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Abstract—Flagellated bacteria have been suggested as one of
the techniques to deliver information at nanoscales due to their
ability to store massive amounts of data in their DNA strands
and their mobility properties. In this paper, the propagation delay
and message loss rates are mathematically derived for bacterial
nanocommunications. The mobility pattern of the flagellated
bacteria is investigated and a stochastic model of the bacteria
mobility is developed. The proposed model is then used to
derive the performance metrics of interest such as the link
reliability as well as the propagation delay distribution for the
case where N bacteria are used to deliver the message between
two nanomachines. Our solutions reveal that at communication
distances inherent for bacteria-based nanonetworks (1∼ 10mm)
reliable links can be established using just few hundreds of
bacteria. The presented approach provides the so-far missing
analytical building block for performance analysis of prospective
bacteria-based nanonetworks.

Index Terms—Nanocommunications, bacteria nanonetworks,
channel modeling, propagation delay.

I. INTRODUCTION

Nanotechnology opens the door to the design and man-
ufacture of devices in a scale from one to a thousand
nanometers [1]. These nanomachines are capable of com-
puting, sensing and storing operations at the nano level.
They can also establish connections between each other to
enable data exchange and coordination among them, thus
creating a nanonetwork. The capabilities and applications of
nanonetworks will rapidly exceed the functionality of a single
nanomachine, both in terms of range and complexity [2].
By unifying forces of many nanomachines, nanonetworks can
assist in variety of applications, from health and environment
monitoring [3], [4] to targeted drug delivery [5].

One of the promising enabler techniques considered for
prospective nanonetworks is to utilize flagellated bacteria
as information carriers [6]. Bacteria-based nanonetworks can
be applied for delay-tolerant communications between bio-
inspired nanomachines in a liquid medium. At the same
time, the use of bacteria for communications raises many
unique challenges that do not exist in electromagnetic-based
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nanonetworks [7]. One of the key challenges in bacteria-based
nanonetworks is to characterize how random swimming and
tumbling of flagellated bacteria affect the performance of the
network in terms of link reliability, communication range,
and end-to-end delay. To derive these performance metrics,
the mobility of bacteria must be analyzed in terms of the
probability of free swimming bacteria reaching the destination
(e.g., a nanomachine) within a certain amount of time.

To address this objective, many analytical and simulation
approaches have been proposed so far. Initial investigations
on this problem were performed in [8], where the end-
to-end delay was decomposed into encoding, encapsulation,
propagation, decapsulation, and decoding delays. Noticing that
the propagation delay contributes the most to the end-to-end
delay, they studied the propagation delay in depth by a set
of numerical values obtained from simulations. The physical
layer of bacteria-based nanonetworks was further investigated
in [9], with the propagation delay being also evaluated using a
simplified simulation tool for bacteria mobility. Later, a thor-
ough simulation model for bacteria-based communications was
presented in [10]. Since the detailed simulation of bacteria-
based nanonetworks is extremely time-consuming and requires
extensive computational power [11], the papers discussed
above assumed a limited amount of swimming bacteria (up to
few hundreds). On the contrast, the number of bacteria in real
environment can reach even millions. Accordingly, an accurate
simulation model is also still missing.

On the other hand, the accuracy of the analytical mod-
els proposed in [12] and [13] is not feasible due to many
simplified assumptions in bacteria mobility process. None of
these models takes into account realistic free swimming and
tumbling process of flagellated bacteria. Instead, the results
in [13] are obtained by approximating the bacteria mobility
pattern with random walk over a lattice grid, while the entire
message delivery process in [12] is replaced by a random
variable that follows a Gamma distribution. Summarizing,
the papers discussed above either utilized computationally-
expensive simulation tools, or made unrealistic assumptions
for the bacteria mobility. Thus, an accurate and scalable frame-
work for performance evaluation of bacteria-based nanonet-
works has not been proposed yet.

In this paper, we study the above open problems and develop
a new stochastic model capturing the bacteria swimming and
tumbling movement process. To obtain the input parameters
for our stochastic model, we use a bacteria mobility pattern
based on wetlab experiments [14] as a reference. For the sake
of the analysis tractability, we make few simplified assump-
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Fig. 1. Communication process in bacteria-based nanonetworks.

tions on the bacteria mobility pattern. Therefore, the developed
stochastic model provides a first-order approximation for the
realistic bacteria mobility pattern, rather than a completely
accurate model. We then formalize our stochastic model of
bacteria mobility as a random walk in an unbounded two-
dimensional space to predict bacteria location at a certain
moment of time. In contrast to previous studies [6], [15]
that assume an artificial scenario with a substantial amount
of chemo-attractant released by a nanomachine in a certain
location and attracting swimming bacteria, we evaluate the
bacteria behaviour in natural environment, where chemo-
attractant is not present at all or distributed more or less
uniformly [14]. Thus, the bacteria mobility pattern is unbiased
in our work.

We show that the successful message delivery probability
can be calculated in terms of quantiles of the First Passage
Time (FPT) distribution in our random walk model. We further
determine the propagation delay distribution and the link relia-
bility from the distribution of FPT. The obtained performance
measures provide an important block for performance evalua-
tion of bacteria-based nanonetworks. The proposed analytical
model can be applied for:

• Faster performance evaluation of bacteria-based nanonet-
works instead of time-consuming simulations;

• Estimation of the sufficient quantity of bacteria for the
wetlab experiments on bacteria-based nanocommunica-
tions;

• Dynamic rate control in bacteria-based nanonetworks by
pre-computing the ”Conditions (distance, delay, reliabil-
ity, etc.) / Quantity of bacteria to release” table and storing
it on nanomachines.

The remainder of the paper is organized as follows. In Sec-
tion II, we present the concept of bacteria-based nanonetworks
and the performance metrics of interest in our analysis. In
Section III, we introduce and analyze the stochastic model
of bacteria mobility that is capable of predicting the bacteria
location over certain time after release. In Section IV, we apply
this model to derive the link reliability and the distribution
of the propagation delay. In Section V, we first validate the
proposed stochastic model using our simulation framework.
We then present the numerical results for the link reliability
and the propagation delay under realistic assumptions. Finally,
we study the communication range in bacteria-based nanonet-
works. We conclude the paper in Section VI.

