
52 IEEE Network • May/June 20160890-8044/16/$25.00 © 2016 IEEE

The recently emerged software defined networking (SDN)
[1] architecture separates between the network control

plane and the data plane, which provides user applications
with a centralized view of the distributed network states. A
logical view of the SDN architecture is depicted in Fig. 1. At
the control plane layer, there is one SDN controller; however,
there may be many controllers in a large-scale or wide area
network. The network intelligence and states are handled by
controller(s), where the controller(s) can globally regulate
the network states via network policies in either a centralized
(one controller) or distributed manner (many controllers). A
set of application programming interfaces called north-bound
open application programming interfaces (APIs) are support-
ed to communicate between the application layer and the con-
trol plane layer in order to enable network services. The data
plane layer in SDN employs programmable OpenFlow (OF)
switches that communicate with its SDN controller via south-
bound open interfaces (e.g., OF protocol). The OF protocol
[1] allows the logically centralized controller to dynamically
modify the forwarding table of routers or switches, regard-
less of the underlying switching technologies. The SDN para-
digm offers a unified and global view of complicated networks,
and thus provides a powerful control environment for net-
work management of traffic flows. So far in the literature, the
majority of research was devoted mainly to the development
of SDN architectures, with less effort on the development of
traffic engineering (TE) tools for SDN.

Traffic engineering is an important subject for network per-
formance optimization by dynamically analyzing, predicting,
and regulating the behavior of the transmitted data. TE has
been widely exploited in asynchronous transfer mode (ATM)
and IP/multiprotocol label switching (MPLS) networks over
the last two and half decades. However, those networking par-
adigms and their corresponding TE solutions are not directly

useful in the next generation networking paradigms such as
SDN. This is mainly due to two reasons:

•Today’s Internet applications require the underlying net-
work architecture to behave in real time (or near real time)
and to scale up to a large amount of traffic. The network
architecture should be capable of classifying a variety of traffic
types for different applications, and to provide an appropriate
and specific service for each traffic type in a very short time
period such as within milliseconds.

•Highly efficient network management is desirable to sig-
nificantly improve resource utilization for optimal system
performance when it encounters the rapid growth in cloud
computing and the demand for massive-scale data centers.
However, all the existing TE technologies rely on closed and
inflexible architectural design, where the control and data
planes are tightly coupled and integrated. Such inflexible and
close architectures prevent the existing TE technologies pro-
viding truly differentiated services to adapt to increasingly
growing, uneven, and highly variable traffic patterns. On the
contrary, the unique features of SDN, including visibility, pro-
grammability, openness, and virtualizability, pave the way for
the development of new TE techniques that are inherently
flexible, adaptive, and customizable.

In this article, we survey the state of the art in TE for SDN
from the perspective of four thrusts: flow management, fault
tolerance, topology update, and traffic analysis. We also high-
light open challenging research issues and review recent prog-
ress in TE for SDNs.

Scalability and Availability: Flow
Management
In SDN, when an OF switch receives a new (unknown) flow
that does not match any rule in its flow entry, the first packet
of this flow is forwarded to its controller. Accordingly, the
controller then calculates a forwarding path and installs a new
forwarding rule for the switches along that path. However,
installing this forwarding rule may take time and yield delay
spikes. If a high number of new flows are aggregated at the

Abstract
SDN is an emerging networking paradigm that separates the network control plane
from the data forwarding plane with the promise to dramatically improve network
resource utilization, simplify network management, reduce operating costs, and
promote innovation and evolution. While traffic engineering techniques have been
widely exploited for ATM and IP/MPLS networks for performance optimization in
the past, the promising SDN networks require novel traffic engineering solutions that
can exploit the global network view, network status, and flow patterns/characteris-
tics in order to achieve better traffic control and management. This article discusses
the state-of-the-art in traffic engineering for SDN with attention to four cores includ-
ing flow management, fault tolerance, topology update, and traffic analysis. Chal-
lenging issues for SDN traffic engineering solutions are discussed in detail.

Research Challenges for Traffic Engineering
in Software Defined Networks

Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou

Ian F. Akyildiz and Ahyoung Lee are with Georgia Institute of Technology.

Pu Wang is with Wichita State University.

Min Luo and Wu Chou are with Huawei Technologies Co. Ltd.

IEEE Network • May/June 2016 53

edge switches, significant overhead may arise at both the con-
trol and data planes. Thus, we present solutions that avoid
this bottleneck in SDNs by considering the trade-offs between
latency and load balancing at the data plane and the control
plane.

