
QoS-aware Adaptive Routing in Multi-layer
Hierarchical Software Defined Networks:

A Reinforcement Learning Approach
Shih-Chun Lin∗, Ian F. Akyildiz∗, Pu Wang†, and Min Luo‡

∗BWN Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
†Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS 67260

‡ Shannon Lab, Huawei Technologies Co., Ltd. Santa Clara
Email: slin88@ece.gatech.edu; ian@ece.gatech.edu; pu.wang@wichita.edu; min.ch.luo@huawei.com

Abstract—Software-defined networks (SDNs) have been recog-
nized as the next-generation networking paradigm that decouples
the data forwarding from the centralized control. To realize
the merits of dedicated QoS provisioning and fast route (re-
)configuration services over the decoupled SDNs, various QoS
requirements in packet delay, loss, and throughput should be
supported by an efficient transportation with respect to each
specific application. In this paper, a QoS-aware adaptive routing
(QAR) is proposed in the designed multi-layer hierarchical
SDNs. Specifically, the distributed hierarchical control plane
architecture is employed to minimize signaling delay in large
SDNs via three-levels design of controllers, i.e., the super, domain
(or master), and slave controllers. Furthermore, QAR algorithm
is proposed with the aid of reinforcement learning and QoS-
aware reward function, achieving a time-efficient, adaptive, QoS-
provisioning packet forwarding. Simulation results confirm that
QAR outperforms the existing learning solution and provides
fast convergence with QoS provisioning, facilitating the practical
implementations in large-scale software service-defined networks.

Index Terms—QoS-awareness, adaptive routing, reinforcement
learning, distributed hierarchical architecture, control plane
design, software-defined networks (SDNs).

I. INTRODUCTION

Software-defined networks (SDNs) have been recognized
as the next-generation networking paradigm with the promise
to dramatically improve network resource utilization, simplify
network management, reduce operating cost, and promote
innovation and evolution [1]–[3]. However, despite of their
“advertised” promising features, a reliable end-to-end trans-
portation upon SDNs is hard to design due to the requirements
of various QoS provisioning and fast route (re-)configuration.
In particular, aiming at upholding a great variety of appli-
cations, SDNs should fulfill various QoS requirements such
as in packet delay, packet loss, and throughput. Moreover, as
users and multi-tenancy applications greatly increase as well as
network topology and traffic statistic change over time, SDNs
should also provide a fast and adaptive data transportation in
order to react such events in a real-time manner. Therefore,
it becomes a great challenge and an urgent need to support a
time-efficient and QoS-aware routing in large-scale SDNs.

While the specification of OpenFlow [4] requires the log-

ically centralized control plane in SDNs, single controller
scheme faces several crucial issues such as network scalability,
single-point failure, and frequent reporting control tasks, per-
flow data supervision. Recent work [5]–[7] focuses on dis-
tributed multi-controller platforms. In ONIX [5], a horizontally
flat structure of all controllers is proposed and a general
management API is implemented to connect multi-controllers.
In [8], a scalable clustering approach and a self-learning
adaptive mechanism are proposed to design and implement
SDN controller clusters. In Kandoo [6], a completely hier-
archical model is proposed, including a logically centralized
root controller and local controllers, and local controllers can
directly offload the applications that do not need network-wide
information to the underlying switches. In Xbar [7], a recursive
hierarchy design is proposed among multiple controllers that
a lower-level controller is recognized as a switch by its upper
controller. Facing these distributed SDN systems, an adaptive
routing that exploits the system advantages and fulfills QoS
requirements in a timely manner is still unexplored.

In this paper, we propose a QoS-aware adaptive routing
(QAR) in our multi-layer hierarchical SDNs. First, inspired by
the work of Kandoo [6] and Xbar [7], a distributed hierarchical
control plane architecture is introduced that combines the
advantages of both work and is complied with OpenFlow
1.2+. Specifically, the three hierarchical levels of distributed
controllers, including the super, domain (or master), and
slave controllers, and the switch subnets (i.e., clustering) are
proposed. Exploiting such a novel architecture, the control
loads are shared and the signaling delay can be largely re-
duced. Furthermore, with the aid of reinforcement learning [9],
QAR algorithm is proposed through the examination of action
policy, quality function, long-term revenue, and system model
with reward function. Specifically, the softmax action selection
policy, state-action-reward-state-action (SARSA) [10] method
for quality update, and Markov decision process (MDP) with
QoS-aware reward function are introduced to realize an effi-
cient, adaptive, QoS-provisioning routing.

Inherited from reinforcement learning, QAR enjoys the four
crucial features as follows:

• QAR has fast adaptation to the current network and traffic

2016 IEEE International Conference on Services Computing

978-1-5090-2628-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SCC.2016.12

25

2016 IEEE International Conference on Services Computing

978-1-5090-2628-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SCC.2016.12

25

states for the time-varying multi-tenancy environment as
well as network topology.

• QAR well distributes the traffic loads from QoS-aware re-
ward, avoiding congestions as in shortest-path algorithms.