II. BACTERIA-BASED NANONETWORKS

In this section, we recall the general architecture and
summarize major features of bacteria-based nanonetworks,
following [6], [8] and other works. We then briefly mention
the possible approaches to implement the major stages of
communication process. We then describe the performance
metrics we concentrate on in our analysis.

A. General Architecture

Bacteria-based nanonetworks consist of nodes and carriers.
Nodes are nanomachines that perform sensing, computing or
data storing tasks. The design of prospective nanomachines
suggests them to be on a scale of a hundred nanometers and
consist of sensors, actuators, processing and storage units,
power units with optional energy scavengers, transmitters and
receivers for communication purposes [16].

Carriers in bacteria-based nanonetworks are flagellated bac-
teria, capable of: 1) picking up and releasing DNA molecules
through conjugation [17] or transformation [18]; 2) storing
DNA molecules inside the bacterium in the form of plasmids
or integrating them into bacterium DNA as segments of the
chromosome [19]; and 3) swimming over the surface of tissue
or liquid using flagella [14].

The message in bacteria-based nanonetworks has to be
represented in the form of a DNA molecule before the trans-
mission. Therefore, the transmitter in a nanomachine should
be able to encode the message from the internal nanomachine
representation into a sequence of DNA [20]. At the same time,
the receiver in a nanomachine should have the ability to decode
the message from the DNA sequence into a form that enables
further storing or processing of the received data [8].

Depending on the application, the nanomachine either has
a set of flagellated bacteria inside [15] or relies on the
flagellated bacteria that already exist in the medium. In the
first case, the nanomachine uses its bacteria for communication
purposes one by one or group by group until the set is
over. Once this happens, the nanomachine cannot transmit
messages anymore. The presented approach is suitable for the
so-called nanosensors — nanomachines that perform sensing
of some dangerous chemicals and transmit rarely (only when
the particular chemical is found).

In the second case, the nanomachine simply emits a num-
ber of DNA molecules during the transmission [21]. These
molecules will be randomly picked up by swimming bacteria
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and eventually delivered to the destination. For consistency of
performance metrics definition, in this paper we consider only
the first type of nanomachines in our nanonetwork.

B. Communication Process

As suggested in [8], the communication process in bacteria-
based networks can be decomposed into five phases, see
Fig. 1. Depending on the particular application and type of
nanomachines, some of the phases might be modified or even
avoided (for instance, encoding for nano sensing and decoding
for targeted drug delivery):
• Encoding. During this phase, the messages is encoded

into a DNA molecule in the source nanomachine. The
DNA molecule with the message is replicated to enable
encapsulation into a set of bacteria. Use of multiple
bacteria instead of a single one increases the chances
of the message being successfully delivered to the desti-
nation nanomachine during the propagation phase. From
the practical perspective, the first generation of nanoma-
chines, capable of bacteria-based nanocommunications, is
envisioned to avoid any sophisticated encoding process.
On the contrary, they might store a pre-defined set of
messages already encoded into plasmids. These plasmids
are to be stored in the compartments capable to open
in response to an external signal (sensing particular
chemical, etc.). The examples of the compartments with
abovementioned abilities are given in [22] and [23].

• Encapsulation (modulation). During this phase, the re-
leased plasmids with the message are picked up by the
carriers (flagellated bacteria) through the process of trans-
formation [18]. Alternatively, a single DNA molecule can
be picked up by a bacterium and then spread among the
other carriers through the process of conjugation [15].

• Propagation. During this phase, bacteria with DNA-
encoded messages are released from the source nanoma-
chine, propagate through the medium and, finally, reach
the destination nanomachine, where they get captured.

• Decapsulation (detection). During this phase, the envi-
sioned bio-inspired destination nanomachine [25] estab-
lishes a pili connection with the captured bacteria to
receive a copy of the plasmid with the DNA encoded
message through the process of conjugation [15].

• Decoding. During this phase, the message is decoded
from the received DNA molecules and can be either
stored or interpreted by the destination nanomachine.
Similar to encoding process, existing level of technolo-
gies limits the possibility to decode the DNA sequences
by artificial nanomachines. Meanwhile, the bio-inspired
nanomachines [24], [25] can apply the natural DNA
interpretation techniques to, for instance, synthesize cer-
tain proteins depending on the received message. Alter-
natively, the destination nanomachine can simply be a
storage for bacteria with DNA encoded messages from a
number of nanosensors [21].

According to [9], the propagation phase in bacteria-based
nanonetworks for the distances of few millimeters can last for
tens of minutes and even hours; its duration contributes a lot

to the total end-to-end delay. Therefore, in the next section,
we thoroughly describe the propagation phase in more detail
and also explain the scenario that is analyzed in the paper.

C. Bacteria Propagation

The propagation phase contributes the most to the delay
and losses in bacteria-based nanonetworks [8]. Therefore, in
this paper we particularly focus on the propagation phase
analysis. We consider that encoding/encapsulation phases are
performed successfully by the source nanomachines and after
the encapsulation phase the source nanomachine has a set of
N flagellated bacteria, containing the DNA molecules with
the message. Based on these conditions, we formulate the
propagation process as a sequence of three steps, see Fig. 1.
First, source nanomachine releases N flagellated bacteria,
each carrying a copy of the DNA-encoded message. Further,
flagellated bacteria propagate through the medium following
their swimming pattern. At the final step, once at least one
of the bacteria with the message reaches the destination
nanomachine, the message is successfully delivered and the
propagation phase ends.

In the rest of the paper, we analyze the following single-
link scenario. One source and one destination nanomachines
are located at distance d from each other. The destination
nanomachine is considered static during the entire propagation
phase, however, slight movements of the nanomachine do
not affect the communication process. To assess a general
case, we consider that bacteria swim over the two-dimensional
unbounded surface (e.g., a tissue). This condition implies that
the area dimensions are much bigger than the distance d.

