithm, which exploits conjugate direction (CD) to outpelhy «,, = argmingso®,,(a) where &,,(-) is defined as
form the conventional steepest descent method [10]. P, () == f(X(™) 4 ad™). If CGA does not approach the

minimum point after the current iteration, it constructs the next

A. Steepest Descent (SD) Method CD d(™*Y from the current directiod™) by

The objective function in Eq. (6) of the localization problem dmY = v p(x ) 4, dm) (22)
is first reformulated as

CGA with Conjugate Direction (CD)

where 3, is obtained via the conjugate concept by Fletcher-

FOX) = d3 — (i — )" (s — )] Reeves [10] as3,, = W. In other words, the
+Z[szk (@i — ak)T(m _ ak)]z_ (18) parameter sets ((fam,ﬁm),,;zo are obtained as
_ | X% 4 qdm)
Define Vf as Vf(X) = [Dfe,..... Dfz,]" where D, = o azrgér??f:?}fﬂ A
[%, 5 2] for 2D cases. Note thal/ f is the decent direction By = —— : 23)
of the objective function in Eq. (18). The SD method [10] ZT IRORZND
provides that giverX (), the search iteration follows By = Vfé?:;:;%g;gi:;”ﬂ
(m+1) = x(m) _ (m)
X - X . ame()((m) ) o - (19) where ¢; = [0"2,... 02 11%20'%2  0"T and
am = argminazo f (X —aVF(X™)) Fi = [D e Df, (s - D <m>Df (myy ooy D <m)Df <m>] :

wherea,, is the step size of thém + 1)'" iteration. In other Finally, the CGA is proposed |rAIgor|thm 2 for the
words, it performs an exact line-search to decide the stépe-grained positioning. To this end, we completely solve
size to minimizef (X (™*1) along theV f(X (™) direction. the underground localization with randomly-deployed sensors

Hence, the optimal step size,, of the (m + 1)" iteration is through the successive execution of the proposed ADM in

obtained through the following equation Algorithm 1 and CGA inAlgorithm 2.
Y (X —av (X)) ~0 (20)
da e VIl. PERFORMANCEEVALUATION IN OIL RESERVOIRS

a=0m

As suggested by [11]a,, can be further obtained from We evaluate the proposed Mi-based localization solution
Eq. (18) and Eqg. (20) byicial, + 6cicza?, + 2(c3 +  (i.e., Algorithm 1: ADM + Algorithm 2: CGA) in a practical

2cic3)am + 2c2c3 = 0, where 01 = ZlDfm(wn>Dfm(m>, scenario of2D oil reservoirs. Simulation results confirm that

e = —23(a! (m) _ (m))Df o — 22(3557”) — a)Df o, our solution achieves great positioning accuracy qnd functions
- (m) tm)g s (m) (m) i well even under severe environmental impact in terms of

andcs = > [d7; — (2, — ;)" (z;" —2;)] X[d5 —  volumetric water content, favored by the practical imple-

(:cl(m) —ak)T(:cEm) ax)]. Note that the derived equation formentation in randomly-deployed WUSNSs. In the following,

a., here is a third order polynomial and the analytical solutiowe first evaluate two proposed successive algorithmgOn
of roots thus exists. Also, a widely-used Armijo rule [27] cawil reservoir fractures. Then, we examine the underground
alternatively serve as a good approximation of the step sizenvironmental impact in the localization performance.
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(a) After fast-initial positioning (i.e., ADM). (b) After the entire localization (i.e., ADM+CGA).
Fig. 3: Localization results fo60 sensors with nf¥.
Algorithm 2: CGA (Fine-Grained Positioning) Figure 3 shows the localization results 60 unknown

sensor locations under high noise level (Hf=after fast-
initial positioning (i.e., ADM) and after the entire localization
(i.e., ADM+CGA), respectively. Two anchors are marked as
blue diamonds af—4,4] and [—4, —4]. Green circles refer

Input : f(-) from Eq. (18),X () := [T, ... 2% )"
from Algorithm 1

Output:  X™* % Sensor location

Setm = 0; compute d(®) = —V (X))