Load Balancing for the Data Plane
Hash-Based ECMP Flow Forwarding: The hash-based

Equal-Cost Multi-Path (ECMP) [2] is a load balancing scheme
to distribute flows across available paths using flow hashing
methods. However, a main constraint of ECMP is that two
or more large, long-lived flows can collide on their hash and
thus share the same output port, thereby creating a bottleneck
in the network. This static mapping of flows to paths is not
concerned with either current network utilization or flow size,
thus resulting in collisions that can overwhelm the switch buf-
fers and degrade the overall network utilization. To avoid the
limitations of ECMP, a significant amount of large (elephant)
flows can be detected at the edge switches [3] or even at the
end hosts [4], and then the central controller could calculate
the appropriate paths for them, while small (mice) flows are
forwarded by using the ECMP routing at the switches. Howev-
er, such a solution can induce high bandwidth and processing
overhead at the switches or hosts.

Wildcard Rule Flow Forwarding: OF switches use flow-
match wildcards to aggregate traffic flows [2]. OF is a great
concept that simplifies network and traffic management by
enabling flow-level control over switches and providing a glob-
al network view. However, the central control management
and the global view over all flows require the controller to set
up all flows for the critical path in the entire network, which
is not sufficiently scalable and results in both bottleneck and
latency. To reduce the number of interactions between the
controller and the switches, the SDN TE approaches imple-
ment wildcard OF rules at the switches, and the switches can
make local routing decisions that handle mice flows to avoid
involving the controller, while the controller maintains the
control over only targeted elephant flows, especially for quality
of service (QoS)-significant flows. Another approach [2] uses
the authority switches that can handle all data packets without
involving the controller to reduce the control overhead at the
control plane.

Load Balancing for the Control Plane

Whenever a new flow is established in the network, the OF
switch has to forward the first packet of the flow to the con-
troller for deciding a suitable forwarding path. This feature of
SDN may cause the network controller to become a potential
performance bottleneck. A single controller cannot work effi-
ciently and scale up with the increased number of network
elements and the growing number of traffic flows. Toward this
end, controller load balancing schemes have to be adopted,
which are summarized as follows.

Distributed Controller Deployment:
Logically Centralized and Physically Distributed Controller:

The logically centralized control plane aims to keep the ben-
efit of network control centralization by using a set of phys-
ically distributed controllers. For this, there are mainly two
approaches. The first one, HyperFlow [2], localizes the deci-
sion making to individual controllers and uses a publish/sub-
scribe messaging paradigm with a distributed file system to
provide the same consistent network-wide view to all of its
controllers. However, this scheme requires additional main-
tenance and subscription management that may increase the
control overhead. In contrast, the second approach, DIFANE
[2], distributes the controller’s rules to a subset of the author-
ity switches, which handle the traffic flow forwarding decisions
in the data plane. This scheme may have high resource con-
sumption such as CPU or the ternary content addressable
memory (TCAM) [2] at switches.

Physically Distributed Controller: By this deployment scheme,
a large-scale OF network is partitioned into small networks,
each of which is managed by a local controller. For example,
in the Onix system [2], each local controller has the network
information base (NIB) data structure to share the copy of the
network state with each other. The NIB includes a graph of all
network entities within a local network topology. BalanceFlow
[2] is a more flexible controller load balancing architecture for
a wide-area OF network. The super controller is in charge of
balancing the load of all controllers, while all controllers main-
tain their own flow requests information and publish this infor-
mation periodically through a cross-controller communication
system to support load balancing.

Figure 1. Overview of SDN architecture.

North-bound APIs

South-bound APIs

SDN controller

Traffic
eng.MonitoringRoutingQoS

Applications layer:
• SDN applications
• Business applications • • •

OF

sw
itc

hFlow tables

Forwarding

Global network view

OF

sw
itc

hFlow tables

Forwarding

OF

sw
itc

hFlow tables

Forwarding

OF

sw
itc

hFlow tables

Forwarding

OF

sw
itc

hFlow tables

Forwarding

OF

sw
itc

hFlow tables

Forwarding OF

sw
itc

hFlow tables

Forwarding
OF

sw
itc

hFlow tables

Forwarding

Control plane layer:
• SDN controller(s)
• North-bound APIs
• South-bound APIs
 (e.g., OpenFlow protocol)

Data plane layer:
• OpenFlow (OF)
 switches
• Routers
• Other infrastructure
 elements

IEEE Network • May/June 201654

Hierarchical Controller: This is a hierarchically distributed
control plane with different levels. Kandoo [2] is an example
of a hierarchical controller deployment. A network controlled
by Kandoo has multiple local controllers and a logically cen-
tralized root controller. If the root controller needs to set up
flow entries on switches of a local controller, it forwards the
requests to the respective local controller. However, in this
hierarchical controller architecture, the local controller needs
to have a global network view of their applications.