D. Performance Metrics

We focus on two metrics as part of our analysis:
• Propagation delay, D, is defined as the time interval

between the bacteria being released from the source
nanomachine until at least one of the released bacteria
reaches the destination nanomachine.

• Link reliability, ρ, is defined as the probability of
messages being successfully delivered from the source
nanomachine to the destination nanomachine within the
given time interval T . With respect to all the released
bacteria carrying identical messages, the link reliability
equals to the probability of at least one of the bacteria
released from the source nanomachine reaching the des-
tination nanomachine within the defined time interval.

Both metrics highly depend on the characteristics of bacteria
propagation through the medium. To derive them, we describe
and analyze the stochastic model of bacteria mobility.

III. STOCHASTIC MODEL OF BACTERIA MOBILITY

To assess the performance of bacteria-based nanonetworks,
the process of bacteria mobility must be first understood.
In this section, we first describe the mobility of flagellated
bacteria. Based on this, we then formulate our stochastic
model of bacteria mobility. Finally, we derive the occupation
probability distribution of swimming bacteria that is the key
for performance evaluation of bacteria-based nanonetworks.
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Fig. 2. Empirical pattern of bacteria mobility.

A. Bacteria Mobility

In our study, we focus on the characteristics of E. Coli
bacterium as one of the most well-investigated flagellated
bacterium. As we study the bacteria-based communications
in case of chemo-attractant being not present or uniformly
distributed, we accept the hypothesis for E. Coli mobility in the
absence of chemo-attractant, formulated in [14], [26]. Accord-
ing to it, E. Coli moves over the surface in the so-called runs
and tumbles. In other words, a bacterium alternates swimming
in a straight line with short tumbles to select a new direction
(see Fig. 2). In the absence of chemo-attractant the selected
new angle follows a uniform distribution from 0 to 2π. The
speed of swimming bacteria is constant, v = 20µm/s., while
the straight swimming time is exponentially distributed with
mean τ = 3.5s. The latter results in exponentially distributed
swimming distances.

Unfortunately, predicting bacteria location after a certain
amount of time even for the simplified mobility pattern is
complicated. Observe that the unbiased random walk in any
dimension is Markov in nature [27]. For one-dimensioned
space all the states are recurrent positive implying that the
process returns to the initial point with probability 1 and the
associated mean recurrent time is finite. However, in two-
dimensioned space the states of the process are all recurrent
null and, although the process still returns to the origin with
probability 1 the mean recurrence time is infinite. Therefore,
it is very difficult to estimate how much time it takes the
bacterium to reach the destination nanomachine. In fact, to
characterize this metric we have to obtain its distribution.
As a result, the derivation of the propagation delay and link
reliability metrics is not straightforward. To solve this problem,
in the following subsection we propose a stochastic model of
bacteria mobility. It is further demonstrated in Section III-C
that the proposed model accurately matches the empirical
pattern of bacteria mobility starting from tens of seconds.
Moreover, the analysis of the model in terms of propagation
delay distribution and link reliability is feasible.

B. Stochastic Model Description

In this section, we develop a stochastic model of bacterium
mobility over a two-dimension space by deriving a closed-
form solution for the probability density function of the
bacterium location after release. We demonstrate how the
empirical pattern of bacteria mobility can be decomposed

TABLE I
NOTATION USED IN THE PAPER.

Parameter Definition
ν Bacterium swimming speed
τ Bacterium mean inter-tumble time
~r Coordinates of the destination nanomachine
T Time since bacteria were released
d Distance from the center of the source nanomachine to the center

of the destination nanomachine
D Propagation delay (defined in Section II)
ρ Link reliability (defined in Section II)
n Amount of bacterium tumbles in [0,T )
i Number of the current tumble
li Length of the ith bacterium run
φi New angle selected by the bacterium after tumble i
θi π/4−φi
xi Projection of li on axis OX
yi Projection of li on axis OY
SXY Coordinates of the swimming bacterium
SX Projection of SXY on axis OX
SY Projection of SXY on axis OY
X Length of the single run projection on axis OX
Y Length of the single run projection on axis OY
E[X ], E[Y ] Mean values of X and Y
V [X ], V [Y ] Variances of X and Y
µx, µy Mean values of SX and SY
σ2

x , σ2
y Variances of SX and SY

ΦZ(ξ) Characteristic function of a random variable Z
erf(ζ) Error function of argument ζ

g(~r, t) pdf of the bacterium first passage time to ~r
G(~r, t) CDF of the bacterium first passage time to ~r
p(~r, t) Probability of the bacterium being at ~r at time t
L( f (x))(s) Laplace Transform (LT) of function f (x)
L−1(F(s))(x) Inverse Laplace Transform (ILT) of function F(s)

P(0,s) LT of occupation probability for target 0
P(~r,s) LT of occupation probability for target ~r
G(0,s) LT of first passage time for target 0
G(~r,s) LT of first passage time for target ~r
pXY Probability of the bacterium being at the destination nanoma-

chine
pX Probability of the bacterium being at the X projection of the

destination nanomachine
pY Probability of the bacterium being at the Y projection of the

destination nanomachine
k Skewness of X
γ Kurtosis of X
αi Value of the ith raw moment of X
µi Value of the ith central moment of X
Kn Kolmogorov’s statistics

into a combination of two one-dimensional random processes
with known distributions. The following propositions establish
stochastic characteristics of the decomposed processes. Table I
presents the notation used in the paper.

Proposition 1. When the amount of bacterium tumbles grows
(n→ ∞), the probability density functions of Cartesian co-
ordinates of bacterium location tend to normally distributed
random variables SX and SY with means E[SX ] = E[SY ] = 0
and variances σ2

X = σ2
Y = nν2τ2.

Proof. We first observe that the tumbling points of the em-
pirical mobility pattern are in fact regeneration points of
the swimming process. Thus, the direction of the bacterium
movement as well as its next run length does not depend on
any previous directions or run lengths. We define SX and SY
as random variables (RVs) denoting bacterium OX and OY
coordinates. Let us also define n to be the number of tumbles
the bacterium has performed in the time interval [0,T ). In this
case, SX and SY can be expressed as

SX =
n

∑
i=0

xi, SY =
n

∑
i=0

yi, (1)
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where xi = li cos(φi) and yi = li sin(φi). In these equations, li
and φi represent length of the bacterium run vector and angle
the bacterium selects after tumble i.