• QAR has great scalability due to the scalable learning,
easily including new devices in the next learning iteration.

• QAR supports customized requirements from its tunable
parameters in and generic design of the reward function.

Performance evaluation confirms that QAR outperforms
the conventional Q-learning [9] approach with great time-
convergence and QoS provisioning in real backbone network.

To the best of our knowledge, this work is the first to
provide a QoS-aware adaptive routing with preferred fast-
convergence, through reinforcement learning, in multi-layer
hierarchical SDNs. The rest of the paper is organized as
follows. Section II introduces the system model and Section III
presents the proposed multi-layer hierarchical control plane.
Section IV further provides the proposed QAR in the des-
ignated control plane architecture. Section V introduces the
performance evaluation and Section VI concludes the paper.

II. SYSTEM MODEL

We first examine the fundamental operation and network
topology of SDNs. We then focus on the control plane design,
particularly in the number of controllers.

A. Network Topology

As shown in Figure 1, while current network architecture
vertically integrates closed and proprietary switches jeopar-
dizing fast innovation, SDN brings a paradigm shift with
horizontal and open interfaces that provide great design flexi-
bility. A typical SDN generally consists of multiple OpenFlow
enabled switches (i.e. OF switches), which constitutes data
plane, and the centralized SDN controller(s) [4]. In particular,
OF switches are software-configurable devices with multi-flow
tables that can identify traffic flows. The traffic identification is
realized through attribute analysis over seven-layers OSI [11]
in terms of source/destination IP address, traffic type, sub-
scriber profile, etc., and can be further enhanced via wildcard
usage. Moreover, each OF switch needs to send the control
purpose traffic, such as the route setup requests for new flows
and real-time network congestion status, to the SDN controller.
Based on the continuously received control messages, the
controller optimizes the best routes for data flows accord-
ing to dynamically changing traffic patterns and flow QoS
requirements and sets up the routing tables of OF switches
along the optimal path via certain protocols (e.g., OpenFlow),
thus enabling highly efficient data transmissions and superior
link utilization [12], which is already demonstrated in practical
SDNs [13], [14].

Despite the promising performance of SDN, its effectiveness
and scalability depends on the design of resilience routing al-
gorithm that not only supports any kinds of QoS requirements
from various applications, but fast adapts to time-varying
requirements, traffic statistics, and network topology, serving
as the focus of this paper. Note that, in the remainder of the

paper, we refer to switches as OF switches to simplify the
readability.

B. Single Controller versus Multiple Controllers

Both single- and multi-controllers infrastructures could
be the solution candidates for the practical implementation
of centralized control plane. More specifically, in single-
controller SDNs, a controller manages the entire data planes
by computing optimal flow routes with the aid of its high
computation capability and global visibility of traffic and
network states [15]. This scenario simplifies the management
of complex flows as well as the corresponding customization,
and allows network operators have direct and effective control
over the network due to the only required configuration of
a controller. However, these single-controller SDNs, having
the computation limitation by a controller, usually face the
scalability issue when network size or the number of flows
increases. Moreover, the reliability is another critical issue due
to a single point failure of the controller.

On the other hand, multi-controller SDNs are favored when-
ever a controller’s capability is not enough for entire network
or multiple controllers are more cost-effective in terms of
performance and infrastructure cost. In this multi-controller
model, several controllers jointly mange the data plane, and
a centralized interface is required to provide virtualization
for underlying switches that still see a single control unit
from their perspectives. Thus, facing the popularity of multi-
controller model in large-scale networks, such as data center
clusters, cloud and inter-domain scenarios, we introduce a
multi-layer hierarchical (distributed) architecture in the fol-
lowing, which enables fast signaling to resolve the design
complexity and information inconsistency.

III. MULTI-LAYER HIERARCHICAL CONTROL PLANE

ARCHITECTURE

Based on the architecture designs of Kandoo [6] and
Xbar [7], we propose a multi-layer hierarchical control ar-
chitecture that combines the advantages of these two existing
solutions and is complied with OpenFlow protocol [4]. The
details are explained as follows.

The proposed architecture consists of a recursive hierarchi-
cal control plane with three levels of controllers as shown
in Figure 2a. While switches take charge of data forward-
ing and information collection of network status, the slave
controllers provide read-only access to switches and receive
port-status messages from them. These slave controllers not
only serve as the message dispatchers as in [8] that ease the
bottleneck of excessive control messages in the I/O frontend,
but also can provide some simple control functions, such
as traffic admission control, flow or congestion control, to
share control workloads with domain controllers. Moreover,
the domain (or master) controllers, having full accesses to
switches, receive asynchronous messages (e.g., Packet-IN [4])
for flow-setup requests and are capable to modify switches’
states by sending control messages. Finally, the only one
super controller, connecting to domain controllers, also has

2626

(a) Current closed architecture. (b) SDN architecture.

Fig. 1: A paradigm shift from closed architecture to SDN architecture.

�������
	
�����
����������

�����
���������

(a) Distributed hierarchical architecture. (b) A deployment example in a real Sprint GIP network [16] over North
America.

