
Computer Networks 96 (2016) 69–78

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Jointly optimized QoS-aware virtualization and routing in

software defined networks

Shih-Chun Lin a,1,∗, Pu Wang b,2, Min Luo c,3

a Broadband Wireless Networking Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA

30332, USA
b Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS 67260, USA
c Shannon Lab, Huawei Technologies Co. Ltd., Santa Clara, USA

a r t i c l e i n f o

Article history:

Received 10 July 2015

Revised 13 August 2015

Accepted 15 August 2015

Available online 2 September 2015

Keywords:

Controller management tool

Joint virtualization and routing decision

Fine-grained network virtualization

Dynamic flow allocation

End-to-end QoS provisioning

Software defined networks

a b s t r a c t

Software Defined Networks (SDNs) have been recognized as the next-generation network-

ing paradigm that decouples the network control plane from the data forwarding plane. A

logically centralized controller is responsible for all the control decisions and communica-

tion among the forwarding switches. However, current traffic engineering techniques and

state-of-the-art routing algorithms do not effectively use the merits of SDNs, such as global

centralized visibility, control and data plane decoupling, network management simplification

and great computation capability. In this paper, a multi-tenancy management framework is

proposed to enable the jointly optimized design of quality-of-services (QoSs)-aware virtual-

ization and routing by tenant isolation and prioritization as well as flow allocation, fulfilling

QoS requirements of tenants’ applications. Specifically, a fine-grained network virtualization

is first proposed to isolate and prioritize tenants through the design of network and switch

hypervisors. Furthermore, a QoS-aware dynamic flow allocation is proposed to enable opti-

mal flow routes selection upon the given network slicing with QoS provisioning. Finally, an

adaptive feedback management tool, called QoS-aware Virtualization-enabled Routing (QVR),

is proposed to combine virtualization with flow allocation and supports reliable and efficient

transmissions with regards of time-varying QoS requirements, network topologies, and traffic

statistics. Simulations confirm that QVR achieves much less shared edges, congestion latency,

and traffic delay for multiple tenants, thus facilitating virtualization-enabled traffic engineer-

ing for multi-tenancy SDNs.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

During the past decade, the increment and complexity

of tenants’ application demands and requirements motivate

the reconsideration of better traffic engineering solutions. In
∗ Corresponding author. Tel.: +1 7654048029.

E-mail addresses: slin88@ece.gatech.edu (S.-C. Lin),

pu.wang@wichita.edu (P. Wang), min.ch.luo@huawei.com (M. Luo).
1 Student member, IEEE,
2 Member, IEEE,
3 Senior member, IEEE.

http://dx.doi.org/10.1016/j.comnet.2015.08.003

1389-1286/© 2015 Elsevier B.V. All rights reserved.
particular, as applications dramatically increase with various

types and thus become more challenging to address, net-

work operators in commercial clouds and data centers have

been trying to improve network performance while fulfilling

application requirements. However, this objective is almost

impossible to accomplish with the current closed/fixed net-

work architectures [1]. Recently emerged Software Defined

Network (SDN) [2,3] decouples control and data planes,

simplifies network management and control, and provides

global visibility and direct control of the underlying forward-

ing devices via open software-based implementations. The

new system architecture allows the separation of routing

http://dx.doi.org/10.1016/j.comnet.2015.08.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.08.003&domain=pdf
mailto:slin88@ece.gatech.edu
mailto:pu.wang@wichita.edu
mailto:min.ch.luo@huawei.com
http://dx.doi.org/10.1016/j.comnet.2015.08.003

70 S.-C. Lin et al. / Computer Networks 96 (2016) 69–78
decisions from the forwarding switches so that the decisions

can be easily modified, reconfigured, and optimized by the

centralized controller. In particular, instead of using tradi-

tional switches where the forwarding rules are defined and

installed by different vendors, open switches, e.g., OpenFlow

enabled switches [4], are introduced that only support flow

tables whose and are programmable following controller’s

policy. Thus, this decoupling architecture provides the global

and real-time network status to the centralized controller, al-

lowing the implementation of promising traffic engineering

that is infeasible in the closed architectures.

Exploiting the novel SDN architecture by cloud comput-

ing and data centers, a multi-tenant and resource sharing

scheme is widely considered due to its infrastructure and

maintenance cost-effectiveness, simplification, lower system

requirements and flexibility. Specifically, in single tenant so-

lutions, tenants’ applications have their own dedicated re-

source and nearly 45% of these resources is idle for most

of the time. On the other hand, in multi-tenant solutions,

resources are shared among tenants, which implies the ef-

ficient resource utilizations. However, under such multi-

tenancy scenarios, the resource assignments might be over-

lapped due to the sharing, and high-demanded tenants can

monopolize all the shared resources, thus greatly affecting

other tenants’ operations [5,6]. In that case, while SDN’s

global network view might allow the supervision of tenants’

resource consumption to detect the high-demanded tenants,

there is still a need of virtualization mechanism that isolates

and prioritizes tenants’ resource usages from each other, thus

allowing customized performance and security level.

As mentioned previously, the routing decisions also need

to be reevaluated in these multi-tenancy SDNs, from a fully

distributed computation of path-selection towards a central

administration of the path calculation supported and man-

aged by the logically centralized controller. In particular, the

improvement of network performance should be explored

with respect to latency, throughput, and reliability in the

designed routing. These service demands can be further

associated with the specific quantitative quality-of-services

(QoSs) of application flows, e.g., delay bounds, throughput re-

strictions, and packet losses. Taking into consideration of all

these flow requirements introduces a new challenge in rout-

ing decision. Moreover, regarding various types of tenants’

applications upon the same SDN infrastructure, best-effort

traffic, real-time traffic, multimedia like video and voice, data

applications, etc. should all be supported at the same time,

where more careful considerations are needed. For example,

real-time traffic does not have the elasticity to adapt the

packet transmission rate due to network congestion as elas-

tic traffic does and is tolerable with packet delay. Therefore,

the concurrent presence of different types of traffic in the

same network brings the following undesired situations:

real-time traffic will eventually squeeze the service out of

non-real-time traffic due to its strictly service demands;

elastic traffic could arrive with starvation in network conges-

tion, as real-time flows won’t hold back and share resources

fairly [7,8]. It implies that the service guarantees for a variety

of traffic types also introduces another great challenge

in routing decision. However, the existing work of traffic

engineering in SDNs [1,9] neither consider multi-tenancy
scenarios with virtualization scheme nor examine the QoS

provisioning in flow allocation with regards of various

tenants’ applications.