Since the RVs xi and yi, i = 1,2, . . . , are pairwise indepen-
dent and identically distributed (iid), for sufficiently high i the
Central Limit Theorem (CLT) can be applied. Thus, when the
number of runs n tens to infinity, SX and SY converge to normal
distributions with means E[SX ] = nE[X ], E[SY ] = nE[Y ] and
variances σ2

X = nV [X ], σ2
Y = nV [Y ]. To obtain the expressions

for E[X ] and E[Y ], we first notice that xi and yi can be derived
by replacing li with νti, where ti is a duration of inter-tumbling
time and ν is bacterium swimming speed

xi = νti cosφi, yi = νti sinφi. (2)

We then recall that, according to Section III-A, t is exponen-
tially distributed with λ = 1/τ and φ is uniformly distributed
in the range [0,2π). We also note that RVs t and φ are
independent. Therefore, we obtain E[X ] as

E[X ] = E[νt cosφ] = νE[t]E[cosφ] = 0 (3)

Similarly we get E[Y ] = 0. These results immediately give

E[SX ] = nE[X ] = 0, E[SY ] = nE[Y ] = 0. (4)

implying that bacterium swimming is non-biased.
We then derive V [X ] and V [Y ]. Observe that

V [X ] =V [νt cosφ] = ν
2V [t cosφ] = 2ν

2
τ

2V [cos(φ)], (5)

where V [cos(φ)] is given by

V [cosφ] =
1

2π

(
1
2

φ+
1
4

sin(2φ)

)∣∣∣∣2π

0
=

1
2
. (6)

Substituting the latter to (5) we get V [X ] as

V [X ] = ν
2
τ

2. (7)

Similarly, we prove that

V [Y ] = ν
2
τ

2. (8)

Finally, we use (7) and (8) to obtain

σ
2
X = nV [X ] = nν

2
τ

2, σ
2
Y = nV [Y ] = nν

2
τ

2. (9)

The above mentioned result shows that the random variables
SX and SY are normally distributed with E[SX ] =E[SY ] = 0 and
σ2

X = σ2
Y = nν2τ2. The following proposition establishes the

independence of the given projections allowing for a simple
way of constructing joint probability density function (pdf)
from pdfs of the projections.

Proposition 2. For sufficiently high amount of bacterium
tumbles n, SX and SY are independent random variables.

Proof. To prove the independence of SX and SY , we utilize
the mathematical apparatus of characteristic functions (CF).
By definition, the CF of a random variable Z is the mean
value of e jZξ,

ΦZ(ξ)
de f
= E[e jtZ ] =

∫
∞

−∞

fZ(x)e jξxdx. (10)

As stated in [28], to show the independence of SX and SY
we have to prove the following equation

ΦSX+SY (ξ) = ΦSX (ξ)ΦSY (ξ). (11)

We first observe that SX +SY can be represented as

SX +SY =
n

∑
i=0

(
li cosφi + li sinφi

)
=

n

∑
i=0

li
√

2cos
(

π

4
−φi

)
. (12)

We also notice, that due to iid nature of summands in (12),
the CLT applies when n is sufficiently high, implying that
the distribution of SX +SY follows the normal law with mean
E[SX +SY ] = nE[X +Y ] and variance V [SX +SY ] = nV [X +Y ],
where X +Y = li

√
2cos(π/4−φi).

We then derive the mean and variance of X +Y . Recalling
the empirical bacteria mobility pattern, φi is uniformly dis-
tributed in [0,2π) implying that θi = π/4−φi is also uniformly
distributed in [0,2π). Therefore, we can apply the method
from the previous proof to show that E[X + Y ] = 0 and
V [X +Y ] = 2ν2τ2. This leads to

E[SX +SY ] = 0, V [SX +SY ] = 2nν
2
τ

2. (13)

Thus, the CF of SX +SY can be written as

ΦSX+SY (ξ) = exp
(

jµξ− 1
2

σ
2
ξ

2
)
, (14)

where µ and σ2 are mean and variance of SX +SY .
Substituting (13) into (14) we get

ΦSX+SY (ξ) = exp
(
−nν

2
τ

2
ξ

2) . (15)

Recall that SX and SY follow the normal distribution with
µX = µY = 0 and σ2

X = σ2
Y = nν2τ2. Therefore,

ΦSX (ξ)ΦSY (ξ) = exp
(

jµX ξ− 1
2

σ
2
X ξ

2
)

exp
(

jµY ξ− 1
2

σ
2
Y ξ

2
)

= exp
(
−nν

2
τ

2
ξ

2) . (16)

Since right hand sides of (15) and (16) are equal we get

ΦSX+SY (ξ) = ΦSX (ξ)ΦSY (ξ). (17)

implying that random variables SX and SY are independent.

In general, a two-dimensional mobility process cannot be
fully described by two projections. However, this is possible
in our case as SX and SY are independent (see Proposition 2).
In Proposition 3 we show how the joint pdf of the bacterium
location can be derived from the pdfs of projections.

Proposition 3. With the growing amount of bacterium tumbles
(n→ ∞), the distribution of bacterium occupation probability
tends to bivariate Normal distribution with the following joint
probability density function:

fSXY (x,y,T ) =
1

2πν2T τ
exp
(
−x2− y2

2ν2T τ

)
. (18)

Proof. The independence of SX and SY by Proposition 2
implies that the joint pdf of the bacterium location fSXY (x,y,n)
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is equal to the direct multiplication of probability density
functions fSX (x,n) and fSY (y,n)

fSXY (x,y,n) = fSX (x,n) fSY (y,n). (19)

At the same time, according to Proposition 1, SX and SY
are normally distributed with the following pdfs

fSX (x,n) =
1

σX
√

2π
exp
(
− x2

2σ2
X

)
,

fSY (y,n) =
1

σY
√

2π
exp
(
− y2

2σ2
Y

)
. (20)

Thus, substituting (20) into (19) and approximating T by
nτ for large values of n, we get

fSXY (x,y,T ) =
1

2πν2T τ
exp
(
−x2− y2

2ν2T τ

)
. (21)

In Proposition 3, we have finally shown that when the
amount of bacterium tumbles tends to infinity (n→ ∞), the
empirical pattern of bacteria mobility can be well approxi-
mated by our stochastic model. In the next subsection, we
study how fast the pattern converges to the proposed model.

