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Abstract—Wireless underground sensor networks enable many
applications, such as mine and tunnel disaster prevention, oil
upstream monitoring, earthquake prediction and landslide detec-
tion, and intelligent farming and irrigation among many others.
Most applications are location-dependent, so they require precise
sensor positions. However, classical localization solutions based
on the propagation properties of electromagnetic waves do not
function well in underground environments. This paper proposes
a magnetic induction (MI)-based localization that accurately and
efficiently locates randomly-deployed sensors in underground
environments by leveraging the multi-path fading free nature of
MI signals. Specifically, the MI-based localization framework is
first proposed based on underground MI channel modeling with
additive white Gaussian noise, the designated error function, and
semidefinite programming relaxation. Next, the paper proposes a
two-step positioning mechanism for obtaining fast and accurate
localization results by: first, developing the fast-initial positioning
through an alternating direction augmented Lagrangian method
for rough sensor locations within a short processing time, and
then proposing fine-grained positioning for performing powerful
search for optimal location estimations via the conjugate gradient
algorithm. Simulations confirm that our solution yields accurate
sensor locations with both low and high noise and reveals
the fundamental impact of underground environments on the
localization performance.

Index Terms—Wireless underground sensor network, mag-
netic induction communication, localization algorithms, semidef-
inite programming (SDP), alternating direction augmented La-
grangian method (ADM), conjugate gradient algorithm (CGA).

I. I NTRODUCTION

W IRELESS underground sensor networks (WUSNs) are
a network of wirelessly-interconnected sensor nodes

deployed in a variety of underground environments, such as
soil, underground tunnels, and oil reservoir [1]. They can
enable a wide range of emerging applications, such as mine
and tunnel disaster prevention, oil gas extraction, underground
power grid monitoring, earthquake and landslide forecast,
border patrol and security, intelligent irrigation, and etc. Most
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of the applications, in particular, in oil reservoir digging,
require the knowledge of location information of the randomly
deployed sensor nodes. However, the challenged underground
environments prevent the direct application of the conventional
localization solutions based on the propagation properties of
electromagnetic (EM) waves because of the extremely short
communication ranges, highly unreliable channel conditions,
and large antenna sizes [2].

Magnetic induction (MI)-based underground communica-
tion is a promising wireless communication solution [3], [4]
that utilizes time-varying magnetic fields to deliver the in-
formation in challenged underground environments, including
soil, oil reservoir, and underground water pipelines. Differ-
ent from conventional EM-based communication, MI-based
communication exhibits highly reliable and constant channel
conditions with sufficiently large communication ranges in
underground [5]–[7]. First, contrary to EM waves, whose
performance is highly dependent on numerous environmental
properties such as water contents, soil makeup (i.e., sand,
silt, or clay) and density, and specific crude oil composition,
underground mediums (such as soil, sand, water, and crude oil)
cause little variation in the attenuation rate of magnetic fields
from that of air, due to similar magnetic permeability of each
of these mediums [5]. Second, the multi-path fading is negli-
gible in underground MI systems [6], because communication
ranges in these systems are within one wavelength and even if
there exist multiple paths between the transceivers, the phase
shifting of multiple paths is so small that the coherence band-
width is much larger than the system bandwidth. Third, large-
size antennas are necessary for efficient propagations of EM
waves in underground environments, since the path loss of low
frequency signal is small. However, large antenna sizes make
underground sensors impractical. In MI-based communication,
the transmission and reception are accomplished via small-size
wire coils. There is no cutoff frequency as in the EM wave-
based technique [7]. Hence, small coil antennas are enough
for MI-based communication and low frequency signals.

In this paper we propose a novel MI-based localization
solution, which utilizes the promising features of MI channel
and the byproduct of MI-based communication, i.e., received
magnetic field strength (RMFS), to guarantee the accuracy,
simplicity, and convenience of the localization strategy. To
the best of our knowledge, this work is the first optimized
localization solution for WUSNs. Specifically, by leveraging
the unique multi-path fading free and highly constant prop-



2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2729887, IEEE Internet of
Things Journal

ACCEPTED FOR PUBLICATION IN THE IEEE IOT JOURNAL 2

erties of MI channel [5], [6], we derive the mutual distance
estimation between sensor nodes in such AWGN channels.
Note that this AWGN modeling is validated through several
experiments of MI-based communication in an underground
in-lab testbed [8]. Next, based on such distance estimations,
we propose a MI-based localization framework by formulating
it as a semidefinite programming (SDP) relaxation problem
with the designated error function. In particular, the error
function depicts the mismatch between actual and estimated
transmission distances, and SDP relaxation further reformu-
lates the error minimization into a convex relaxation problem
for accurate sensor positioning. To realize the introduced
framework, two successive positioning algorithms are pro-
posed for fast and accurate localization. In particular, a fast-
initial positioning scheme is first proposed through alternat-
ing direction augmented Lagrangian method (ADM) [9] to
obtain rough sensor locations within short processing time.
To improve the accuracy of the initial positioning results,
a fine-grained positioning solution is then proposed through
conjugate gradient algorithm (CGA) [10] to perform powerful
search for optimal location estimations.