Hybrid Controller: It is a logically centralized control plane,
but physically distributed clusters of controllers. SOX [5] and
the distributed SOX (DSOX) are designed with a centralized
controller clusters while many controllers could be concurrent-
ly running in equal mode and the cluster shares a common
NIB. This architecture enables automatic failover and load
balancing, while the number of controller instances is created
dynamically according to the changing traffic demands.

Multi-Thread Controllers: To improve the request pro-
cessing throughput, multi-thread multi-core SDN controllers
have been developed, where the parallelism architecture of
servers is exploited to provide high throughput with scalability
at the controller. By default, almost all production controllers
nowadays are multi-threaded in order to provide adequate
performance. Several multi-thread controllers are proposed,
and the performance evaluation results depend on their tested
conditions as shown in Table 1.

Generalized Controllers: To improve the flexibility, reli-
ability, and advanced networking capabilities, the subsequent
standard releases of OpenFlow after OF v1.0 [1] have gradu-
ally introduced many core protocol level enhancements (e.g.,
multi-flow tables and multi-controllers) in addition to other
critical new networking features including IPv6, MPLS, flow
metering, and so on. However, these desired new capabilities
come at a cost, because the increased protocol complexity
significantly affects the design and implementation of both the
controllers and switches. Moreover, in the foreseeable future,
SDN/OF-based networking technologies will coexist and prob-
ably interoperate with existing IP-based ones. This interoper-
ating issue also occurs with the SDN/OF-based switches and
controllers, as different OF standard versions (e.g., OF v1.0
and OF v1.2) are not backward compatible. To cope with such
a problem, SOX [5] initiated the approach of a generalized
SDN controller to control the SDN/OF-based data networking.
It supports interoperation of both OF v1.0 and v1.2+ switches
in addition to internetworking with existing legacy data net-
works. Moreover, in order to support the structured controller
evolution, it promotes and adopts the model-driven architec-
ture based on best software engineering practice to improve
the extensibility, modularity, usability, interoperability, consis-
tency, and manageability of SDN. SOX is multi-threaded and

can be deployed in a clustered environment in equal-equal
mode, in which the number of threads in SOX is dynamically
adjusted and fluctuated with the level of data traffic (packet-in
rates) to the controller.

Multiple Flow Tables
The OF v1.0-based switches [1] have a single match table
model typically built on TCAM. However, the single table for
implementing flow rules can create a huge rule set, resulting
in a serious limitation on the number of flow entries and the
inability to support large-scale deployments, since TCAM
space is a scarce and expensive resource. It is inefficient to
store many attributes in a single table with tremendous redun-
dancy, which can degrade searching and matching speed as
well. To make flow management more flexible and efficient,
OF v1.1(+) [1] introduces the mechanism of multiple flow
tables. As shown in Fig. 2, an OF switch can have one or more
flow tables in the switch for pipelined processing. Decom-
posing the single flow table into multiple more efficient and
normalized sets of tables can significantly improve TCAM
resource utilization and speed up the matching process.

Research Challenges
Dynamic Load-Balancing Scheme for the Data Plane: To

fully utilize the flexible control and global view promised by
SDN, SDN TE demands a dynamic load balancing mechanism
that is adaptive to time-varying network states and adjust-
able based on fine-grained traffic characteristics such as traffic
burstiness and inter-arrival times.

Dynamic Load Balancing Scheme for the Control Plane:
To avoid the bottleneck at the single centralized controller in
a large-scale SDN network, TE should consider control plane
load balancing solutions to find the optimal number, locations,
workload distribution, and control message forwarding paths
of SDN controllers. The traffic balancing solutions have to
facilitate efficient and accurate acquisition of the traffic statis-
tics in SDN.

Adaptive Multi-Flow Table Schemes: As the number of
flows managed by a switch is limited by the size of its flow
tables, flexible and adaptive flow table methods should be
developed so that the new flows which overwhelmed the limit-
ed space of TCAM(s) can be moved to the attached memory
space of lower-cost SRAM or DRAM. These methods should
be connected with an efficient traffic scheduling method for
different QoS flows.