C. Convergence Rate Study

In this section, we estimate how fast the occupation
probability distribution of bacterium location, given by our
stochastic model proposed in Section III-B, converges to the
one by the empirical bacteria mobility pattern, presented in
Section III-A.

Due to the empirical pattern being fully described by a
combination of two iid RVs SX and SY , we focus on the
convergence of the empirical occupation pdf of SX , f ?SX

(x,n),
and the pdf of SX from the stochastic model, fSX (x,n). To
illustrate the growing accuracy of our model, we apply the
Kolmogorov’s statistical test [29].

To perform the Kolmogorov’s statistical test, we have to
first obtain the closed-form CDFs of both distributions. While
the CDF for the stochastic model can be derived by a direct
integration of (20), the empirical occupation CDF of SX has a
more complicated form.

In this paper, we apply the results by Levin and Petrov [30],
[31], who have made in-depth studies on Central Limit The-
orem. In particular, they have shown that the pdf of a sum
of n independent identically distributed random variables can
be represented as a multiplication of Normal distribution pdf,
sum tends to, and weighted sum of Hermite polynomials [32],
which tends to 1 for sufficiently large values of n. Thus,
according to [30], f ?SX

(x,n) can be written as:

f ?SX
(x,n) =

1√
2πnµ2

exp
(
−(x−nα1)

2

2nµ2

)[
1− k

6
√

n
H3 (ω)

+
γ

24n
H4 (ω)+

k2

72n
H6 (ω)

]
, (22)

where ω = (x− nα1)/
√

nµ2, α1 = E[X ] — mean of X , µ2 =
ν2τ2 — variance of X , k = µ3/(µ2

√
µ2) — skewness of X ,

γ = µ4/µ2
2− 3 is kurtosis of X , and H3(x), H4(x), H6(x) are

the 3rd, 4th and 6th Hermite polynomials, respectively.

Since α1 = 0 and following the properties of random
variable central moments [28], µ3 can be derived as

µ3 = α3−3α1α2 +2α
3
1 = α3, (23)

where

α3 = E[ν3t3cos3(φ)] = ν
3E
[

t3 3cos(φ)+ cos(3φ)

4

]
(24)

=
ν3

4
E[t3]

(
3E[cos(φ)]+E[cos(3φ)]

)
= 0.

Thus, k = 0. Similarly, µ4 can be expressed as

µ4 = α4−4α1α3 +6α
2
1α2−3α

4
1 = α4, (25)

where

α4 = E[ν4t4cos4(φ)] =
ν4

8
E
[

3E[t4]+4E[t4cos(2φ)] (26)

+E[t4cos(4φ)]

]
=

3ν4

8
E[t4] =

3τ4ν4

8
4! = 9τ

4
ν

4.

Therefore, kurtosis of X is equal to

γ =
9τ4ν4

τ4ν4 −3 = 6. (27)

We then substitute the values of E[X ] and V [X ] from (3)
and (7) into (22) to derive f ?SX

(x,n) as

f ?SX
(x,n) =

1
τν
√

2πn
exp
(
−x2

2nτ2ν2

)[
1+

1
4n

H4 (κ)

]
, (28)

where κ = x/(τν
√

n) and H4(z) = z4−6z2 +3 [32].
We are now able to apply the Kolmogorov’s statistical

test. To perform this study, we estimate the maximum differ-
ence between the empirical Cumulative Distribution Function
(CDF) of SX , F?

SX
(x,n), and the CDF of SX given by our

stochastic model, FSX (x,n)

Kn = supx
∣∣F?

SX
(x,n)−FSX (x,n)

∣∣ (29)

=
1

4n
√

π
supx

∣∣∣∣∫ x

−∞

exp
(
−x2)(4x4−12x2 +3

)
dx
∣∣∣∣

≤ 1
4n
√

π

(∫
∞

−∞

3exp
(
−x2)dx+

∫
∞

−∞

4exp
(
−x2)x4dx

−
∫

∞

−∞

12exp
(
−x2)x2dx

)
=

1
4n
√

π

(
3
√

π+0
)
=

3
4n

.

We now apply the Kolmogorov criterion to Kn. To prove the
hypothesis with confidence 0.9999 we need to find the value
of n, such that

√
nKn ≤ 0.29 [33]. Using (29), we obtain the

minimum value of n as nmin = 7. Recalling that the average
run duration is 3.5s., we conclude that our stochastic model
converges to the empirical pattern of bacteria mobility starting
from approximately the 25th second. Since the propagation
delay in bacteria-based nanonetworks can reach hours [34],
the accuracy of the proposed model is absolutely sufficient.

Summarizing, the results provided in this section allow us to
decompose the two-dimensional bacteria mobility pattern into
a combination of two independent one-dimensional random
processes. Further, the location of a bacterium after several
runs can be well described by a bivariate Normal distribution
fSXY , which is a product of two independent one-dimensional
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distributions fSX and fSY . We heavily rely on these properties
in the following section deriving the propagation delay distri-
bution and the link reliability in bacteria-based nanonetworks.

IV. PROPAGATION DELAY AND LINK RELIABILITY

In this section, we use the stochastic model of bacteria mo-
bility to obtain the propagation delay distribution and the link
reliability in bacteria-based nanonetworks. Both metrics can
be derived from the distribution of FPT – time interval for the
released bacteria to reach the destination nanomachine for the
first time. We start this section with revising the technique of
getting the distribution of FPT from the occupation probability
distribution. We then calculate the probability of the selected
bacteria reaching the receiver location at a particular moment
of time. Finally, we derive the performance metrics of interest.