It is worth to note that the SDP relaxation and optimization
scheme has been applied in solving terrestrial localization
problem [11]. However, this scheme suffers from a poor
convergence speed and therefore is not suitable for large-
scale underground sensor networks. The reason is that it does
not explore the inherited optimization structure and therefore
can be only solved by the conventional primal-dual convex
optimization tool (e.g., SeDuMi [12]). By our solution, we in-
tentionally exploit the proposed localization problem structure
by transforming the SDP relaxation formulation into a suitable
format in such way that it is solvable via a fast-convergent
algorithm, i.e., alternating direction augmented Lagrangian
method (ADM) [9] that has recently been used to provide
a powerful leverage for the algorithm analysis resulted from
convex relaxation. What is more important, all the existing
localization solutions fail to address the unique challenges
faced by wireless channels in underground environments,
which will inevitably induce high localization errors if with-
out proper underground channel modeling. Towards this, our
proposed localization solution jointly applies ADM and CGA
with regards of MI-based communication channel to achieve
high positioning accuracy in WUSNs, while maintaining high
computational efficiency.

The major contributions of this paper are as follows:
1) By using a limited number of two anchors we conduct

received magnetic field strength measurements and in-
troduce a localization algorithm based on error function
and semidefinite programming relaxation for underground
wireless networks.

2) We also propose two successive fast positioning (i.e.,
alternating direction augmented Lagrangian method +
conjugate gradient algorithm) for fast and accurate lo-
calization.

3) We finally evaluate the performance of the proposed
algorithms with respect to measurement errors from back-
ground noises and underground channel impacts, such as
medium conductivity and volumetric water contents.

Simulation results show that the proposed solution achieves
very accurate positioningin a very short timefor both low and
high noise conditions, as well as under different underground
channel settings. Note that the time-efficiency of our algorithm
is particularly important for localization in large-scale systems,
such as densely-deployed sensor network for oil reservoir
monitoring, and for localization with mobile objects, such as
people in mines or tunnels.

The remainder of the paper is organized as follows. Sec-
tion II introduces the related work and Section III presents the
system model. Section IV introduces our MI-based localization
framework. Under the proposed framework, Section V presents
the fast-initial positioning and Section VI presents the fine-
grained positioning. Section VII evaluates the localization
performance in a practical scenario of randomly-deployed
WUSNs and Section VIII concludes the paper.

II. RELATED WORK

In the literature, the majority of the localization algorithms
focus on terrestrial wireless sensor networks. In [13], an
overview of localization strategies is provided with the per-
formance evaluation of several existing localization systems.
There are three prominent approaches for sensor localization:
multidimensional scaling (MDS), simulated annealing (SA),
and SDP. Regarding MDS, in [14], a distributed weighted
MDS (dwMDS) is proposed that allows a distributed imple-
mentation with minimal required communication, accounts for
prior location information, and uses a weighted cost function
to give heavier weights for accurate pair-wise measurements.
In [15], a collaborative localization is given where MDS is
used as an initialization method and maximum likelihood
estimation further improves the initial results with its fast
convergence. However, the drawback of MDS is its high
computation complexity and the requirements of much infor-
mation for its procedures. The poor noise resistance of MDS
also makes an additional design a must, limiting its practical
usages. In [16], the analysis of flip ambiguities and the robust
localization are provided to address the distance measurement
errors in centralized SA-based algorithm. However, several
critical issues exist in these heuristic-based algorithms, such as
the convergence rates, the feasibility to the optimal objective
values, signaling exchange overhead, and etc.

In [17], a fast convex relaxation method is employed for a
distributed localization implementation that largely depends
on the computation capacity of network devices to locally
capture an optimal gradient direction of the objective via
information broadcasting, which is impossible for WUSNs
where the sensors’ capabilities and the number of anchors
are often very limited. In [11], the convex relaxation tech-
nique is applied to transform the non-convex problem into
a SDP relaxation for localization with high noisy distance
measurements. Instead of employing SDP, another convex
relaxation technique, namely the sum of squares (SoS) method,
is proposed in [18] that provides highly accurate localization
performance at the cost of high computational complexity.
Rather than focusing on convex relaxation, a polynomial-
time non-convex optimization is further proposed in [19] for
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the initial node locations that are sufficient to recover true
locations. However, above localization solutions suffer from a
poor convergence speed for large-scale networks. The reason is
that they does not explore the inherited optimization structure,
but simply adopt optimization packages (e.g., SeDuMi in [11])
for their cumbersome problem formulations. In our solution,
we intentionally investigate the proposed localization problem
and transform our SDP relaxation formulation so that it is
solvable via a fast-convergent algorithm, such as ADM [9]
that has recently been used to provide a powerful leverage for
the algorithm analysis resulted from convex relaxation.

What is more important, all of existing localization solutions
fail to address the unique challenges faced by wireless chan-
nels in underground environments [20], which will inevitably
induce high localization errors if without proper underground
channel modeling. Towards this, our proposed localization
solution, performed by the data sink, jointly applies ADM
and CGA with regards of MI-based communication channel
to achieve high positioning accuracy in WUSNs, while main-
taining high computational efficiency.

III. SYSTEM MODEL

First of all, underground localization systems can be clas-
sified by the space dimensionality. For example, in Figure 1,
mine or tunnel disaster prevention [21] belongs to1D localiza-
tion, oil reservoir monitoring [7] needs2D localization. Specif-
ically, for 1D system in mine or tunnel, the backbone devices
are anchors with large loop antennas that mount in tunnels
and are apart from each other by a certain distance. Miners
carry small MI transceivers to be tracked their positions by
the remote control center. For2D system in reservoir fracture,
the anchors are large dipole antennas inside the drilling well
to communicate with sensors, which are randomly deployed
in an entire oil reservoir. Recently, such in-situ monitoring
techniques based on underground sensor networks have drawn
lots of attention from the industry and research parties. For
example, the small and robust sensors oil reservoir monitoring
have been developed [22]. Such micro wireless sensor nodes
have been successfully deployed into oil reservoirs [23].