Leveraging SDN’s new system architecture, it is possible

to develop a routing framework in multi-tenancy environ-

ments with the provisioning of QoS-aware flow allocation

and tenant isolation and prioritization, which is significant

for cloud computing and enterprise data centers [10]. There-

fore, in this paper, a jointly optimized design of virtualiza-

tion and routing is addressed and an adaptive solution is pro-

posed to react to time-varying QoS requirements, network

topologies, and traffic statistics in a real-time manner. Specif-

ically, a fine-grained network virtualization is first proposed

to slice the physical network infrastructure into several iso-

lated subnets for multiple tenants. Ideally, the infrastructure

slicing should support 100% independence among multi-

tenants, i.e., no shared edges among tenants’ subnets, in such

a way each tenant’s preference can be satisfied. Towards this,

the network and switch hypervisors are introduced to ef-

ficiently give a feasible solution to the NP-complete prob-

lem of network graph partitioning [11], supporting network

slicing for tenants isolation and prioritization. Furthermore,

a QoS-aware dynamic flow allocation is proposed to enable

fast flow allocation with regards of traffic variations and

end-to-end QoS requirements. The management tool of QoS-

aware Virtualization-enabled Routing (QVR) algorithm is fur-

ther proposed to facilitate an adaptive feedback control of

network virtualization and flow allocation and to improve

service performance for achieving tenant’s satisfaction, thus

providing a customized solution for multi-tenancy SDNs. The

key features of our solution are summarized as follows:

• Fine-grained network virtualization: QVR provides topo-

logical and bandwidth virtualization(s) to realize re-

source slicing in terms of network topology and link ca-

pacity.

• Dynamic flow allocation: QVR supports traffic-awareness

allocation that fast manages dynamic flows with low

computational complexity.

• End-to-end QoS provisioning: QVR enables end-to-end

QoS guarantees within the adaptive feedback design of

virtualization-enabled traffic engineering.

Performance evaluation confirms QVR outperforms the con-

ventional approaches with less shared edges to ensure re-

source isolation of infrastructure usages, congestion latency,

and traffic delay for multi-tenants, successfully introduc-

ing virtualization-enabled traffic engineering with reliable

and efficient transmissions in practical implementations of

multi-tenancy SDNs.

To the best of our knowledge, this work is the first to

provide a joint consideration of network virtualization

and routing decision with QoS provisioning in centralized

controller in SDNs. The rest of the paper is organized as

follows. Section 2 introduces the system model and Section 3

presents the multi-objective optimization problem for

jointly virtualization and routing. Sections 4 and 5 further

provide the proposed solutions of fine-grained network vir-

tualization and QVR algorithm, respectively. Section 6 gives

the performance evaluation of QVR and Section 7 concludes

the paper.

S.-C. Lin et al. / Computer Networks 96 (2016) 69–78 71

Fig. 1. SDN system architecture.

Table 1

Important notations utilized in this paper.

Notation Description

G = (V, E); Ḡ = (V, Ē) A SDN graph G and its complement Ḡ

n ∈ N Tenant set with total |N| tenants

Gn = (Vn, En) The sliced subnet for tenant n

wmax
n The largest allowable path weight of subnet Gn

W(Gn) The weight supported by the subnet Gn

f ∈ Fn Application flow set of tenant n

Xn
f,i, j

Achievable packet data rate of link

(i, j) ∈ E f
n , f ∈ F n

λn
f

Packet arrival rate from source node sn
f

with

destination node dn
f

cij Link capacity of link (i, j) ∈ E

Dmax
n, f

Total delay bound for flow f ∈ Fn

Jn, f Jitter bound for flow f ∈ Fn

pmax
n, f

Packet loss bound for flow f ∈ Fn

Dq,n

f,i
Queuing delay at node i of flow f ∈ Fn

pn
f,i, j

Packet loss of link (i, j) ∈ E f
n

Ac
i, j

,Ai, j ⊆ N Inactive and active subnets over link (i, j) ∈ E

Qn
f,i, j

Queue length of flow f ∈ Fn over link (i, j) ∈ E

tn
i, j

Allocated time portion of link (i, j) to tenant n

∈ N

t̂n
i, j

Reallocated time portion from switch

hypervisor

2. System model

2.1. SDN architecture and operations

Indicated by [1,3], the system architecture of SDNs con-

sists of three layers (planes), including management applica-

tion, control, and data planes, as shown in Fig. 1. Specifically,

the data plane includes OpenFlow enabled switches (i.e., OF

switches) that have multi-flow tables and serve as the packet

forwarding devices. This data plane communicates with log-

ically centralized control plane via south-bound open APIs,

e.g., OpenFlow [4]. Furthermore, the control plane consists

of centralized controller(s) that assign the forwarding rules

to switches and enable ubiquitous regulation over the entire

network. Similarly, this control plane communicates with

management application layer through north-bound open

APIs. Moreover, the management application layer consists of

several SDN applications and management tools to fulfill var-

ious QoS requirements from multiple tenants’ specific appli-

cations. For example, real-time game applications could have

more strict QoS demands than applications with best-effort

traffic.