A. First Passage Time Derivation Technique

The analysis for FPT in dimensions higher than one is
complex even for unbiased discrete random walks with step of
size 1 [35]. When continuous jumps are allowed the problem
is directly solvable for a limited set of random walks only
[27]. The bacterium moving pattern is classified as a modified
Pearson-Rayleigh random walk [27]. For this walk, in spite
of significant efforts spent over the last century, no result for
FPT is available. In fact, any unbiased random walk with jump
distribution having finite first two moments is characterized by
Normally distributed position of a moving particle [27]. Due
to this property, in practical applications unbiased continuous
random walks are approximated by Brownian motion with
appropriate diffusion constant [36]. For this process the FPT
in simple geometries in dimensions higher than one could be
found using Green function approach in terms of the Laplace-
Stiltjers transform (LST). However, Brownian motion is a
special case of position jump processes allowing for infinite
propagation distances at infinitesimally small amount of times
making them unrealistic for modeling purposes. Below, we
derive LST of RDM in ℜ2.

We recall the FPT derivation methodology given in [36].
The approach is based on the following fact: if the moving
object reaches the target ~r second time at time t, it means
that this moving object already reached the target ~r at some
time t? < t and then returned to this point exactly after time
t−t?. Therefore, there is a connection between the probability
density functions of the moving object being at the target
location, p(~r, t), and the moving object reaching the target
location for the first time, g(~r, t):

p(~r, t) = δ~r0δ~t0 + ∑
t?≤t

g(~r, t?)p(0, t− t?), (30)

where δ~r0 and δ~t0 are the Kroneker’s delta functions.
The distribution of the FPT can be derived from this

equation using the Laplace transform [37]. Defining one-sided
Laplace transforms of p(~r, t) and g(~r, t) as

P(~r,s) =
∫

∞

0
p(~r, t)e−stdt, (31)

G(~r,s) =
∫

∞

0
g(~r, t)e−stdt, (32)

the (30) can be rewritten in Laplace domain as

P(~r,s) = δ~r0 +G(~r,s)P(0,s), (33)

immediately leading to the general solution

G(~r,s) =


1− 1

P(0,s)
, ~r = 0

P(~r,s)
P(0,s)

, ~r 6= 0.

(34)

To apply the given technique, the expressions for pdfs of
two random variables in Laplace domain have to be derived.
First of them is the pdf of a swimming bacterium reaching
the destination nanomachine at time t. The second is the
pdf of the swimming bacterium returning back to the source
nanomachine at time t. In the next section, we derive these
densities from our stochastic model of bacteria mobility.

B. Performance Analysis

Based on the stochastic model of bacteria mobility, in this
section we derive the propagation delay distribution and the
link reliability for bacteria-based nanonetworks. We first eval-
uate the simplified scenario with a single bacterium released
from the source nanomachine and then generalize our results to
the scenario described in Section II, i.e. when a set of bacteria
are simultaneously released from the source nanomachine.

Following [8], the destination nanomachine is assumed to
have a square shape with a side of 100µm. We derive the
probability of the message carrier (bacterium) arriving at the
destination nanomachine at time t, pxy(t), as a function of:
1) the distance, d, between centres of source and designation
nanomachines, 2) the nanomachine size, 2r, 3) the average
straight swimming time of bacterium, τ, 4) the bacterium
swimming speed, ν, 5) the time after bacterium release, T .

For a square-shape nanomachine, the probability of the
selected bacterium located at (x,y) being at the destination
nanomachine at time T can be expressed as

pxy(T ) = Pr{
(
x(t) ∈ [d− r,d + r]∩ y(t) ∈ [−r,+r]

)
| t ∈ [T,T +dT )}. (35)

Due to independence of bacteria mobility over OX and OY
axes (see Proposition 2), pxy(T ) can be represented as

pxy(T ) = px(T )py(T ), (36)

where px(T ) and py(T ) are the following probabilities

px(T ) = Pr{x(t) ∈ [d− r,d + r] | t ∈ [T,T +dT )} ,
py(T ) = Pr{y(t) ∈ [−r,+r] | t ∈ [T,T +dT )} . (37)

According to Proposition 3, the occupation probability
of the bacterium location follows Normal distribution with
E[X ] = E[Y ] = 0 and σ2

X = σ2
Y = nν2τ2. Thus, the occupation

probabilities for projections are

px(T ) =
∫ d+r

d−r
fSX (x,T )dx =

1
2

[
erf
(

d + r
σ
√

2

)
− erf

(
d− r
σ
√

2

)]
,

py(T ) =
∫ r

−r
fSY (y,T )dy = erf

(
r

σ
√

2

)
, (38)
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fD(d,T ) =
1
2

L−1
(L

(
er f
(

r
ν
√

2τT

)
er f
(

d+r
ν
√

2τT

))
−L

(
er f
(

r
ν
√

2τT

)
er f
(

d−r
ν
√

2τT

))
L
(

er f 2
(

r
ν
√

2τT

)) )

=
1
2

(
er f
(

r
ν
√

2τT

)[
er f
(

d + r
ν
√

2τT

)
− er f

(
d− r

ν
√

2τT

)])
∗L−1

(
1/L

[
er f 2

(
r

ν
√

2τT

)])
. (42)

where σ = ν2τT .
By substitution of (38) into (36) we get

pxy(T ) =
1
2

erf
(

r
σ
√

2

)[
erf
(

d + r
σ
√

2

)
− erf

(
d− r
σ
√

2

)]
. (39)

We then apply the linearity property of Laplace transform
to simplify the expression for pxy(T ) in Laplace domain:

P(~r,s) =
1
2

(
L [erf(t)erf(η1t)]−L [erf(t)erf(η2t)]

)
, (40)

where erf(·) is an error function and

t =
r

ν
√

2τT
, η1 = 1+

d
r
, η2 = 1− d

r
.

Similarly, P(0,s) is given by

P(0,s) = L
(
erf2 (t)

)
. (41)

Finally, using the Inverse Laplace Transform (ILT), the
probability density function of the propagation delay can be
derived as shown in (42), where T is the time since bacterium
release, while d, r, τ, and ν are deployment and environmental
parameters (see Table I for details).