In this paper, we focus on the more challenging2D lo-
calization in oil reservoir environment. Figure 1 shows the
typical oil reservoir environment. The wellbore is drilled to
the underground oil reservoirs at the depth of around1.8 [km].
The hydraulic fracturing process utilizes high pressure fluid
to generate several long but very narrow fractures, which act
as the tunnels between the wellbore and the targeted rock
formations. By such a way, the oil and natural gas can be
extracted. The fracture generally has the length reaching up to
100 [m] and typically has the width and height of0.01 [m]
and1 [m], respectively. Since the sensors are injected into the
fractures based on hydraulic fracturing process, their locations
are fully random. Consider a randomly-deployed WUSNs
consisting ofN sensors with random positions denoted by
the set{xi ∈ R

2 : 1 ≤ i ≤ N} andK anchors with known
positions denoted by the set{ak ∈ R

2 : 1 ≤ k ≤ K}. These
anchor locations provide the reference points for other sensors.

In addition, based on the MI channel models (details will
be explained in Section IV-A), two types of information are

available to the localization systems. In particular, as shown in
Figure 1, the channel models provide the estimated distances
among sensors, i.e.,̂dij , 1 ≤ i ≤ N andj ∈ NHi whereNHi

denote the neighbor set of sensori, and between anchors and
sensors, i.e.,̂dik, 1 ≤ i ≤ N and 1 ≤ k ≤ K, from the
respective RMFS. Since anchors can be directly connected
to external power sources, they can achieve sufficiently long
communication ranges such that the direct communication
links exist for each anchor to every sensor, which is different
from conventional multi-hop sensor localization problem. As
a result, this centralized localization system aims to provide
unknown sensor locations from the given anchor locations and
the estimated sensor-to-sensor and sensor-to-anchor distances.

IV. MI- BASED LOCALIZATION FRAMEWORK

We first introduce MI channel modeling and then formulate
the MI-based localization framework through the designated
cost function and SDP relaxation. The entire framework of the
proposed underground localization is shown in Figure 2.

A. MI-Based Communication and Channel Model

With MI communication, data information is carried by a
time varying magnetic field. Such a magnetic field is generated
by a modulated sinusoid current along an MI coil antenna
at the transmitter. The receiver retrieves the information by
demodulating the induced current along the receiving coil
antenna. Since the magnetic field does not exhibit multi-
path behavior, given the RMFS, the distance between the
transmitter and receiver can be uniquely estimated with regards
to AWGN channels in MI-based communication. Specifically,
from our previous studies [5], [6], transformer circuit models
can be applied to accurately obtain the path loss of MI-based
communication, thus providing required estimated distances
for localization systems. The details are given in the following.

1) Distance estimation for MI-based communication:First
of all, based on our MI channels [6], we have

10Pr/10 = 10(Pt−LMI)/10 +W, (1)

wherePr [dBm] andPt [dBm] are the RMFS and transmitted
power, respectively;LMI [dB] is the path loss;W , a zero
mean Gaussian distributed random variable with standard
deviation φ, accounts for the background noise. Withm
collected RMFS measurements, i.e.,Pr1, . . . , Prm, Eq. (1) im-
plies that these measurements are independent and identically
distributed (i.i.d.) Gaussian variable with meanθ and variance
φ2. Towards this, we can derive the likelihood functionL(·)
of mean valueθ, i.e., RMFS, fromm measurements as

L(θ|Pr1, . . . , Prm) =

m
∏

i=1

exp
(

−(Pri − θ)2/2φ2
)

√

2πφ2
. (2)

Considering the maximum likelihood estimateθ̂ML, we have
d
dθ logL(θ|Pr1, . . . , Prm)|θ̂ML

= 0. This implies that

θ̂ML =
1

m

m
∑

i=1

Pri. (3)
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Fig. 1: Randomly-deployed WUSNs for different underground applications:1D localization in mines or tunnels [21] and2D
localization in oil reservoirs [7].
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deployed WUSNs with regard to sections in this paper.

Eq. (3) shows that the maximum likelihood RMFS estimate
from m measurements is the sample mean of collected mea-
surements. With this unbiased estimatorθ̂ML, the transmission
distanced can be uniquely estimated from the MI path loss
model [6] as

d̂ = arg

{

d

∣

∣

∣

∣

(10
Pt−θ̂ML

10 − 1) =

16Rt
0(T )R

r
0(T )d

3

ω2µ2(T )NtNra3ta
3
rG

2 (σ(T, ε), ω, d)

}

,(4)

whereω is the operating angular frequency,µ [H/m] the mag-
netic permeability,T [◦K] the working temperature,ε [F/m]
the electrical permittivity,σ [S/m] the electrical conductivity,
G(·) an additional loss factor from the skin depth effect,Ni

(Nj) number of turns of the transmitteri (receiverj) coil, ai
(aj) [m] the radius, andRi

0 (Rj
0) [Ω/m] unit length resistance.

Note that the estimated distancêd in Eq. (4) indicates that as
the transmission distanced increases, RMFS decreases with
a rate of1/d3. Also, in 2D oil reservoir environments, the
angle between the transmitter (receiver) coil radial and the line
connecting two coils becomes zero. Last but not the least, this
derived MI channel model [5], [6] is validated through several
experiments in an underground testbed in our lab [8]. Thus,

by exploiting the unique propagation of multi-path fading free
property of MI-based signals, we aim to propose an accurate
and fast localization algorithm for underground environments.