Our objective is to develop a routing algorithm that pro-

vides complete isolation of resource usages by multi-tenants

upon the same SDN infrastructure, in such a way QoS require-

ments of all tenants’ applications are fulfilled at the same

time. Towards this, we propose a two-phase design (i.e., net-

work virtualization with QoS-aware flow allocation) and a

feedback management tool (i.e., QVR algorithm). In partic-

ular, the first phase of network virtualization sites between

data and control planes, and divides the network resources

and infrastructure into isolated portions to separate applica-

tion flows from different tenants. This virtualization main-

tains the isolated resource portions unchanged regardless of

the new flow arrivals. Furthermore, for the second phase of

flow allocation, it sites at application layer, allocates flows ac-

cording to their respective QoS demands, and calculates and

adjusts flow paths for every new flow. Moreover, the QVR

management tool combines these two phases to determine
the suitable paths for new flows as well as to decide the op-

timal resource allocation according to current network sta-

tus. In addition, if the flow allocation phase fails to provide

the required QoS performance, QVR will further feedback the

operations to virtualization phase in order to enable a better

network slicing. Therefore, this joint design indeed facilitates

the jointly optimized virtualization and routing in SDNs. Note

that important notations in this paper are summarized in

Table 1.

2.2. Network model

The SDN is modeled by an undirected network graph G =
(V, E) as shown in Fig. 1, where V is the set of OF switches

with total |V| switches (more complicated models can be con-

sidered through the assumption that each node in V can be an

aggregated node grouping multiple physical switches) and E

is the set of links with total |E| links. Let N denote the set

of tenants that shares the same SDN with total |N| tenants.

While our objective aims to virtualize the physical network

into multiple separated subnets for isolated resource usages

among tenants, we introduce some useful notations and def-

initions as follows. A graph G′ = (V ′, E′) is a subgraph (sub-

net) of graph (network) G, i.e., G′ ⊆ G, if V′ ⊆ V and E′ ⊆ E. A

connected graph G is a nontrivial graph that any two vertices

in graph can be connected by at least one path in G. More-

over, the complement of a graph G, denoted as Ḡ = (V, Ē), has

the same node set as G and the edges that are not included

in G. A minimum spanning tree of a connected undirected

graph G is a tree that includes every node using the minimal

set of edges in terms of the given weight function. Note that

as it is very unlikely that there always exists a direct physi-

cal link between each source–destination pair, it is assumed

that there are more than one feasible routes for each pair.

Note that we use edge and link interchangeably through the

paper.

72 S.-C. Lin et al. / Computer Networks 96 (2016) 69–78

W

3. Multi-objective optimization problem for joint

virtualization and routing decision

We aim to bring a joint design scheme that decides the

completed isolation of resource usages and the optimal flow

allocation among multi-tenants’ applications at the same

time. In the following, we explain each design ingredient

in detail and formulate this problem as a multi-objective

optimization.

3.1. Network resource slicing

Given multiple tenants sharing a SDN infrastructure, the

goal of network resource slicing is to divide the topological

resources among multi-tenants wisely, in such a way the re-

source usages can be isolated and each tenant’s preference

can be satisfied. Specifically, for |N| tenants upon a SDN G,

the subnets for each tenant Gn = (Vn, En),∀n ∈ N, where Vn

⊆ V and En ⊆ E, should be decided to minimize the over-

lapped edges (i.e., |En ∩ Em| → 0, ∀1 ≤ n < m ≤ |N|) and

tenants’ satisfactions in terms of weights wmax
n ,∀n ∈ N are

achieved. These weight parameters can be considered either

from graph-centric perspective (e.g., the subnet diameter or

size) or QoS-centric perspective (e.g., the largest allowable

path delay or packet loss). In particular, we consider

(Gn) < wmax
n , ∀n ∈ N (1)

where wmax
n denotes the largest allowable path weight of the

subnet n and W(Gn) denotes the weight supported by the

subnet with respect to all existing paths. Eq. (1) indicates

the constraints of weight satisfactions for all tenants. Note

that each subnet must be a connected graph, since every pair

of nodes in the subnet should be able to communicate with

each other.

To provide complete resource isolation among tenants,

each subnet should better be the subset of the complement

of the other |N| − 1 union graph, i.e., Gn ⊆ ∩N
k=1,k
=n

Ḡk. In gen-

eral, this edge-disjoint requirement is hard to achieve, espe-

cially when there are many tenants sharing few edges of a

SDN. Hence, a practical approach is to allow a certain degree

of dependent resource utilization by limiting the number of

shared edges among tenants. In particular, an appropriate net-

work slicing should support the following:

min{Gn;∀n∈N}
∑

1≤n<m≤|N|
|En ∩ Em|. (2)

Regarding these shared edges, a flow allocation scheme, e.g.,

the one explained later in Section 3.2, should be proposed

to ensure each dependent tenant’s application requirements

are fulfilled. Specifically, as mentioned in Section 2.1, the

centralized controller of SDN has the capability to monitor

and regulate tenants’ traffic by implementing routing and

resource allocation decision made by the proposed man-

agement tools; thus it can adaptively rearrange the shared

edges and link capacities accordingly among dependent ten-

ants. Moreover, to further provide the serving differentiation

among multiple tenants, it is assumed that tenants’ demands

are less imperative as the order of tenant n ∈ [1, N] grows. It

implies tenant 1 has the highest serving priority while tenant

N has the lowest.
3.2. Flow allocation

To characterize the packet forwarding of application flows

upon the given network slicing of multi-tenants, Xn
f,i, j

de-

notes the achievable packet data rate of link (i, j) ∈ E
f
n for the

flow f in subnet n, and λn
f

denotes the packet arrival rate to

the source node sn
f
, where f ∈ Fn and n ∈ N. Therefore, the

routing constraint becomes

Xn
f,i, j = 0,∀(i, j)
∈ E f

n , f ∈ F n, n ∈ N. (3)

It implies that if a link is not sliced to a flow in subnet, the

link packet rate should be set to zero for that specific flow.