Reliability: Fault Tolerance
To ensure network reliability, SDN should be able to perform
failure recovery transparently and gracefully when failures
occur in the network infrastructure. Although a switch could

Table 1. Quantitative overview of multi-thread controllers.

Multi-thread
approach [2] OF version Number of threads used in CPU cores Maximum throughput Average delay

Maestro v1.0 7 (8 cores from 2 Quad-Core AMD
Opteron 2393 processors)

0.63 million flow requests
per second (rps) 76 ms

Beacon v1.0 12 (16 cores from 2 Intel Xeon
E5-2670 processors) 12.8 million flow rps 0.02 ms

NOX-MT v1.0 8 (8 cores from 2 GHz processor) 1.6 million flow rps 2 ms

SOX v1.3+ 4 (4 cores from 2.4 GHz processor)

0.9 million flow rps per
server, 3.4+ million flow rps
with 4 servers in the cluster
while hitting the I/O limit

< 0.5 ms (end-to-end with
2 tandem switches)

IEEE Network • May/June 2016 55

identify the failed link, it has neither the intelligence nor the
global knowledge to create a new route. It has to depend on
updates from the controller to establish an alternate route.
Moreover, when the failed node is recovered and goes back
to work, it will still be the duty of the controller to re-establish
the optimal routes and the network topology for the ongoing
traffic. Therefore, we investigate current research efforts and
suggestions on realizing fast failure recovery in SDN networks.

Fault Tolerance for the Data Plane
Failure Recovery Mechanisms: There are primary two types

of failure recovery mechanisms: restoration and protection
for the network element and link failures [6]. Restoration is a
reactive strategy, while protection is a proactive strategy.

Restoration: The recovery paths can be either pre-planned
or dynamically allocated, but resources are not reserved until
failure occurs. Additional signaling is required to establish the
restoration path when a failure occurs.

Protection: The paths are pre-planned and reserved before a
failure occurs. When a failure occurs, no additional signaling is
needed to establish the protection path.

Compared to the restoration scheme, the protection scheme
[7] can enable faster recovery without the involvement of the
network controller when failures are detected. Moreover, the
required bandwidth and latency during failures can be consid-
erably reduced because no interactions are required between
switches and the controller. Therefore, for large-scale SDN
systems, path protection solutions are more favorable in order
to achieve fast failure recovery.

Other Considerations for Fast Failure Recovery: The delay in
failure recovery can also be caused by the OF protocol. Accord-
ing to the OF specification [1], even if the new flow entries are
installed at the affected switch, the switch does not remove the
entries using the failed link until the timeout occurs. The tim-
eout is associated with timers (i.e., hard timer and soft timer),

and it is normally in the range of several seconds. Thus, the
path failures are not actually recovered until one of the timers
expires. To solve these problems, the OF-based segment pro-
tection scheme [7] employs the flow entry priority and auto-re-
ject mechanism to achieve fast switchover between the working
path and protection path. Upon detecting failures, the auto-re-
ject mechanism removes all affected flow entries using the
failed links immediately without waiting for either the soft or
hard timeout. Reference [8] proposed a scheme that allows
switches to exchange simple link failure messages (LFMs) in
such a way that the relevant switches can be aware of a link
failure without involving the controller, thus leading to a much
shorter time than it would take for the controller to identify a
link failure and send out the topology update to the relevant
switches. The performance of this scheme depends on the
number of switches and also on the total number of flow table
entries in a switch.

Fault Tolerance for the Control Plane
SDN is a logically centralized architecture, which depends on
the controller to update policies and take actions when new
flows are introduced in the network. Therefore, the reliability
of the control plane is critically important. Without resolving
a single point of failure in the control plane, the performance
of the entire network may be significantly degraded. The most
fundamental mechanism to recover control plane failures in a
centralized network is the “primary-backup replication” meth-
od, where the backup controllers take over the network con-
trol and operation when the primary controller fails.

Primary and Backup Controller Coordination: The OF
protocol has limited ability to configure one or more back-
up controllers. However, the OF protocol does not provide
any coordination mechanism between the primary controller
and the backups. Thus, coordination protocols are desired,
which not only are able to perform the coordination between

Figure 2. Packet flow over multiple flow table pipelines under OF v1.1+.