B. Underground Localization: Error Function and SDP

Based on the RMFS-based distance estimation strategy,
we formulate the localization framework through an error
function and SDP relaxation, which aims to minimize the
errors between estimated positions and the actual ones. In
other words, we aim to find the sensor positions that minimize
the designated error function given the estimated distances in
Eq. (4). Towards this, the estimation errors in our localization
system are defined as

ǫij = ‖xi − xj‖
2 − d̂2ij ; ǫik = ‖xi − ak‖

2 − d̂2ik, (5)

where{xi}1≤i≤N is the set of sensor positions,{ak}1≤k≤K

is the set of anchor positions, and̂dij (d̂ik) are estimated
node-to-node distances, obtained from Eq. (4). GivenX :=
[x1, . . . , xN ], we minimize error functionf(X) to estimate
sensor positions (i.e.,̂X) as follows. Specifically, we have

X̂=argmin
X

f(X)

:=argmin
X

∑

{(i,j):1≤i≤N,j∈NHi}
(‖xi − xj‖

2 − d̂2ij)
2

+
∑

{(i,k):1≤i≤N,1≤k≤K}
(‖xi − ak‖

2 − d̂2ik)
2, (6)

where the first portion off(X) is from the estimation mis-
match among sensors and the second portion off(X) is from
the mismatch among sensors and anchors. Eq. (6) implies that
the error functionf(X), seen as theL2 norm of errors from
a given guess ofX , is a polynomial function of degree four.

Based on this error function minimization in Eq. (6), we ap-
ply the SDP relaxation to obtained the proposed underground
localization framework as
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min
∑

{(i,j):1≤i≤N,j∈NHi}
ǫ2ij +

∑

{(i,k):1≤i≤N,1≤k≤K}
ǫ2ik

s.t. (0; ei − ej)
TZ(0; ei − ej) = ǫij + d̂2ij ∀(i, j)

(ak;−ei)
TZ(ak;−ei) = ǫik + d̂2ik ∀(i, k)

Z =

(

I X
XT Y

)

� 0

(7)

where the relaxation means that the last equation relaxes from
Y = XTX to Y � XTX , andI denotes the identity matrix.
On the one hand, the SDP relaxation ofY � XTX makes the
non-convex optimization problem defined in Eq. (7) becomes
a convex one, which is easier to solve. On the other hand, the
high-rank property of SDP relaxation [24]lifts the obtained
solution into a higher dimensional space, i.e., higher thanR

2

in Eq. (7), which results in estimation errors. This, in turn,
necessitates the design ofrounding operation to obtain the
solution into the correct dimensionality, i.e.,R2.

In the following, we first propose a fast convergent scheme
for the problem in Eq. (7) through alternating direction aug-
mented Lagrangian method in Section V, which has con-
trollable computation complexity. After that, we propose a
time-efficient search algorithm through conjugate gradient
algorithm in Section VI to yield a highly accurate localization
solution withinR2 for randomly-deployed sensors in WUSNs.

V. FAST-INITIAL POSITIONING: ALTERNATING DIRECTION

AUGMENTED LAGRANGIAN METHOD (ADM)

When the number of constraints of SDP problem approaches
the order of unknown parameters, interior point methods [10],
as the conventional solutions to SDP problem, become im-
practical both in terms of computation time and storage at
each iteration. On the contrary, ADM [9], a fast first-order
method, provides much less computation and storage and
could further take advantage of problem structure such as
sparsity. Thus, it is more suitable and sometimes the only
practical choice for solving large-scale SDPs. In the following,
we first examine a specific SDP form of localization problem.
We then propose a fast-initial positioning through ADM for
the SDP problem. Finally, we analyze the convergence rate to
verify fast convergence of the proposed solution.

A. Underground Localization SDP Problem

To effectively utilize fast-convergent ADM for solving the
localization SDP problem, we need to transform the original
SDP in Eq. (7). Specifically, we first reformulate Eq. (7) into
a matrix form as follows:

min ǫT ǫ

s.t. 〈Aij , Z〉 = ǫij + d̂2ij ∀(i, j)

〈Āik, Z〉 = ǫik + d̂2ik ∀(i, k)
Z � 0

, (8)

where ǫ := [ǫij ]
T denotes the error vector with transpose

operationT , and

Aij :=

(

0
ei − ej

)

(

0 ei − ej
)

,

Āik :=

(

ak
−ei

)

(

ak −ei
)

(9)

denote two auxiliary matrices with respect to constraints in
Eq. (7). Same as the interpretation of original SDP, in Eq. (8),
the objective function aims to minimize mismatch errors from
location estimation, and the constraint functions indicate two
causes of estimation mismatch as well as the SDP relaxation.
Furthermore, we combine the constraints ofAij and Āik in
Eq. (8) into a single constraint as:

A(Z) := [〈Aij , Z〉, 〈Āik, Z〉]T

= [ǫij + d̂2ij , ǫik + d̂2ik]
T := b(ǫ) (10)

whereA(Z) is a linear map ofZ. Finally, we formulate the
underground localization problem as a specific SDP, which can
be further solved by ADM [9] in Section V-B, as follows:

min ǫT ǫ
s.t. A(Z) = b(ǫ); Z � 0

. (11)

To optimize sensor localization, we make the following
Assumption 1 for localization problem throughout the paper.

Assumption 1. The optimal solution exists for localization in
Eq. (7); that is, the matrices{Aij , Āik}i,j,k have full row rank
and the Slater condition [24] holds for Eq. (11).

From the above Assumption 1, the existence of optimal
solution for sensor localization holds.