Moreover, given the link capacity cij for link (i, j) ∈ E, the cor-

responding capacity constraint is provided as∑
n∈N

∑
f∈F n

Xn
f,i, j ≤ ci j. (4)

Also, the flow conservation can be considered as the follow-

ing:∑
j;(i, j)∈E f

n

Xn
f,i, j −

∑
j;(j,i)∈E f

n

Xn
f, j,i = λn

f I{i=sn
f
},

∀i
= dn
f , f ∈ F n, n ∈ N, (5)

where dn
f

denotes the destination of flow f in subnet n and

I{·} is an indicator function that gives 1 when the event oc-

curs and 0 otherwise. This implies that the outgoing flows

of node should be equal to the incoming flows from neigh-

bors plus flow arrival rate, if the source node is concerned. In

addition to the above constraints, the objective of flow allo-

cation is to decide an effective resource utilization for multi-

tenants’ applications with respect to the given link capacities.

Specifically inspired by the work in [9,12,13], for each tenant,

the minimum arrival rate among flows should be maximized

from the flow allocation; thus,∑
n∈N

max
{Xn

f,i, j
;∀(i, j)∈E f

n , f∈F n}
min
f∈F n

λn
f (6)

provides the total achievable data rate accordingly.

3.3. End-to-end QoS provisioning

Aiming at supporting a great variety of QoS requirements

for tenants’ applications, the four major end-to-end QoS

are considered as follows. First, given the maximum toler-

able delay, jitter, and packet loss for a specific flow (i.e.,

Dmax
n, f

, Jn, f , pmax
n, f

∀ f ∈ F n, n ∈ N), the QoS constraints are pro-

vided respectively as ∀f ∈ Fn, n ∈ N,

Dn
f =

∑
(i, j)∈E f

n

(
1

Xn
f,i, j

+ Dq,n

f,i

)
< Dmax

n, f ; (7)

var(Dn
f) < Jn, f ; (8)

∏
(i, j)∈E f

n

pn
f,i, j < pmax

n, f , (9)

where 1/Xn
f,i, j

and D
q,n

f,i
denote the transmission and queu-

ing delay, respectively, var(·) gives the variance of the delay,

and pn
f,i, j

denotes the link packet loss. Moreover, to ensure

S.-C. Lin et al. / Computer Networks 96 (2016) 69–78 73

Table 2

Formulation for jointly virtualization and routing.

Objective:

min{Gn ;∀n∈N}
∑

1≤n<m≤|N|
|En ∩ Em| (2)

∑
n∈N

max
{Xn

f,i, j
;∀(i, j)∈E f

n , f∈F n}
min
f∈F n

λn
f

(6)

Subject to:

Subnet weight constraint:

W(Gn) < wmax
n ,∀n ∈ N (1)

Routing constraint:

Xn
f,i, j

= 0,∀(i, j)
∈ E f
n , f ∈ F n, n ∈ N (3)

Link capacity constraint:∑
n∈N

∑
f∈F n

Xn
f,i, j

≤ ci j,∀(i, j) ∈ L (4)

Flow conservation constraint:∑
j;(i, j)∈E f

n

Xn
f,i, j

− ∑
j;(j,i)∈E f

n

Xn
f, j,i

= λn
f
I{i=sn

f
},

∀i
= dn
f
, f ∈ F n, n ∈ N (5)

End-to-end delay constraint:

Dn
f
= ∑

(i, j)∈E f
n

(
ln

f

Xn
f,i, j

+ Dq,n

f,i
) < Dmax

n, f
,∀ f ∈ F n, n ∈ N (7)

Jitter constraint:

var(Dn
f
) < Jn, f ,∀ f ∈ F n, n ∈ N (8)

Packet loss constraint:∏
(i, j)∈E f

n

pn
f,i, j

< pmax
n, f

,∀ f ∈ F n, n ∈ N (9)

Data rate constraint:

Xn
f,i, j

> λn
f
,∀(i, j) ∈ E f

n , f ∈ F n, n ∈ N (10)
sources’ arrival rates are supportable by the links of forward-

ing paths, it implies that ∀(i, j) ∈ E
f
n , f ∈ F n, n ∈ N,

Xn
f,i, j > λn

f . (10)

Note that considering various tenants’ applications,

Eqs. (7)–(10) may give different degrees of QoS requirements

according to the applications. For example, in interactive

applications, the latency is more effective to the need of

real-time responses, and thus the delay and jitter constraints

are more stringent than the loss constraint. On the other

hand, for web browsing or emails, the jitter constraint is

not applicable due to its little performance impact, whereas

the throughput and loss constraints are of considerable

significance. Therefore, the entire formulation for jointly

virtualization and routing is well-established and Table 2

summarizes all the details. In the following, we first propose

a fine-grained network virtualization to address the network

slicing issue in Section 4, and then provide a completed

solution for the joint design in Section 5.

4. Fine-grained network virtualization for network

resource management

In this section, a fine-grained network virtualization is

proposed to manage topological resources among multi-

ple tenants. In particular, the high-level resource manage-

ment and low-level resource scheduling are introduced by

the designated network hypervisor and switch hypervisor,

respectively.

4.1. Network hypervisor

As mentioned in Section 3.1, the network slicing should

be an efficient resource management that aims to minimize

the number of shared edges among tenants, i.e., |En ∩ Em| →
0. It thus provides isolated resource usages and minimizes

the interference for the multi-tenants’ applications. To-

wards this, the proposed network hypervisor in Algorithm 1

perfectly suits the need of network virtualization, and the

Algorithm 1: Network hypervisor.