1

2

3

4

If the packet matches a flow entry in a table

1

2

3

If the packet does not match a flow entry
in a table (This is a table miss)

The behavior on table miss depends on
the table configuration.
The default is to send the packets to the
controller.
The other option is to drop the packets.

[OpenFlow Switch v1.1+] Packets are matched against multiple tables
in the pipeline

Packet
in

Packet
out

Send packet to
controller

Drop packet Drop packet Drop packet

Packet +
action
set

Packet + action
set

Packet +Packet +

Ingress port +
metadata +
action set

Ingress port +
metadata +
action set

Send packet to
controller

Send packet to
controller

SDN controller

Table 0 Table 1 Execute
action setTable n

Find highest-priority matching flow entry
at the table 0.
Apply instructions or actions based on
the table fields. The instructions may
explicitly direct the packet to another
flow table (using the Goto instruction).
The last table of the pipeline cannot
include the Goto instruction.
If the matching flow entry does not
direct the packet to another flow table,
pipeline processing stop at this table.
When pipeline processing stops, the
packet is processed with its associated
action set.
The packet is usually forwarded (”Execute
action set”).

IEEE Network • May/June 201656

controllers to keep the backup controller consistent with the
primary one, but also return the network to a safe state with
minimal overhead imposed on switches and hosts. To support
the primary backup mechanism, CPRecovery [9] employs the
replication process between the switch component running on
the primary controller and the secondary controller by using
probe messages sent from switches. If the controller does not
send a reply for the probe within the waiting time, the switch
assumes that the controller is down. The switch searches for
the next secondary controller acting as a backup in its list, and
the secondary controller becomes a primary controller after it
receives a connection request from the switch.

Backup Controller Deployment: Properly placing backup
controllers in SDN can help maximize network reliability. The
impact of the number of the controllers on network reliability
needs to be determined, and the trade-offs between reliability
and latency should be considered. According to the analysis
results [10], k controllers reduce latency to 1/k of the original
single-controller latency, and the analysis results indicate that
deploying more than three controllers cannot further reduce
the latency. The controller placement problem is further stud-
ied in [11]. It is suggested that the best controller placement is
to use one controller that yields the optimal reliability metric
while optimizing the average latency.

Research Challenges
Cost-Efficient and Fast Failure Recovery for the Data

Plane: Fast failure recovery mechanisms should be implement-
ed so that it can be achieved with low communication over-
head and less/no interference to the controller, and requires
minimum intelligence at the switches.

Primary-Backup Replication with Traffic Adaptivity for the
Control Plane: To achieve high reliability and optimal perfor-
mance of SDN controller(s), it is important to find an optimal
number of controllers and their best locations for the primary
controller as well as the backup controller(s) in the context
of an optimal trade-off between reliability and latencies for
time-varying traffic patterns, including traffic volume trends in
the entire network and so on.

Consistency: Topology Update
This section is focused on planned changes such as network
policy rules changes. General update operations are imple-
mented: each packet/flow is identified when updating the
network from the old policy to the new policy over multiple
switches, and then is guaranteed to be managed by either the
old policy or the new policy, but not by the combination of
the two [12]. There are primarily two types of consistency:
per-packet consistency, in which each packet flowing through
the network is processed according to a single network config-
uration, and per-flow consistency, in which all packets in the
same flow are managed by the same version of the policy; thus,
per-flow abstraction preserves all path properties.

Duplicate Table Entries in Switches
To implement a consistent per-packet and per-flow update,
some simple generic ideas are proposed in [12]. The key com-
mon operation of per-packet/-flow consistent updates is that
the switches process a packet following either the old or new
policy until the controller deletes the old configuration rules
from all switches. The major problem of such a duplicate pol-
icy scheme is that it requires holding both old and new sets
of rules on the network switches. Thus, the efficiency of these
algorithms depend on explicit information of how long the
switches need to hold the old rules due to the limited memory
(e.g., the limited TCAM space of switches). To address this
problem, more efficient update algorithms are required for

implementing consistent updates from the old rules to the new
ones with high flow initiation rate between the controller and
the switches, and for an optimal trade-off between update time
and rule-space overheads.

Time-Based Configuration
Reference [13] presents a method to allow coordinated SDN
network updates in multiple switches based on a time-based
sequence of different update times. However, the controller
must first wait for an acknowledgment from the switch to com-
plete the update and then send the new policy to other switch-
es until the network is completely updated in the OF network.
To solve this problem Net-Plumber [14] was proposed to con-
figure the forwarding table with significantly fast update time.
Rather than updating all the switches simultaneously, it incre-
mentally updates only the portions of the switches affected
by the changing rules in the network using a plumbing graph,
which caches all possible paths of flows over the network to
immediately update the reachable switches of a path for the
flow, which is filtered by the OF rule (e.g., match, action).