B. Fast-Initial Positioning through ADM

To solve the SDPproblem in Eq. (11), we exploit the widely-
adopted ADM framework [25]. However, the framework
in [25] cannot be directly applied to our special underground
localization formulation, i.e., a specific SDP problem in Eq.
(11), without further detailed examinations and derivations.
Specifically, first while the analysis in [25] works on the dual
problem of the standard SDP, the considered objective function
in [25] is linear. However, ours is nonlinear (quadratic) and
thus complicates the primal iteration ofǫ as indicated by Eq.
(14). Second, the constraint related to the semi-definiteness
condition is different between [25] and ours. More specifically,
in [25], a semi-definite matrix is added to the output of the
adjoint operator of linear mapA∗ (i.e., addition operations),
whereA∗(y) :=

∑

i(
∑

j y
j
iAij +

∑

k y
k
i Āik) from Eq. (10).

However, in our work, the semi-definite matrixZ is the input
of linear mapA (i.e., functional operations), which brings
involved iterations of primalZ and dualΛ as in Eq. (16) and
Eq. (17), respectively. In the following, we present an ADM-
based, rigorous, and fast-convergent positioning algorithm
with the specific SDP formulation in Eq. (11).

First, the transformation from the SDP formulation in Eq.
(11) to an augmented Lagrangian function is standard [9], [25]
and can be derived asLρ(Z, ǫ,Λ) = ǫT ǫ+ 〈Λ, A(Z)−b(ǫ)〉+
1
2ρ‖A(Z) − b(ǫ)‖2F , where ρ > 0 is related to thepenalty
parameterandΛ is the dual variable. Next, ADM works with
Lρ to yield the updating rules of primal and dual variables.
Specifically, we solve the problem ofminǫ,Z�0 Lρ(Z, ǫ,Λ) on
themth iteration forZm+1 andǫm+1, starting from dualΛ0 =
0. We then update the dual variableΛm+1 by Λm+1 = Λm +
A(Zm+1)−b(ǫm+1)

ρ . Moreover, inspired by [25], to avoid time
consuming operation of jointly minimizingLρ with primal Z
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and ǫ, we minimize the augmented Lagrangian functionLρ

for Z andǫ iteratively. Specifically, updating rules for primal
and dual variables are

ǫm+1 := argmin
ǫ

Lρ(Z
m, ǫ,Λm); (12a)

Zm+1 := argmin
Z�0

Lρ(Z, ǫ
m+1,Λm); (12b)

Λm+1 := Λm +
1

ρ
[A(Zm+1)− b(ǫm+1)]. (12c)

Note that the order of above Eqs. (12a)-(12c) is not relevant
as similar convergence results and numerical performance can
be yielded through any order [9], [25]. Upon this stage, the
proposed SDP relaxation in Eq. (7) is completely solved by
this time-efficient updating approach in Eqs. (12a)-(12c).

To further ease the computational complexity of updating
rules [25], we exploit several mathematical operations for
primal variablesǫ andZ. More specifically, we apply(i) the
first-order optimality [10] to Eq. (12a) for an explicit solution
and(ii) the eigenvalue decomposition to ease the minimization
problem in Eq. (12b). First, we derive the optimality condition
for ǫm+1 in Eq. (12a) as

∇ǫLρ(Z
m, ǫm+1,Λm)=2ǫm+1 − Λm −

1

ρ

[

A(Zm)− b(ǫm+1)
]

=0. (13)

Thus, we obtain the updating rule of primal variableǫm+1 =
ǫ(Zm,Λm) as

ǫ(Z,Λ) = −(2ρ+ 1)−1[D −A(Z)− ρΛ], (14)

whereb(ǫ) = ǫ+D from Eq. (10). As mentioned, Eq. (14) is
re-derived because of the nonlinear objective function of our
specific SDP formulation in Eq. (11).

Next, regardingZm+1 in Eq. (12b), we rearrange the terms
of Lρ(Z, ǫ

m+1,Λm) and verify that Eq. (12b) is equivalent to

minZ ‖A(Z)− V m+1‖2F
s.t. Z � 0

, (15)

whereV m+1 := V (ǫm+1,Λm) andV (ǫ,Λ) := b(ǫ)−ρΛ. Note
that the equivalent problem here is different from [25] because
of the differences in semi-definiteness conditions. Also, let
Um+1 = (A∗A)−1A∗(V m+1) with the adjoint operatorA∗,
andA∗A is invertible from Assumption 1. By the eigenvalue
decomposition, we thus obtain the explicit solution of the
updating rule of primal variableZm+1 as

Zm+1 = Um+1
† = P†Σ+P

T
† (16)

(i.e.,PΣPT is the spectral decomposition of the matrixUm+1

with nonnegativeΣ+ and negativeΣ− eigenvalues. Moreover,
we can reexamine the updating rule in Eq. (12c) as follows:

Λm+1 =
A(Zm+1)− V m+1

ρ
. (17)

It implies that A∗(Λm+1) = 1
ρ (A

∗A)(Zm+1 − Um+1) =
1
ρ(A

∗A)(Um+1
‡ ), whereUm+1

‡ := −P‡Σ−PT
‡ and can be

solved in polynomial-time from a simple linear matrix inequal-
ity (LMI). Specifically, while the generic work in [25] has a
direct implication, our LMI involves both linear mapping and

adjoint operator. With the above accomplishments, we propose
the ADM-based fast-initial positioning inAlgorithm 1 .

Algorithm 1: ADM-Based Fast-Initial Positioning

Input : (Aij , Āik), (d̂2ij , d̂
2
ik)

1 ≤ i ≤ N, j ∈ NHi, 1 ≤ k ≤ K
Output: xi, 1 ≤ i ≤ N

1 Initialize primal Z0 � 0 and dualΛ0 � 0
2 for m = 0, 1, . . . do
3 Calculate ǫm+1 from Eq. (14)
4 Calculate V m+1, Um+1, eigenvalue decomposition

of Um+1, andZm+1 from Eq. (16)
5 Calculated Λm+1 from Eq. (17)
6 end

C. Convergence Analysis ofAlgorithm 1

In this section, we perform the convergence analysis, which
shows thatAlgorithm 1 converges fast towards the optimal
solutions. In particular, we first(i) prove the algorithm is
globally convergent and then(ii) show that the algorithm
converges to the optimal solutions at rateO(1/m).