Input : Topology G; subnet weights wmax
1

, . . . , wmax
N

Output: Subnets G1, . . . , GN

Tenant 1 subnet

1 Run Kruskal’s alg. over G % Obtain the min. spanning

tree over G

2 Add found edges into G1

3 Find source-destination pairs (u,v) with path weight

larger than wmax
1

4 for each discovered pair (u,v) do

5 while path weight between (u,v) > wmax
1

do

6 Run Dijkstra alg. over G1 for pair (u,v)

7 Add new found edges into G1

8 end

9 end

Tenant N subnet

10 Run Kruskal’s alg. over Ḡ % Obtain the max. spanning

tree over G

11 Add found edges into GN

12 Find source-destination pairs (u,v) with path weight

larger than wmax
N

13 for each discovered pair (u,v) do

14 while path weight between (u,v) > wmax
N

do

15 Run Dijkstra alg. over GN for pair (u,v)

16 Add new found edges into GN

17 end

18 end

Tenant 2, . . . , N − 1 subnet

19 for each tenant n ∈ {2, . . . , N − 1} do

20 Run Kruskal’s alg. over Gn = G \ (∪n−1
k=1

Gk ∪ GN)

21 Find isolated nodes

22 Add edges from isolated nodes into Gn % Transform

Gn into a connected graph

23 Find source-destination pairs (u,v) with path

weight larger than wmax
n

24 for each discovered pair (u,v) do

25 while path weight between (u,v) > wmax
n do

26 Run Dijkstra alg. over Gn for pair (u,v)

27 Add new found edges into Gn

28 end

29 end

30 end

details are explained as follows. Given the serving priorities

among tenants, i.e., tenant 1 (N) has the highest (lowest),

Algorithm 1first deals with tenant 1 subnet, then tenant N

subnet, and finally the remaining tenant subnets. Specifi-

cally, first of all, for tenant 1, a minimum spanning tree is

searched within the SDN graph G using Kruskal’s algorithm

[14], and the found edges are added to the highest priority

subnet G1. Then, tenant 1’s satisfaction is evaluated for

Eq. 1 such that all source-destination pairs of application

flows should have at least one path with path weight less

than wmax. This path weight can be determined through a

1

74 S.-C. Lin et al. / Computer Networks 96 (2016) 69–78

Fig. 2. An example of network slicing by host IP address with two subnets.

Fig. 3. An example of combined multi-slicing with five subnets.
shortest path algorithm, e.g., Dijkstra’s algorithm [15]. In

particular, all source-destination pairs that do not satisfy

the wmax
1

constraint are first found. For each discovered pair,

Dijkstra’s algorithm is run over G1, and new edges are added

to guarantee the corresponding route has a weight less than

wmax
1

. The iteration continues until wmax
1

is fulfilled in all

source-destination pairs inside subnet G1. Next, for tenant N,

similar procedures are executed, except that the maximum

spanning tree is considered. In particular, Kruskal’s algorithm

is applied over the graph Ḡ for a maximum spanning tree

and the found edges are added to the lowest priority subnet

GN. Then, tenant N’s satisfaction is evaluated with respect to

wmax
N

. Finally, the remaining subnets Gn, where 2 ≤ n ≤ N − 1

are constructed. In particular, Kruskal’s algorithm is run

over the graph G \ (∪n−1
k=1

Gk ∪ GN), the isolated nodes are

found, and the edges from these isolated nodes to subnet

Gn are added. If more than one possible edge for an isolated

node is found, network hypervisor will choose the edge with

less weight. Then, tenant’s satisfaction is evaluated with

wmax
n . Note that there might be some edges that are already

included in the higher priority subnets, and these edges

become shared edges among tenants’ subnets. Therefore,

through Algorithm 1, a single SDN can be well-sliced into

multiple subnets while minimizing the number of shared

edges.

4.2. Switch hypervisor

While network hypervisor provides the sophisticated re-

source management among tenants, there is a need of an ex-

ecutor to fulfill such a management. Towards this, switch hy-

pervisor is proposed to perform the resource scheduling and

consists of two elements, i.e., queue-length based general-

ized processor sharing (GPS) and Flowvisor [16]. First, while

the conventional GPS can easily enable each subnet to oper-

ate independently, it does not provide throughput efficiency

in reallocating unused network resources (i.e., links) when

some subnets are temporally idle, i.e., having all flow queues

empty. This is because the sharing time calculation of con-

ventional GPS is insensitive to the queue-length conditions.

Instead, we propose a queue-length based GPS that assigns

time portions proportional to queue lengths as follows. Con-

sider for link (i, j) ∈ E, there are sets of Ac
i, j

,Ai, j ⊆ N, i.e., inac-

tive and active subnets respectively, and there are Fn applica-

tion flows with Qn
f,i, j

as the queue length of flow f in subnet

n. Then, the sharing time of the subnet n ∈ Ai, j over link (i, j)

∈ E is obtained by

t̂n
i, j = tn

i, j +
∑

k∈Ac
i, j

∑
f∈F n

Xn
f,i, j

Qn
f,i, j

I{(i, j)∈E f
n }

∑
l∈Ai, j

∑
f∈F l

X l
f,i, j

Ql
f,i, j

I{(i, j)∈E f

l
}
tk

i, j, (11)

where tk
i, j

,∀k ∈ Ac
i, j

indicate unused time portions of inactive

subnets. Next, a well-known software program, Flowvi-

sor [16], is exploited to virtualize the network according to

our designated of network and switch hypervisors. In partic-

ular, there are three modes of Flowvisor that can be utilized

such as slicing by host IP or MAC address, by port number,

and by the protocol type. An example of slicing by IP address

is shown in Fig. 2 with the original physical infrastructure

and two subnets. The key idea is to determine the source
and destination IP address for each shared switch. Moreover,

regarding the better design flexibility, Fig. 3 shows a more

complicated example for a combined multi-slicing with five

respective subnets. In particular, the original network is

first sliced twice according to IP address of hosts connected

to the switches, and then is sliced according to protocols

such as SSH, HTTP, and Telnet. Hence, we have successfully

provided a fine-grained network virtualization that allows

slices of multiple subnets to be defined and configured

S.-C. Lin et al. / Computer Networks 96 (2016) 69–78 75

Fig. 4. Network topology of real Sprint GIP network [17] over North Amer-

ica.
independently, facilitating the resource isolation and serving

priority among tenants.