; while Vf(X(m)) 40 do to the origir]al Io_cations of gr_lknown Sensors; red agterisks
5 Compute a,, according to Eq. (23) ref(_ar to their _e_stlmated_ posmqns. In Figure 3a, while _the
. Compute X(™+1) according to Eq. (21) estlmgt_e_d p05|t_|(_)ns_ deviate a I_|ttle from t_he actual locations
s Compute 3,, according to Eq. (23) after_ initial posmonlng byAIgonthm 1, this step doe_s not

. Compute d+1) according to Eq. (22) require long processing time, i.e., only few iterations, to
; Setm — m + 1 obtain the useful _results. In Flgur(_e 3b,_more qccurate ngat!ons
s end are further obtained by executmg_ flnt_e—gralned posmomng
o Set X* — X (m) by Algorithm 2. It reduces the estimation errors in RMSD

and enhances the localization accuracy with a fast search
algorithm. Similar outcomes can be observed in Figure 4
for the larger size ofl00 unknown sensor locations. Initial
positioning provides rough locations with fast processing time
in Figure 4a, and fine-grained positioning further enhance the

As shown in Figure 1, it is assumed that there are twaerformance via a powerful and time-efficient search as shown
anchors inside a single drilling well and sensors are randonilyFigure 4b. The above detailed evaluation confirms that the
spread in a two-dimensional fracture. All simulation paramgroposed localization performs well in high noise levels and
ters and values are given in Table I, with regard to realistic a#l indifferent for network sizes through the fast and accurate
reservoirs. Particularly, it is considered that each anchor hggerations of two successive positioning. Note that Figures 3a-
the direct communication link to every sensor from its largefa indicate that after fast-initial localization, the error vectors
transmission range and coil antenna parameters are set to fitfithe estimated locations seem to follow the east-west (i.e.,
the thin-width fracture. In addition, to characterize the noideorizontal) direction. This biased estimation comes from the
level from the estimation errors, noise factor (nf) is defined aery limited two anchors with the following peculiarities in oil
di; = dij(1+ N(0,1) x nf), which is a given number betweenreservoirs: (1) the strong impacts from direct transmissions
[0,1] to control the amount of noise variance. Moreover, tof anchors and (2) the same horizontal axis for the two
characterize the positioning accuracy by measuring the estimachors. Specifically, in practical setups of oil reservoirs (in
tion mismatch, the root-mean-square distance (RMSD) metFigure 1 and [7]), due to the accessibility of the external power
is further defined as RMSD- ﬁ (ZZJ.\/:1 |z _jiHQ)W’ sources, anghors achieve longer communication ranges and
wherez is the actual sensor location afids the one obtained have direct links to_eqch sensor. Hence, com_pared to that of

R . short-range transmissions between some paired sensors, the

from the localization algorithm.

A. 2D Localization in Oil Reservoir Fractures
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TABLE I: SIMULATION PARAMETERS AND VALUES FOR PERFORMANCE EVALUATIONS.

Parameters Values
Fracture area 8 x 8 [m?]
Fracture depth 1.8 [km]
Fracture width 0.03-0.04 [m]
Underground temperaturé&) 418 [°K]
Soil makeup 30% sand particle20% clay particle
Bulk density 1.5 % 10° [grams/n¥]
Solid soil particle density 2.66 % 10° [grams/n?]
Magnetic material 30% paramagnetic composites0% ferromagnetic compositels
MI operating frequencyu{/2n) 7 [MHZz]
Coil antenna radiusaj 0.01 [m]
Coil antenna turn /) 10 turns
Antenna unit-length resistanc&() 0.01 [Q/m]
Sensor’s maximum transmission range) ( 3.2 [m]
4g Anchor © Correct location * Estimation 4g Anchor © Correct location * Estimation
#xo O o KO
3.2t ¥ %0 ¥¢Sx0 *O 32 ¢
*©
1.6
0
-1.6 1
¥ %o ¥Oxp o
-3.271 %O o %o 1 321
o x50 5 *-©
-4.8 : : : : : 4.8
48 -32 16 O 1.6 32 4.8 '

48 -32 -16 0 1.6 3.2 4.8
Refinement by CGA: RMSD = 7.67e-001
(b) After the entire localization (i.e., ADM+CGA).