Theorem 1. [Global Convergence of Algorithm 1.] Let Z
denote the set of primal and dual solutions for the pri-
mal problem in Eq. (11) and the corresponding dual prob-
lem. Then, from any starting point

(

Z0, ǫ0,Γ0(Λ0)
)

where
Γm+1 := (A∗A)−1A∗(Λm+1), Algorithm 1 achieves the con-
vergence of sequence{(Zm, ǫm,Γm(Λm))} to a set solution
(Z∗, ǫ∗,Γ∗(Λ∗)) ∈ Z.

Theorem 1 shows the global convergence ofAlgorithm 1 ,
which implies that the proposed iterative method converges for
an arbitrary initial approximation. The proof of Theorem 1 is
based on a similar fixed-point argument [25] with regards of
our specific localization formulationin Eq. (11). To simplify
the readability of this paper, the details of the proof can be
found in our technical report [26, Appendix A].

In addition, because of the difference in problem for-
mulations, we cannot directly apply the convergence speed
analysis of the generic SDP problems in [25] for our specific
SDP problem. This is mainly because the convergence of
the dual variables in our algorithm is not straight-forward
as that in [25]. In particular, the convergence of dual part
in Theorem 1 involves a derived function of dual variables,
i.e., Γ(Λ) = (A∗A)−1A∗(Λ), while the work in [25] only
deals with the dual variables themselves. Hence, we analyze
the convergent rate ofAlgorithm 1 as follows.

Theorem 2. [Global Linear Convergence of Algorithm 1.]
LetWm = ‖Um−U∗‖2F andDm = ‖Um+1−Um‖2F . Under
the same assumption of Theorem 1,Dm is non-increasing and
Dm ≤ W 0/(m + 1) for all m. That is,Algorithm 1 has an
O(1/m) rate of convergence.

The key ideas of proving Theorem 2 are(i) examining
the relationship between primal, dual infeasibility and the
difference between matrices{Um} from Section V-B and(ii)
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using the Saddle Point Theorem [24] and Assumption 1, the
Lyapunov functionWm, and the nonincreasingDm to address
linear convergence. Again in order to simplify the readability
of this paper, the details of the proof can be found in our
technical report [26, Appendix B].

VI. F INE-GRAINED POSITIONING: CONJUGATE GRADIENT

ALGORITHM (CGA)

As mentioned in Section IV-B, the solution obtained from
SDP relaxation has the high-rank property. For example, in2D
oil reservoir, the high-rank optimal solution from the proposed
ADM should be translated into2D location solution without
losing the optimality. In other words, we can fine-tune the
sensor positioning to further increase the location accuracy,
based on the results of fast-initial positioning. This idea is
easily realized through the design of search algorithm for
the optimal location solution in the correct dimensionality. In
the following, we first examines the straightforward method,
steepest descent (SD), which utilizes the gradient of objective
function for searching the minimum. Then, we apply a more
sophisticated search approach based on the conjugate gradient
algorithm, which exploits conjugate direction (CD) to outper-
form the conventional steepest descent method [10].

A. Steepest Descent (SD) Method

The objective function in Eq. (6) of the localization problem
is first reformulated as

f(X) =
∑

[d̂2ij − (xi − xj)
T (xi − xj)]

2

+
∑

[d̂2ik − (xi − ak)
T (xi − ak)]

2. (18)

Define∇f as∇f(X) = [Dfx1 , . . . , Dfxn
]T whereDfxi

=
[ ∂f
∂x1

i

, ∂f
∂x2

i

] for 2D cases. Note that,∇f is the decent direction
of the objective function in Eq. (18). The SD method [10]
provides that givenX(0), the search iteration follows

X(m+1) = X(m) − αm∇f(X(m))

αm = argminα≥0 f
(

X(m) − α∇f(X(m))
) (19)

whereαm is the step size of the(m+1)th iteration. In other
words, it performs an exact line-search to decide the step
size to minimizef(X(m+1)) along the∇f(X(m)) direction.
Hence, the optimal step sizeαm of the (m+1)th iteration is
obtained through the following equation

df
(

X(m) − α∇f(X(m))
)

dα

∣

∣

∣

∣

∣

α=αm

= 0. (20)

As suggested by [11],αm can be further obtained from
Eq. (18) and Eq. (20) by4c21α

3
m + 6c1c2α

2
m + 2(c22 +

2c1c3)αm + 2c2c3 = 0, where c1 = −
∑

iDf
x
(m)
i

DfT

x
(m)
i

,

c2 = −2
∑

(x
(m)
i − x

(m)
j )Df

x
(m)
i

− 2
∑

(x
(m)
i − ak)Df

x
(m)
i

,

and c3 =
∑

[d̂2ij − (x
(m)
i − x

(m)
j )T (x

(m)
i − x

(m)
j )]

∑

[d̂2ik −

(x
(m)
i − ak)

T (x
(m)
i − ak)]. Note that the derived equation for

αm here is a third order polynomial and the analytical solution
of roots thus exists. Also, a widely-used Armijo rule [27] can
alternatively serve as a good approximation of the step size.