5. QoS-aware virtualization-enabled routing (QVR) in

SDNs

In this section, a management tool of QoS-aware

virtualization-enabled routing (QVR) is proposed. In par-

ticular, based on the results of network virtualization in

Section 4, a dynamic flow allocation is first introduced to

guide packet flows in such a way the flow allocation and end-

to-end QoS provisioning are supported. Moreover, QVR algo-

rithm is then proposed to combine the designated network

hypervisor and QoS-aware dynamic flow allocation, thus en-

abling an adaptive control for a completed solution for multi-

objective optimization problem in Table 2.

5.1. Dynamic allocation framework with QoS provisioning

QoS-aware Dynamic Flow Allocation in Algorithm 2

provides a dynamic solution to maximize the minimum flow

Algorithm 2: QoS-aware dynamic flow allocation.

Input : G1, . . . , GN; link capacity {ci j}; QoS indices

{Dmax
n, f

, Jn, f , pmax
n, f

}
Output: Total data rate λ∗; flow allocation {Xn

f,i, j
}

1 for each subnet Gn do

2 for each flow f ∈ F n do

3 Find all paths between (sn
f
,dn

f
)

4 for each path k do

5 Initialize λn
f,k

= ∞
6 while NSQP(Eq. (7)-(10),λn

f,k
) do

7 λn
f,k

← λn
f,k

− 1

8 Find {Xn
f,i, j

} for path k satisfying Eq.

(4)-(6)

9 end

10 end

11 λn
f

= maxk λn
f,k

12 end

13 Find λn = min f∈Fn λn
f

14 end

15 λ∗ = ∑
n∈N λn

arrival rates for multiple tenants. First of all, for each applica-

tion flow in subnets, all available paths between flow source

and destination are found. Next, with respect to these paths,

the constraints of flow allocation in Section 3.2 and end-to-

end QoS provisioning in Section 3.3 are evaluated, and the

maximum achievable arrival rates are yielded accordingly. In

particular, NSQP function in line 6 in Algorithm 2 enables the

QoS constraint evaluations that gives the true value if the QoS

provisioning is not satisfied with the given arrival rate in the

current round. In that case, the algorithm enables the suc-

cessive round to reduce the arrival rate and finds the suit-

able flow allocation accordingly via line 8; otherwise, the al-

gorithm stops and the optimal solution is reached. Finally,

the maximum rate among available paths of a flow is se-

lected as the flow arrival rate, and the minimum flow rate
in a subnet and the total rates over multi-tenants can be ob-

tained accordingly. Therefore, due to the simple operations

of Algorithm 2, it provides a feasible solution in a timely

manner, facilitating dynamic flow allocation for all tenants’

applications.

5.2. QoS-aware virtualization-enabled routing (QVR)

QVR algorithm in Algorithm 3 provides an adaptive feed-

Algorithm 3: QoS-aware virtualization-enabled routing

(QVR)

Input : G; {wmax
n }; {ci j}; {Dmax

n, f
, Jn, f , pmax

n, f
}

Output: {Gn}; λ∗; {Xn
f,i, j

}
1 while λ∗ == 0 do

Network Virtualization Phase

2 {Gn} ←Algorithm 1(G, {wmax
n })

Flow Allocation Phase

3 (λ∗; {Xn
f,i, j

}) ←Algorithm 2({Gn}, ·)
4 end

back control between network hypervisor in Algorithm 1and

dynamic flow allocation in Algorithm 2, yielding a completed

solution for jointly optimized virtualization and routing de-

cision. In particular, network hypervisor is first executed

to partition the SDN infrastructure into several subnets for

multi-tenants. Once the network slicing is finished, dynamic

flow allocation is applied to provide the optimal network

throughput and the corresponding flow assignments. Nor-

mally, dynamic flow allocation can resolve all impacts from

time-varying QoS requirements, network topologies, and link

capacities by re-running the allocation accordingly, and net-

work hypervisor only needs to run once and for all. However,

if the allocation cannot provide a feasible solution, i.e., λ∗ re-

mains zero, QVR will feedback to network hypervisor and en-

able a better network slicing as well as the achievable flow

allocation. Therefore, upon this stage, we have successfully

presented an adaptive solution that completely solve the

joint virtualization and routing problem in a timely manner,

facilitating the practical implementations of multi-tenants’

applications in SDNs.

76 S.-C. Lin et al. / Computer Networks 96 (2016) 69–78

Fig. 5. Tenants’ subnets and shared links. (a) Tenant 1 subnet. (b) Tenant 2

subnet. (c) Tenant 3 subnet. (d) Shared and dedicated links.

Fig. 6. Number of shared links with respect to different flow allocations. (a)

Time evolution of a single evaluation. (b) Results of 20 experiments.
6. Performance evaluation

To evaluate the proposed QVR algorithm in Algorithm 3,

a Sprint network topology [17] with 25 nodes and 53 links

is considered as the SDN infrastructure shown in Fig. 4. It is

assumed that there are three tenants, operating in the infras-

tructure. In particular, tenant 1 generates traffic from real-

time applications, which is modeled with Pareto arrivals due

to traffic burstiness; tenant 2 and tenant 3 generate traffic

from non-real-time applications, which are modeled with

exponential arrivals. A random variable X ∈ PAR(α, xm) if

it follows Pareto distribution with parameters α and xm, i.e.,

P(X > x) = (xm/x)α . A random variable X ∈ EXP(λ) if it fol-

lows exponential distribution with parameter λ, i.e., P(X >

x) = e−λx. Towards this, we have PAR(1.5, 10) for tenant 1,

EXP(0.2) for tenant 2, and EXP(0.4) for tenant 3. The link

service time follows an exponential distribution. Moreover,

the highest allowable path delay is selected as the maxi-

mum path weight, and the values for three tenants are set

as 100 ms, 400 ms, and 500 ms, respectively, according to

their specific applications. In the following, we first evaluate

the network slicing capability of QVR, and then examine the

QVR performance in detail.