Research Challenges
A Single Controller in a Large-Scale SDN Network: SDN

may experience control packet loss because network conges-
tion can induce memory/buffer overflows in OF switches. The
loss of a control packet degrades the consistency of the net-
work policies. How a single controller can efficiently update
the network information with high consistency in the presence
of control packet loss is still an open problem.

Multiple Controllers in Multi-Domain SDN Networks: How
to consistently update the shared network information in the
entire network with the optimal trade-offs between the low
inter-synchronization overhead and the real-time update needs
to be addressed.

Accuracy: Traffic Analysis
Monitoring Framework
Network monitoring is of crucial importance for network
management. Management applications need accurate and
timely statistics on network resources at different aggrega-
tion levels (e.g., flow, packet, and port) [15]. SDN networks
must continuously monitor the performance metrics, such
as link utilization, to immediately adapt forwarding rules
to the changes in workload. However, existing monitoring
solutions either require special instrumentation of the net-
work or impose significant measurement overhead (e.g., Net-
Flow, sFlow, and JFlow) [2]. These monitoring approaches
may not be efficient for application in the SDN architecture,
such as large-scale data center networks, because of the high
overhead caused by the collection of the statistics from the
whole network at the central controller. Thus, the current
monitoring solutions in SDN seek more efficient monitor-
ing mechanisms in order to achieve both high accuracy and
low overhead. The current solutions are classified into two
categories. Query-based monitoring is based on the request/
response paradigm that periodically or adaptively polls the
switch on each active flow for collecting flow-level statistics,
thus yielding high accuracy along with high overhead. In this
case, most SDN TE solutions use the wildcard rules at the
switches to only monitor aggregated flows, instead of individ-
ual flows, to extract significant traffic patterns with minimum
monitoring overhead. Push-based monitoring is based on the
publish/subscribe/distribute paradigm, where the server auto-
matically pushes (delivers) information to clients without
repeated requests from the clients. Thus, the number of cli-
ent requests handled by a server can be reduced dramati-

IEEE Network • May/June 2016 57

cally. In this scheme, a monitoring tool is implemented in
a dedicated server separate from the network controller.
Such a solution can yield accurate traffic monitoring with low
latency, while considerably reducing the processing overhead
at the controller for collecting flow statistics.

Checking Network Errors
SDN makes the network open to applications, allowing multi-
ple applications and even multiple users to program the same
physical network simultaneously, potentially resulting in con-
flicting rules that alter the intended behavior of one or more
applications. The most common verification tools of SDN/OF
are implemented as a proxy residing between the controller
and switches for monitoring all communication and verifying
network-wide invariant violations as each forwarding rule is
inserted. To achieve real-time checking in SDN networks,
VeriFlow [2] slices the network into a set of equivalent classes
of packets based on the destination IP address, which can be
verified within hundreds of microseconds as new rules are
installed into the network. Also, the verification tool can allow
OF administrators/users to manually verify the consistency of
multiple controllers and switches across different OF federat-
ed infrastructure.

Debugging Programming Errors
Current networks provide a variety of interrelated services
including routing, load balancing, traffic monitoring, access
control, and so on. They are commonly defined at the low level
of abstractions offered by the underlying hardware, thus often
failing to provide even simple and basic support for modular
programming. Therefore, network programs tend to be com-
plicated, error-prone, and difficult to maintain.

To address this situation, NICE [2] was proposed as a
tool that combines model checking and symbolic execution
to efficiently discover violations of network-wide correctness
properties due to bugs in the controller programs. ndb [2] is
a debugging software tool for SDN programmers/operators
to track down the root cause of a bug. Thus, ndb can detect
bugs in any level of the SDN architecture and provide a fin-
er-grained debugging environment than NICE.

Research Challenges
Traffic Analysis: How to efficiently handle big data in the

context of user behavior, locality, and time-dependent statis-
tics, especially from mobile applications, in SDN-TE needs to
be addressed.

Traffic Monitoring: How to significantly reduce the net-
work overhead when SDN controller(s) or monitoring devices
collect the network statistics with high accuracy is a topic for
further study.