Through the above gradient-based search, we are able to
round the high-dimensional (rank) solution from the proposed
ADM to the desired dimensionality of sensor location. In
the following, we introduce a more sophisticated search that
achieves optimal points much faster than the steepest descent
method and avoids possibly being stuck in local optima.

B. CGA with Conjugate Direction (CD)

The basic concept of the conjugate gradient algorithm [10]
is to minimize the objective function, e.g.,f(X) in Eq. (18),
along with the corresponding conjugate direction (CD) of each
iteration, e.g.,d(0) and d(m+1), m ≥ 0 in Eq. (22), instead
of adhering to the gradient direction, like in the steepest
descent method. Specifically, rather than adopting Eq. (19) in
each iteration, the CGA provides that givenX(0), the search
iteration follows

X(m+1) = X(m) + αmd(m) (21)

where d(0) = −∇f(X(0)) applies the gradient direction
for the first iteration and the step sizeαm is determined
by αm = argminα≥0 Φm(α) where Φm(·) is defined as
Φm(α) := f(X(m) + αd(m)). If CGA does not approach the
minimum point after the current iteration, it constructs the next
CD d(m+1) from the current directiond(m) by

d(m+1) = −∇f(X(m+1)) + βmd(m) (22)

whereβm is obtained via the conjugate concept by Fletcher-
Reeves [10] asβm = ‖∇f(X(m+1))‖2

‖∇f(X(m))‖2 . In other words, the
parameter sets of(αm, βm)m≥0 are obtained as

αm = argminα≥0 f(X
(m) + αd(m));

β0 =

∑
i
Df

x
(1)
i

DfT

x
(1)
i

(ei−α0Fi)
T (ei−α0Fi)

∑
i
Df

x
(0)
i

DfT

x
(0)
i

;

βm = ∇f(X(m+1))T∇f(X(m+1))
∇f(X(m))T∇f(X(m))

,

(23)

where ei = [01×2, . . . , 01×2, 11×2, 01×2, . . . , 01×2]T and
Fi = [D

x
(m)
i

Df
x
(m)
1

, . . . , D
x
(m)
i

Df
x
(m)
i

, . . . , D
x
(m)
i

Df
x
(m)
n

]T .
Finally, the CGA is proposed inAlgorithm 2 for the
fine-grained positioning. To this end, we completely solve
the underground localization with randomly-deployed sensors
through the successive execution of the proposed ADM in
Algorithm 1 and CGA inAlgorithm 2 .

VII. PERFORMANCEEVALUATION IN OIL RESERVOIRS

We evaluate the proposed MI-based localization solution
(i.e., Algorithm 1 : ADM + Algorithm 2 : CGA) in a practical
scenario of2D oil reservoirs. Simulation results confirm that
our solution achieves great positioning accuracy and functions
well even under severe environmental impact in terms of
volumetric water content, favored by the practical imple-
mentation in randomly-deployed WUSNs. In the following,
we first evaluate two proposed successive algorithms in2D
oil reservoir fractures. Then, we examine the underground
environmental impact in the localization performance.
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(a) After fast-initial positioning (i.e., ADM). (b) After the entire localization (i.e., ADM+CGA).

Fig. 3: Localization results for60 sensors with nf=1.

Algorithm 2: CGA (Fine-Grained Positioning)

Input : f(·) from Eq. (18),X(0) := [xT
1 , . . . , x

T
N ]T

from Algorithm 1
Output: X∗ % Sensor location

1 Setm = 0; compute d(0) = −∇f(X(0))

2 while ∇f(X(m)) 6= 0 do
3 Compute αm according to Eq. (23)
4 Compute X(m+1) according to Eq. (21)
5 Compute βm according to Eq. (23)
6 Compute d(m+1) according to Eq. (22)
7 Setm = m+ 1
8 end
9 SetX∗ = X(m)

A. 2D Localization in Oil Reservoir Fractures

As shown in Figure 1, it is assumed that there are two
anchors inside a single drilling well and sensors are randomly
spread in a two-dimensional fracture. All simulation parame-
ters and values are given in Table I, with regard to realistic oil
reservoirs. Particularly, it is considered that each anchor has
the direct communication link to every sensor from its larger
transmission range and coil antenna parameters are set to fit in
the thin-width fracture. In addition, to characterize the noise
level from the estimation errors, noise factor (nf) is defined as
d̂ij = dij(1+N(0, 1)×nf), which is a given number between
[0, 1] to control the amount of noise variance. Moreover, to
characterize the positioning accuracy by measuring the estima-
tion mismatch, the root-mean-square distance (RMSD) metric

is further defined as RMSD= 1√
N

(

∑N
i=1 ‖xi − x̂i‖

2
)1/2

,
wherex is the actual sensor location andx̂ is the one obtained
from the localization algorithm.

Figure 3 shows the localization results of60 unknown
sensor locations under high noise level (nf=1) after fast-
initial positioning (i.e., ADM) and after the entire localization
(i.e., ADM+CGA), respectively. Two anchors are marked as
blue diamonds at[−4, 4] and [−4,−4]. Green circles refer
to the original locations of unknown sensors; red asterisks
refer to their estimated positions. In Figure 3a, while the
estimated positions deviate a little from the actual locations
after initial positioning byAlgorithm 1 , this step does not
require long processing time, i.e., only few iterations, to
obtain the useful results. In Figure 3b, more accurate locations
are further obtained by executing fine-grained positioning
by Algorithm 2 . It reduces the estimation errors in RMSD
and enhances the localization accuracy with a fast search
algorithm. Similar outcomes can be observed in Figure 4
for the larger size of100 unknown sensor locations. Initial
positioning provides rough locations with fast processing time
in Figure 4a, and fine-grained positioning further enhance the
performance via a powerful and time-efficient search as shown
in Figure 4b. The above detailed evaluation confirms that the
proposed localization performs well in high noise levels and
is indifferent for network sizes through the fast and accurate
operations of two successive positioning. Note that Figures 3a-
4a indicate that after fast-initial localization, the error vectors
of the estimated locations seem to follow the east-west (i.e.,
horizontal) direction. This biased estimation comes from the
very limited two anchors with the following peculiarities in oil
reservoirs: (1) the strong impacts from direct transmissions
of anchors and (2) the same horizontal axis for the two
anchors. Specifically, in practical setups of oil reservoirs (in
Figure 1 and [7]), due to the accessibility of the external power
sources, anchors achieve longer communication ranges and
have direct links to each sensor. Hence, compared to that of
short-range transmissions between some paired sensors, the