6.1. Network slicing

Fig. 5 shows the tenant isolation by QVR algorithm, par-

ticular from network hypervisor. Specifically, Fig. 5(a)–(c)

S.-C. Lin et al. / Computer Networks 96 (2016) 69–78 77

Fig. 7. Number of congested links with respect to different flow allocations.

(a) Time evolution of a single evaluation. (b) Results of 20 experiments.

Fig. 8. End-to-end packet delay with respect to three tenants. (a) Tenant 1

subnet. (b) Tenant 2 subnet. (c) Tenant 3 subnet.
provide the subnets for tenant 1–3, respectively, and Fig. 5(d)

further provides the superposition of three tenants, where

the shared links are highlighted by the dotted lines. The re-

sults imply that after executing the network hypervisor, three

subnets are obtained from the original physical network, and

the subnets are built to have the minimum shared links. Re-

garding these few shared links, the slicing of link capacity

among sharing subnets will be taken care by the dynamic

flow allocation, fulfilling fine-grained network virtualization.

Given the subnets of three tenants in Fig. 5, in the following

we compare the performance of QVR upon this network slic-

ing with the conventional flow allocation solutions.

6.2. Performance of QVR

The number of shared links and the latency from con-

gested links are first examined through the perspectives

of time evolution and multiple experiments for three ap-

proaches: OSPF [18], random flow allocation, and QVR. In par-

ticular, OSPF decides the flow allocation and corresponding

network slicing through shortest-path algorithm, whereas

random flow allocation determines those through random

path selections. Fig. 6 shows the results of shared links, and

indicates that under both OSPF and random approach, the

link number reaches the maximum value in an early stage.

However, QVR can maintain the number of shared link as a
constant value due to its network hypervisor, thus achieving

better tenant isolation. Moreover, Fig. 7 shows the conges-

tion latency, and indicates that QVR performs much better

with less latency than OSPF and random solution. The reason

for QVR’s superiority comes from the optimized route selec-

tions that wisely utilizes the link capacity for current flows

and thus can provide more bandwidths upon bottleneck links

for future flow arrivals. In short, the above results show that

QVR accomplishes tenant isolation while improves the con-

gestion latency, allowing more incoming flows from tenants.

The delay perceived by new flow arrivals of three tenants

are provided in Fig. 8. In particular, tenant 1 considers real-

time applications that brings more bursty traffic and requires

much less delay than the non-real-time traffic of tenant 2 and

tenant 3. The results show that OSPF and random solution

78 S.-C. Lin et al. / Computer Networks 96 (2016) 69–78
cannot fulfill tenant 1’s requirements due to the large and

highly fluctuated delay, and provides much greater delay for

both tenants 2 and 3. On the other hand, QVR provides lit-

tle delay with less fluctuation for all three tenants, thus con-

firming its efficacy. In summary, QVR meets the need of joint

virtualization and routing, facilitating reliable and efficient

transmissions for multi-tenants’ applications in SDNs.

7. Conclusion

In this paper a joint design of optimized QoS-aware vir-

tualization and routing is addressed as a multi-objective

optimization problem. This complex optimization is com-

pletely solved in a timely manner through the proposed man-

agement tool of QVR in SDN controller. Specifically, with

the aid of incorporation between network virtualization and

flow allocation, QVR enables an adaptive solution with re-

spect to time-varying QoS requirements, network topolo-

gies, and traffic statistics that slices the network resource

among multi-tenants’ applications and decides the optimal

flow routes to fulfill the QoS guarantees for applications. Per-

formance evaluation confirms QVR outperforms the conven-

tional approaches with less shared edges, congestion latency,

and traffic delay for multi-tenants. Therefore, we have pre-

sented a novel paradigm to facilitate virtualization-enabled

traffic engineering for centralized controller in practical SDN

implementations.

References

[1] I.F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou, A roadmap for traffic
engineering in SDN-OpenFlow networks, Comput. Netw. 71 (2014) 1–

30.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: enabling innovation in cam-

pus networks, ACM SIGCOMM Comput. Commun. Rev. 38 (2) (2008)
69–74.

[3] I.F. Akyildiz, P. Wang, S.C. Lin, Softair: a software defined networking
architecture for 5G wireless systems, Comput. Netw. 85 (2015) 1–18.

[4] ONF, OpenFlow Switch Specification, version 1.4.0 [online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf.

[5] D. Shue, M.J. Freedman, A. Shaikh, Performance isolation and fairness
for multi-tenant cloud storage, in: Proceedings of the 10th USENIX

Conference on Operating Systems Design and Implementation, 2012,
pp. 349–362.

[6] W.-T. Tsai, Q. Shao, J. Elston, Prioritizing service requests on cloud with
multi-tenancy, in: Proceedings of the IEEE 7th International Conference

on e-Business Engineering (ICEBE), 2010, pp. 117–124.

[7] S. Shenker, Fundamental design issues for the future internet, IEEE J.
Sel. Areas Commun. 13 (7) (1995) 1176–1188.

[8] S. Shenker, L. Zhang, D. Clark, A scheduling service model and
a scheduling architecture for an integrated services packet

networks ps, Xerox Parc, Tech. Rep., 1993 [online]. Available:
ftp://ftp.parc.xerox.com/pub/archfin.

[9] S. Agarwal, M. Kodialam, T.V. Lakshman, Traffic engineering in software

defined networks, in: Proceedings of the 2013 IEEE INFOCOM, 2013,
pp. 2211–2219.