Network Checking and Programming Debugging Methods:
The verification and debugging methods should work together
to address network security issues. Methods to quickly detect
or prevent intrusions by using network verification or pro-
gramming error checking approaches for SDN are still largely
unexploited. (Note that we do not account for security mech-
anisms in this article because the topic is beyond the scope of
TE. However, there are a plethora of open research problems
regarding the security aspects in SDNs.)

Conclusion
SDN represents a new, flexible, and open architecture that
allows the dynamic and timely regulation of the behavior of
network switches in complex and large-scale computer net-
works. As SDN is accelerating the innovation and evolution of
modern data networks, it requires a highly scalable and intelli-
gent TE system. This article investigates the SDN TE solutions

from the perspectives of flow management, load balancing,
fault tolerance, topology update, and traffic analysis. The cur-
rent state and research challenges of SDN TE are presented
by addressing the key SDN performance metrics in terms of
scalability, availability, reliability, consistency, and accuracy.

References
[1] “OpenFlow Switch Specification v1.0-v1.4”; www.opennetworking.org/

sdn-resources/onf-specifications.
[2] I. F. Akyildiz et al., “A Roadmap for Traffic Engineering in Software

Defined Networks,” Computer Networks, vol. 71, Oct. 2014, pp. 1–30.
[3] M. Al-Fares et al., “Hedera: Dynamic Flow Scheduling for Data Center

Networks,” Proc. Networked Systems Design and Implementation Symp.,
vol. 10, Apr. 2010, p. 19.

[4] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-Overhead Data-
center Traffic Management Using End-Host-Based Elephant Detection,”
Proc. 30th IEEE INFOCOM ’11, Apr. 2011, pp. 1629–37.

[5] M. Luo et al., “Sox: Generalized and Extensible Smart Network Openflow
Controller (x),” Proc. First SDN World Congress, Damsdadt, Germany,
Oct. 2012.

[6] J.-P. Vasseur, M. Pickavet, and P. Demeester, Network Recovery: Pro-
tection and Restoration of Optical, SONET-SDH, IP, and MPLS, Morgan
Kaufmann, 2004.

[7] A. Sgambelluri et al., “Openflow-Based Segment Protection in Ethernet
Networks,” IEEE/OSA J. Opt. Commun. Net, vol. 5, no. 9, Sep. 2013,
pp. 1066–75.

[8] M. Desai and T. Nandagopal, “Coping with Link Failures in Centralized
Control Plane Architectures,” Proc. 2nd Int’l. Conf. Commun. Systems and
Net., Jan. 2010, pp. 1–10.

[9] P. Fonseca et al., “A Replication Component for Resilient Openflow-Based
Networking,” Proc. IEEE NOMS ’12), Apr. 2012, pp. 933–39.

[10] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement
Problem,” Proc. 1st ACM Wksp. Hot Topics In Software Defined Networks,
Aug. 2012, pp. 7–12.

[11] Y. Hu et al., “Reliability-Aware Controller Placement for Software-Defined
Networks,” Proc. IFIP/IEEE Int’l. Symp. Integrated Network Management,
May 2013, pp. 672–75.

[12] M. Reitblatt et al., “Consistent Updates for Software-Defined Networks:
Change You Can Believe In!” Proc. 10th ACM Wksp. Hot Topics in Net-
works, Nov. 2011, pp. 7.

[13] T. Mizrahi and Y. Moses, “Time-Based Updates in Software Defined Net-
works,” Proc. 2nd ACM SIGCOMM Wksp. Hot Topics in Software Defined
Networking, Aug. 2013, pp. 163–64.

[14] P. Kazemian et al., “Real Time Network Policy Checking Using Header
Space Analysis,” Proc. 10th USENIX Conf. Networked Systems Design and
Implementation, Apr. 2013, pp. 99–112.

[15] S. R. Chowdhury et al., “Payless: A Low Cost Network Monitoring Frame-
work for Software Defined Networks,” Proc. IEEE NOMS ’14, May 2014,
pp. 1–9.