Fig. 4: Localization results fot 00 sensors with nf%.

SDP by ADM: RMSD = 6.91e+000

(a) After fast-initial positioning (i.e., ADM).

estimated distances (as inputs of our localization systemmapges. For both cases of maximum transmission ranges
of these direct transmissions (between anchors and sensprg) and 3.2 [m], the proposed solution has less estima-
have strong impacts and play dominant roles in localizatidion error than the other under all evaluated noise factors.
results, especially for limited sensors’ transmission rangdavo solution has close performance under very low noise
Furthermore, given that the possible anchors only come frdmf=0.05). Furthermore, Figure 5b shows the corresponding re-
the large dipole antenna inside the drilling well, the two arsults in high noise regime. The proposed solution outperforms
chors will be vertically separated and have the same horizonta¢ other and maintains noticeable performance improvement
location. This implies that the fast-initial positioning is muctalong the different noise factors. In summary, these results
easier to locate sensors’ vertical locations than their horizontarify the superior design of the proposed localization, facili-
locations, and thus the estimated sensor locations inclinetéding an accurate and time-efficient localization algorithm in
have larger horizontal estimation errors. randomly-deployed WUSNSs.

Next, in Figure 5, we compare the proposed solution (i.e.,
ADM+CGA) with the benchmark scheme that combines trE Underground Environmental Impact
conventional SDP solver and steepest decent method (i.€.,
OPT+SD). Figure 5a shows the performance comparison withwhile the MI-based communication is adopted for its suit-
60 sensors in low noise regime. The estimation error &bleness in underground, water content in the surrounding ar-
calculated as a percentage of sensors’ maximum transmissais greatly affects the communication quality. In particular, if
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Fig. 7: VWC impact on the localization performance of our
solution in oil reservoir environments.

there are more electrolytes in the environments, the induction-
based communication and thus the Ml-based localization will
be dramatically degraded0 sensors are randomly-deployed
in oil reservoir, and each sensor can tolerate the maximum path
loss as120 [dB]. Figure 6 shows the environmental impact
of the electrical conductivity that stems from different water
contents. The salty water provides great signal conductivity,
impairs the signal induction, and thus gives the worst RMSD
values. Moreover, when the noise level is extremely low,
i.e., nf=0.05, the localization result 015% volumetric water
content (VWC) can approach the one in dry area. However,
when the noise becomes larger, the performance difference
also increases between the wet and dry areas. In addition,
y focusing on the normal water content with conductivity
oo = 5 x 1072, Figure 7 shows the impact on localization
from different volumes of water content. The results show
that although the VWC increases, the performance difference
is not obvious until in a very high noise levels. Larger VWC
brings more signal conductivity than induction and damages
the communication and thus the localization performance.
With these accomplishments, we successfully bring a fast and
accurate Ml-based localization that outperforms the existing
benchmark and suits the urgent positioning need of randomly-
deployed sensors in underground environments.

VIII. CONCLUSION

In this paper, the fundamental localization challenge in
randomly-deployed WUSNSs is addressed by exploiting RMFS
measurements from MI-based communication and proposing
fast and accurate successive positioning algorithms. Lever-
aging the multi-path and fading free natures of the MI-

Fig. 6: Conductivity impact on localization results of oubased communication, RMFS from AWGN channel modeling

solution in oil reservoir environmento, is the electrical serves as the location-dependent information for localization
conductivity at293 [°K].

algorithm designs. Moreover, the fast ADM provides useful
initial positioning within few iterations, and the powerful CGA
refines initial results into highly accurate sensor positions.
Performance evaluation confirms that the proposed localization
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guarantees considerable positioning accuracy with great tif#] D. Chapman and W. Trybula, “Meeting the challenges of oilfield

efﬁciency in underground environments bringing a novel| exploration using intelligent micro and nano-scale sensors,2002
. L 12th IEEE Conference on Nanotechnology (IEEE-NAN®)g 2012,
paradigm for underground sensor localization. pp. 1-6.
[23] PTRC-INCAS Innovation Centre, “Micro sensor motes successfully
travel through a canadian heavy oil reservoir,” Tech. Rep., Nov. 2012.
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