We also notice that by definition, the link reliability in
bacteria-based nanonetworks is equal to the CDF of the prop-
agation delay. Therefore, the link reliability for the simplified
scenario — the probability of a single bacterium reaching the
target d micrometers far from the source nanomachine within
T hours, ρ(d,T ), — can be expressed as:

ρ(d,T ) = FD(d,T ) =
∫ T

0
fD(d, t)dt. (43)

We now generalize the obtained results for the case, when
the source nanomachine emits N > 1, bacteria at time t = 0
carrying the identical messages. In this scenario, the bacteria
movement is assumed to be independent. In practice, this
happens when no extensive chemio-attractants are available
in the close proximity making the movement unbiased. The
link reliability ρN(d,T ) is then given by

ρN(d,T ) = 1− [1−ρ(d,T )]N . (44)

Using the similar technique, the pdf of the propagation delay
can be derived as

fDN (d,T ) =
d
dt

(
ρN(d,T )

)
= N fD(d,T )

(
1−ρ(d,T )

)N−1
. (45)

Finally, we estimate the number of bacteria N? to be
released from the source nanomachine to reach a certain
reliability level for given values of input parameters d, T and

Ps, where Ps denotes the required reliability value. This can
be performed by invertion of (44):

N? = log[1−ρ(d,T )] (1−P) . (46)

Based on (46), a tunable algorithm for the communica-
tion in bacteria-based nanonetworks can be proposed. If the
distance to the destination nanomachine is known or could
be estimated, the source nanomachine can release a certain
quantity of bacteria to deliver a particular message (N?) based
on the probability of the message successful delivery (P)
— quantitive criterion for the message importance, and the
required average propagation delay (T ) — quantitive metric
for the message delay tolerance. The major trade-offs between
the listed parameters are studied in the next section.

V. NUMERICAL RESULTS

In this section, the obtained analytical results are numer-
ically elaborated. We start with validation of our stochastic
model of bacteria mobility by comparing its characteristics
with the ones observed from the empirical pattern. We then
numerically analyze the propagation delay distribution and
then link reliability. We also study the quantity of bacteria to
be released from the source nanomachine to reach prescribed
performance metrics. Finally, we investigate the communica-
tion range achievable in bacteria-based nanonetworks.

A. Stochastic Model Validation

Here, we assess the accuracy of our stochastic model
proposed in Section III. We first numerically study the con-
vergence rate of our model to the empirical pattern of bacteria
mobility. We then present a comparison of occupation prob-
ability densities obtained from the model and those of the
pattern. Finally, we discuss the applicability of the proposed
model to other types of flagellated bacteria (not just E. Coli)
with different swimming speeds and tumbling rates.

To investigate the convergence rate of our model to the
empirical pattern as a function of time after bacteria release,
we apply the method presented in Section III-C. Fig. 3(a)
presents the results based on (29) for the bacterium mean inter-
tumble time, τ, set to 3.5s, as revealed in [26]. As one can
observe from this figure, the model converges to the pattern
starting from 30s (

√
nKn < 0.29 with confidence 99,99%) and

becomes extremely accurate approximately 5 minutes after
release.

We further illustrate the accuracy of the proposed model
directly comparing its occupation pdfs with the pdfs of the
empirical pattern. To derive the occupation probability densi-
ties for the empirical pattern, we have developed a simulator
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Fig. 3. Validation of the proposed stochastic model.
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Fig. 4. Variance of the bacterium location on OX as a function of bacteria mobility characteristics.

of bacteria mobility. The simulator works as follows: 1) a
set of bacteria is released from point (0,0) at time 0s; 2)
all the released bacteria independently swim over the surface
following the empirical pattern, described in Section III-A. 3)
after T seconds the experiment ends and current coordinates
of the bacteria are combined to form a bivariate pdf and
projections of its projections on axes OX and OY .

Fig. 3(b) demonstrates the projection of bacteria occupation
pdf on OX . Due to the symmetry of the projections, it is
sufficient to consider only one of them. In this figure, blue,
green, and yellow curves illustrate the results of (20), 15, 30
and 60 minutes after bacteria release, respectively. Dots in
this figure represent the simulation results for the same set
of input parameters. Observing the results, one could see a
perfect match (less than 1% absolute difference), which is
significantly better comparing to the accuracy of lattice-grid-
based and Gamma-based approximations (see [11] and [10]).
For the selected distributions we also perform the χ2 ho-
mogeneity test with the significance level, α/2, set to 0.05
proving our conclusions that two sets of data comes from
the same distribution [38]. Thus, we can rely on the model
characteristics in further numerical analysis. An example of
the bivariate pdf provided by our model, 6 hours after bacteria
are released, is shown in the Fig. 3(c).

In addition to the distribution test, we compare the first
two moments of the bacterium location projection on OX
to find out whether the proposed model converges to the
empirical pattern with other numerical values of the bacteria
swimming speed, ν, bacterium mean inter-tumbling interval,
τ, and time after bacteria release, T . To obtain the results for
the empirical pattern, we again use our simulation tool. As

one could observe from Fig. 4, the proposed model converges
to the empirical pattern regardless the numerical values of
bacteria characteristics.

Based on the presented validation results, we conclude that
our analysis in Section III-B is correct, and the proposed model
can be used to approximate the mobility of any flagellated
bacteria that move according to the pattern, described in
Section III-A. We apply the model to evaluate the performance
of bacteria-based nanonetworks in the next section.

B. Performance Analysis: Single Bacterium Scenario

In this section, we analyze the simplified scenario, where
the source nanomachine releases a single bacterium carrying
the message. We focus on two metrics of interest, listed in
Section II-D: the link reliability and the propagation delay
distribution. Due to affordable computational complexity of
the scenario, we corroborate our analytical investigations with
the simulation results given by our tool from [39].