[10] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart, A. Vahdat, B4:

experience with a globally-deployed software defined WAN, in: Pro-
ceedings of the ACM SIGCOMM, 2013, pp. 3–14.

[11] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the

Theory of Np-Completeness, W. H. Freeman & Co., New York, NY, USA,
1979.

[12] B. Fortz, M. Thorup, Optimizing OSPF/IS-IS weights in a changing world,
IEEE J. Sel. Areas Commun. 20 (4) (2002) 756–767.

[13] J. Chu, C.-T. Lea, Optimal link weights for IP-based networks supporting
hose-model VPNs, IEEE/ACM Trans. Netw. 17 (3) (2009) 778–788.

[14] J.B. Kruskal, On the shortest spanning subtree of a graph and the trav-

eling salesman problem, Proc. Am. Math. Soc. 17 (1) (1956) 48–50.
[15] E.W. Dijkstra, A note on two problems in connection with graphs, Nu-
mer. Math 1 (1) (1959) 269–271.

[16] R. Sherwood, G. Gibby, K.-K. Yap, G. Appenzeller, M. Casado, N.
McKeown, G. Parulkar, Flowvisor: A Network Virtualization Layer,

2009, Deutsche Telekom Inc. R&D Lab., Stanford University, Nicira Net-
works, Tech. Rep. OPENFLOW-TR-2009-1.

[17] Sprint, Overland Park, KS, Sprint IP network performance, 2011 [on-

line]. Available: http://www.sprint.net/performance.
[18] J. Moy, OSPF version 2, 1998, IETF RFC 2328.

Shih-Chun Lin (S’08) received the B.S. degree
in electrical engineering and the M.S. degree

in communication engineering from National
Taiwan University in 2008 and 2010, respec-

tively. He is a graduate research assistant in

the Broadband Wireless Networking Laboratory
(BWN Lab), School of Electrical and Computer En-

gineering, Georgia Institute of Technology. Cur-
rently, he is working toward the Ph.D. degree

in electrical and computer engineering under
the supervision of Prof. Ian F. Akyildiz. His re-

search interests include wireless underground

sensor networks, software defined networking,
large machine-to-machine communication, cognitive radio networks, and

statistical scheduling in wireless systems.

Pu Wang (M’05) received the B.S. degree in elec-
trical engineering from the Beijing Institute of

Technology, Beijing, China, in 2003, the M.Eng.
degree in computer engineering from the Memo-

rial University of Newfoundland, St. Johns, NL,

Canada, in 2008, and the Ph.D. degree in elec-
trical and computer engineering from the Geor-

gia Institute of Technology, Atlanta, GA, in 2013.
He is currently an Assistant Professor with the

Department of Electrical Engineering and Com-
puter Science, Wichita State University, Wichita,

KS. Dr. Wang received the BWN Lab Researcher

of the Year award in 2012, Georgia Institute of
Technology. He received the TPC top ranked paper award of IEEE DySPAN

2011. He was also named Fellow of the School of Graduate Studies, 2008,
Memorial University of Newfoundland. His research interests include wire-

less sensor networks, cognitive radio networks, software defined networks,
nanonetworks, multimedia communications, wireless communications in

challenged environment, and cyber-physical systems.

Min Luo received the Ph.D. degree in Electrical

Engineering from Georgia Institute of Technology,
Atlanta, GA USA, in 1992. He also held the B.S.

and M.S. degrees in 1982 and 1987, respectively
in Computer Science. Currently, he is the Head

and Chief Architect of the Advanced Network-
ing at Huawei’s Shannon (IT) Lab, leading the

research and development in Software Defined

Networking (SDN) and other future networking
initiatives. He served as Chief/Executive Architect

for IBM SWG’s Strategy and Technology, Global
Business Solution CenterGCG, Industry Solutions,

and Center of Excellence for Enterprise Architec-
ture and SOA for more than 11 years. He also worked as Senior Operations

Research Analyst, Senior Manager and Director of Transportation Network

Planning and Technologies for two Fortune 500 companies for seven years.
He’s certified and awarded as the Distinguished Lead/Chief Architect from

Open Group in 2008. He is an established expert in the field of next negation
software defined networking (SDN), enterprise architecture and information

systems, whole life cycle software application and product development,
business intelligence, and business process optimization. He is also a pioneer

and one of the recognized leading experts and educators in Service-oriented

architecture (SOA), Model/business-driven architecture and development
(MDA-D), and component/object-oriented technologies. He coauthored two

books, including the pioneering Patterns: Service Oriented Architecture
and Web Services in 2004, and published over 20 research papers. As a

senior member of IEEE, he has been serving on the organizing committee
for IEEEs ICWS, SCC and CC (Cloud Computing) Conferences, chaired

sessions, presented several tutorials on SOA and Enterprise Architecture
and their best practices and gave lectures at the Service University. He has

served as adjunct professors in several USA and Chinese universities since

1996.

http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0003
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0006
ftp://ftp.parc.xerox.com/pub/archfin
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0007a
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0007a
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0007a
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0010a
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0010a
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00256-X/sbref0011
http://www.sprint.net/performance

	Jointly optimized QoS-aware virtualization and routing in software defined networks
	1 Introduction
	2 System model
	2.1 SDN architecture and operations
	2.2 Network model

	3 Multi-objective optimization problem for joint virtualization and routing decision
	3.1 Network resource slicing
	3.2 Flow allocation
	3.3 End-to-end QoS provisioning

	4 Fine-grained network virtualization for network resource management
	4.1 Network hypervisor
	4.2 Switch hypervisor

	5 QoS-aware virtualization-enabled routing (QVR) in SDNs
	5.1 Dynamic allocation framework with QoS provisioning
	5.2 QoS-aware virtualization-enabled routing (QVR)

	6 Performance evaluation
	6.1 Network slicing
	6.2 Performance of QVR

	7 Conclusion
	 References