Biographies
Ian F. akyIldIz [F’96] received B.S., M.S., and Ph.D. degrees in computer
engineering from the University of Erlangen Nürnberg, Germany, in 1978,
1981, and 1984, respectively. Currently, he is the Ken Byers Chair Professor
in Telecommunications with the School of Electrical and Computer Engineer-
ing, Georgia Institute of Technology (Georgia Tech), Atlanta; the director of
the Broadband Wireless Networking (BWN) Laboratory, and the chair of
the Telecommunication Group at Georgia Tech. Since 2013, he is a FiDiPro
professor of the Finland Distinguished Professor Program (FiDiPro) supported
by the Academy of Science) with the Department of Electronics and Commu-
nications Engineering, Tampere University of Technology, Finland, and the
founding director of the Nano Communications Center (NCC). Since 2008,
he is also an honorary professor with the School of Electrical Engineering at
Universitat Politécnica de Catalunya (UPC), Spain, and the founding direc-
tor of NaNoNetworking Center in Catalunya (N3Cat). Since 2011, he is a
consulting chair professor at the Department of Information Technology, King
Abdulaziz University (KAU), Jeddah, Saudi Arabia. He is Editor-in-Chief of
the Computer Networks Journal (Elsevier), and the founding Editor-in-Chief of
the Ad Hoc Networks Journal (Elsevier), the Physical Communication Journal
(Elsevier), and the Nano Communication Networks Journal (Elsevier). He is an
ACM Fellow (1997). He has received numerous awards from IEEE and ACM.
His h-index is 88, and the total number of citations was above 69K according
to Google Scholar as of March 2015. His current research interests are in
software defined networks, nanonetworks, terahertz band, 5G cellular systems,
and wireless sensor networks in challenged environments.

ahyoung lee received her M.S., and Ph.D. degrees in computer science and
engineering from the University of Colorado, Denver, in 2006 and 2011,
respectively. Currently, she is a postdoctoral fellow at Georgia Tech in the
BWN Lab under the supervision of Prof. Ian F. Akyildiz with a research project
focused on SDN. Her main research interests include adaptive routing schemes

IEEE Network • May/June 201658

for large-scale network resources, analytical models and network performance
evaluations in ad hoc wireless networks, sensor networks, and mobile wireless
networks; future Internet architecture for wireless/mobile cloud networking; and
securing wireless applications and networks.

Pu Wang [M] received his B.E. degree in electrical engineering from Beijing
Institute of Technology, China, in 2003, and his M.E. degree in electrical and
computer engineering from Memorial University of Newfoundland, Canada,
in 2008. He received his Ph.D. degree in eectrical and computer engineering
from Georgia Tech in August 2013, under the guidance of Prof. Ian F. Aky-
ildiz. Currently, he is an assistant professor with the Department of Electrical
Engineering and Computer Science at Wichita State University. He received
the BWN Lab Researcher of the Year Award at Georgia Tech in 2012. He
received the TPC top ranked paper award of IEEE DySPAN 2011. He was
also named a Fellow of the School of Graduate Studies, Memorial University
of Newfoundland in 2008. His current research interests are wireless sensor
networks, cognitive radio networks, software defined networking, the Internet
of Things, nanonetworks, and wireless communications in challenged environ-
ments.

MIn luo is the head and chief architect of Advanced Networking at Huawei’s
Shannon (IT) Lab since March 2012. For more than 11 years with IBM, he
served as chief/executive architect, SWG’s Strategy and Technology, Global

Business Solution Center, Industry Solutions, and Center of Excellence for Enter-
prise Architecture and SOA. He also worked as senior operations research
analyst, senior manager, and director of Transportation Network Planning and
Technologies for two Fortune 500 companies for seven years. He is certified
and was awarded as the Distinguished Lead/Chief Architect from Open Group
in 2008. He is an expert in software defined networking; enterprise architec-
ture and SOA; software engineering; and business analytics, intelligence, and
optimization. He coauthored two books, including the pioneering Patterns: Ser-
vice Oriented Architecture and Web Services, in 2004. He received his Ph.D.
in electrical engineering from Georgia Tech in 1992.

Wu Chou [F] is VP, chief IT scientist, and head of Huawei Shannon (IT) Lab.
He is an expert in the field of IT, SDN, data centers, cloud computing, big
data, communication, and speech and language processing. He graduated
from Stanford University in 1990 with a Ph.D. degree in electrical engineering
and worked at leading R&D organizations from AT&T Bell Labs to Lucent Bell
Labs and Avaya Labs before joining Huawei. In his role at Huawei, he leads
the global Huawei Shannon (IT) Lab in its research and innovation in IT areas.
He has published over 150 journal and conference papers, and holds 32 U.S.
and international patents with many additional patent applications pending.
He received the Bell Laboratories President’s Gold Award in 1997, the Avaya
Leadership Award in 2005, and the outstanding standard and patent contribu-
tion award in 2008 and 2009.