2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2729887, IEEE Internet of
Things Journal

ACCEPTED FOR PUBLICATION IN THE IEEE IOT JOURNAL 9

TABLE I: SIMULATION PARAMETERS AND VALUES FOR PERFORMANCE EVALUATIONS.

Parameters Values
Fracture area 8× 8 [m2]
Fracture depth 1.8 [km]
Fracture width 0.03-0.04 [m]

Underground temperature (T ) 418 [◦K]
Soil makeup 30% sand particle;20% clay particle
Bulk density 1.5 ∗ 106 [grams/m3]

Solid soil particle density 2.66 ∗ 106 [grams/m3]
Magnetic material 30% paramagnetic composites;10% ferromagnetic composites

MI operating frequency (ω/2π) 7 [MHz]
Coil antenna radius (a) 0.01 [m]
Coil antenna turn (N ) 10 turns

Antenna unit-length resistance (R0) 0.01 [Ω/m]
Sensor’s maximum transmission range (R) 3.2 [m]

(a) After fast-initial positioning (i.e., ADM). (b) After the entire localization (i.e., ADM+CGA).

Fig. 4: Localization results for100 sensors with nf=1.

estimated distances (as inputs of our localization systems)
of these direct transmissions (between anchors and sensors)
have strong impacts and play dominant roles in localization
results, especially for limited sensors’ transmission ranges.
Furthermore, given that the possible anchors only come from
the large dipole antenna inside the drilling well, the two an-
chors will be vertically separated and have the same horizontal
location. This implies that the fast-initial positioning is much
easier to locate sensors’ vertical locations than their horizontal
locations, and thus the estimated sensor locations incline to
have larger horizontal estimation errors.

Next, in Figure 5, we compare the proposed solution (i.e.,
ADM+CGA) with the benchmark scheme that combines the
conventional SDP solver and steepest decent method (i.e.,
OPT+SD). Figure 5a shows the performance comparison with
60 sensors in low noise regime. The estimation error is
calculated as a percentage of sensors’ maximum transmission

ranges. For both cases of maximum transmission ranges1.6
[m] and 3.2 [m], the proposed solution has less estima-
tion error than the other under all evaluated noise factors.
Two solution has close performance under very low noise
(nf=0.05). Furthermore, Figure 5b shows the corresponding re-
sults in high noise regime. The proposed solution outperforms
the other and maintains noticeable performance improvement
along the different noise factors. In summary, these results
verify the superior design of the proposed localization, facili-
tating an accurate and time-efficient localization algorithm in
randomly-deployed WUSNs.

B. Underground Environmental Impact

While the MI-based communication is adopted for its suit-
ableness in underground, water content in the surrounding ar-
eas greatly affects the communication quality. In particular, if
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Fig. 5: Comparison between our solution (i.e., ADM+CGA)
and the designated algorithm (i.e., OPT+SD) for60 sensors.
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Fig. 6: Conductivity impact on localization results of our
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Fig. 7: VWC impact on the localization performance of our
solution in oil reservoir environments.

there are more electrolytes in the environments, the induction-
based communication and thus the MI-based localization will
be dramatically degraded.60 sensors are randomly-deployed
in oil reservoir, and each sensor can tolerate the maximum path
loss as120 [dB]. Figure 6 shows the environmental impact
of the electrical conductivity that stems from different water
contents. The salty water provides great signal conductivity,
impairs the signal induction, and thus gives the worst RMSD
values. Moreover, when the noise level is extremely low,
i.e., nf=0.05, the localization result of15% volumetric water
content (VWC) can approach the one in dry area. However,
when the noise becomes larger, the performance difference
also increases between the wet and dry areas. In addition,
by focusing on the normal water content with conductivity
σ0 = 5 × 10−2, Figure 7 shows the impact on localization
from different volumes of water content. The results show
that although the VWC increases, the performance difference
is not obvious until in a very high noise levels. Larger VWC
brings more signal conductivity than induction and damages
the communication and thus the localization performance.
With these accomplishments, we successfully bring a fast and
accurate MI-based localization that outperforms the existing
benchmark and suits the urgent positioning need of randomly-
deployed sensors in underground environments.

VIII. C ONCLUSION

In this paper, the fundamental localization challenge in
randomly-deployed WUSNs is addressed by exploiting RMFS
measurements from MI-based communication and proposing
fast and accurate successive positioning algorithms. Lever-
aging the multi-path and fading free natures of the MI-
based communication, RMFS from AWGN channel modeling
serves as the location-dependent information for localization
algorithm designs. Moreover, the fast ADM provides useful
initial positioning within few iterations, and the powerful CGA
refines initial results into highly accurate sensor positions.
Performance evaluation confirms that the proposed localization
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guarantees considerable positioning accuracy with great time-
efficiency in underground environments, bringing a novel
paradigm for underground sensor localization.
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