We start with the results for the distribution of the prop-
agation delay, presented in Fig. 5. The curves in this figure
are derived using (42) with the distance, d, varying from
1mm to 5mm, bacteria mean inter-tumbling time, τ, set to
3.5s, and the nanomachine size, 2r, set to 100µm. To obtain
the numerical values of the Inverse Laplace Transform we
have applied an improved Talbot’s method, described in [40].
This technique is known to be versatile and accurate. As
one can note from Fig. 5, the average value, expectedly,
increases with the distance. Assessing the match between
analytical and simulation results, we observe less than 3%
difference. Similarly to the previous section, the performed χ2

homogeneity test confirms the correctness of the propagation
delay analysis, presented in Section IV.
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Fig. 5. Single bacterium scenario: propagation delay pdf.
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It is important to note that the perfect match of the model-
based and simulation-based propagation delay distributions
facilitates the derivation of the link reliability, presented in
Fig. 6. In this figure, the model results are determined by
(43). Due to the direct connection between the propagation
delay distribution and the link reliability (see Section IV for
details), the simulation values are obtained by just numerical
integration of the results, presented in Fig. 5. We again
observe a good match between the two sets of data (less
than 4% difference). In addition, we notice the link reliability
constantly decreasing with the growth of the distance between
the nanomachines. Moreover, we reveal that within 24 hours
after bacterium release the link reliability does not reach 0.6
even for 1mm distance. Therefore, we conclude that reliable
communications in bacteria-based nanonetworks cannot be
performed using just a single bacterium. In the next section,
we investigate if it is possible to improve the characteristic by
releasing a set of bacteria instead.

C. Performance Analysis: Multiple Bacteria Scenario

In this section, we study the link behavior, when multiple
bacteria are simultaneously released from the source nanoma-
chine. With respect to the increased computational complexity
of the scenario, we do not supplement the analytical results
with the simulation-based ones. However, the two intermediate
verifications preformed in Sections V-A and V-B confirm the
accuracy of our analysis.

We start our numerical investigations observing the effect
of released bacteria quantity on the propagation delay distri-
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Fig. 7. Multiple bacteria scenario: propagation delay pdf at 3mm.
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bution. Fig. 7 presents the results for this metric computed
using (45) with the distance between the source and the
destination nanomachines, d, set to 3mm and the number of
released bacteria, N, varying from 10 to 50. The peakedness
of the density increases and the mode of the propagation delay
decreases when N grows. Based on the results, we can expect
the link reliability, given by a quantile of the delay distribution,
to increase with the number of released bacteria.

To investigate the effect of bacteria population on the link
reliability in detail, in Fig. 9, we plot the link reliability as
a function of the number of released bacteria for different
time instants and distances between the nanomachines, see
(43) and (44). As expected, the link reliability decreases with
distance and increases in response to the growth in the quantity
of released bacteria. Observing these plots, we also detect
a straightforward trade-off between the tolerable propagation
delay values and the required number of the released bacteria.
Thus, if the application is not delay sensitive, the same level of
reliability can be reached with exponentially smaller bacteria
quantity. In particular, the link reliability of 0.98 can be
achieved with 25 times smaller colony of bacteria (40 instead
of 1000) if the application can tolerate delay of twelve hours
instead of just one, as evident from Fig. 9(a) and Fig. 9(c).

Increasing the quantity of released bacteria, one not only im-
proves the link reliability, but also dramatically decreases the
propagation delay value as shown in Fig. 7. Thus, the release
of high number of bacteria can also be applied for delay-
critical types of traffic. To study this effect rigorously, we
introduce the characteristic called Message Loss Rate (MLR)
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Fig. 9. Multiple bacteria scenario: link reliability versus quantity of released bacteria.
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Fig. 10. Multiple bacteria scenario: the effect of distance between the nanomachines.

— the probability that the selected bacterium does not reach
the destination nanomachine within the given time. In Fig. 8
we present the propagation delay quantiles corresponding to
different MLR values for the various quantities of released
bacteria. We see that extremely low values of MLR can be
achieved for millimeter distance by emitting just few hundreds
of flagellated bacteria.

Finally, we observe the effect of link performance degra-
dation with distance, that is, the decrease in link reliability
accompanied by the propagation delay increase. Since the
mean delay for our network is infinite due to the nature of
our mobility process [27], we illustrate this effect replacing
the non-indicative mean value with the median of the delay
distribution. We present both the link reliability and the
propagation delay median as functions of distance in Fig. 10.
As one can observe from Fig. 10(a), the communication range
for bacteria-based nanonetworks can reach values up to one
centimeter, confirming the predictions, done in [6]. However,
Fig. 10(b) shows that the associated delay values will be high.

VI. CONCLUSIONS

Bacteria-based nanonetworks potentially enable a number
of promising applications of nanotechnology in environmental
and healthcare fields. However, the performance evaluation of
bacteria-based nanonetworks is still an unsolved challenge.

In this paper, we have studied the above mentioned prob-
lem by performing the propagation delay and link reliability
analysis for bacteria-based nanonetworks. To avoid extensive
simulations, we have proposed an analytical model for in-
formation delivery by flagellated bacteria in unbounded two-

dimensional space. The proposed analytical model presents an
attempt to incorporate the bacteria swimming and tumbling
mobility pattern in the communication process. Our model
is focused on the environment with uniform distribution of
chemo-attractant and, for the sake of analysis tractability,
incorporates several simplified assumptions on the bacteria
mobility pattern (namely, unbiased choice of new direction
after tumbling).

Compared to conventional models based on the diffusion
approximation of the bacteria mobility process, see e.g. [41],
the proposed model by design provides more accurate approx-
imation, especially for short communication distances that are
expected to be of special interest in bacterial networks. This is
due to diffusion-based models being characterized by infinite
propagation speed that significantly affects the propagation
time. Notice that when t → ∞ the first passage time of the
proposed model converges to that of the diffusion one [27].

Based on the proposed mathematical framework for
bacteria-based nanonetworks, we have provided a complete
analysis of the link performance metrics as functions of
bacteria mobility pattern, distance between nanomachines, and
quantity of released bacteria. Furthermore, we have presented
a technique to estimate the number of released bacteria that
ensure the prescribed level of the link reliability and the
propagation delay. Finally, we have studied the communication
range for bacteria-based nanonetworks. We have illustrated
that reliable links of up to one centimeter distance can be
achieved with only several hundreds of released bacteria.
The obtained results provide an important step towards the
performance evaluation of bacteria-based nanonetworks.
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