Fig. 2: Multi-layer hierarchical control plane.

full accessibility to switches and regulates the entire net-
work functionalities. Note that, the interaction between super
controller and domain controllers fulfills global flow setup
and responds to every control action, including actions for
switches’ or controllers’ failures, migrations, load-balancing,
etc. Furthermore, the slave controllers only aim to offload
control messages for various applications and do not require
network-wide information, largely saving the signaling over-
heads. Towards this, the logically centralized control plane
with global visibility is established by a physically distributed
system. Thus, all applications running upon SDNs are unaware
of the underlying distributed architecture.

A deployment example in a real backbone system of Sprint
GIP network [16] is illustrates in Figure 2b, where a red spot
denote a slave controller with a group of switches underneath,
a blue device denotes a domain controller serving a switch
subnet and possibly more than one slave controller, and the
green device denotes the super controller to supervise the
entire system. One advantage of the design is that this architec-
ture decouples the failure recovery from path computation. In
particular, the super controller designates a domain controller
whenever a failure occurs, and the domain controller computes
the corresponding recovery path to resolve the failure. What is
more important, to ensure reliability and robustness upon con-
trollers’ failure, switches at the edge of a subnet can establish

communication with more than one domain controller. In that
way, it allows easy control handover between switch subnets
with respect to their domain controllers. Furthermore, with
full accessibility to switches, the super controller and domain
controllers have the ability to identify the cause of switch
asynchronization and enable/disable the warning notification.

In spite of these considerable advantages, to realize an
efficient adaptive routing upon the proposed architecture, the
hierarchical structure is exploited to greatly minimize the
signaling delay between controllers and switches. The idea
comes from (i) the signaling-load distribution and (ii) parallel
path computation. Specifically, each domain controller is in
charge of the signaling within its own switch subnet in
such a way when the first packet of a flow arrives into a
specific subnet, the optimal route is solely computed by the
corresponding domain controller. Only when the destination
switch of arriving flow is outside the source switch’s subnet,
the packet is then forwarded to the super controller and
multiple subnets (and domain controllers) will be involved
in the path computation. In particular, the super controller
exclusively calculates the subnet-path, i.e., the set of subnets
that the packet flow will go through to reach its destination,
with the aid of its global visibility. Once the subnet-path is
calculated, the super controller forwards the control messages
to the involved domain controllers in order to active their own

2727

path computations within the respective subnet. As the optimal
paths in different subnets can be computed in parallel, the
flow does not need to wait whenever it enters the next subnet
along the calculated subnet-path, thus minimizing the entire
signaling delay.

IV. QOS-AWARE ADAPTIVE ROUTING (QAR) IN

MULTI-LAYER HIERARCHICAL SDNS

Based on the designated distributed hierarchical control
plane, we propose an QoS-aware adaptive routing (QAR) with
the aid of reinforcement learning technique. In the following,
we first introduce the learning framework, then provide our
design of QoS-aware reward functions, and finally propose
the QAR algorithm.

A. Reinforcement Learning Framework

Reinforcement learning [9], belonging to a field of machine
learning, captures the problem that an agent/decision maker
tries to learn the behavior of dynamic system through the
interactions with the system. Specifically, at each iteration,
the agent receives the current state and the reward from
the dynamic system, and then performs the respective action
according to its pat experience in order to increase the long-
term revenue via state transitions. The state and the reward
are the two values that the agent will receive from the
system, whereas the action is the only input that the system
will receive from the agent. Different from the supervised
learning techniques with an external knowledge supervisor,
in reinforcement learning, the agent must discover the best
action that maximizes the reward itself. This reward value
indicates the success of agent’s action decisions, and the agent
learns which actions to be selected to provide the highest
accumulated reward over time, i.e., the long-term revenue.
While agent’s actions affect not only the immediate reward but
also the subsequent one, the key feature for the reinforcement
learning is to perform incentive solution searching with regards
of the system reward.

To realize this searching in an efficient way, the design
challenge comes from the balance between action exploration
and action exploitation, where such a trade-off is well studied
in [17]. In particular, the agent has to exploit the past actions
with great rewards, and to explore the system for better
unknown actions at the same time. It means both the exploita-
tion and exploration needs to be pursued conjointly for the
optimal system performance. As there are many sophisticated
algorithms that detail this joint consideration into their trial-
and-error designs, the reinforcement learning only character-
izes the interaction procedures instead of providing another
learning methods. In other words, any learning algorithm can
be seen and transformed into a reinforcement learning. In
the following, based on the reinforcement learning technique,
we provide several design ingredients that are used by our
adaptive, time-efficient, and QoS-aware routing.

B. Markov Decision Problem: States, Actions, and Rewards

In addition to an agent/decision maker and the dynamic
system, there are four main ingredients for the design of

reinforcement learning: (i) the action policy, (ii) the quality
function, (iii) the long-term revenue, and (iv) the system model
with reward functions. Specifically, the action policy is the
decision rules that will be taken by the agent. It is the mapping
from the perceived system states to the corresponding actions,
and guides the behavior of a reinforcement learning. Moreover,
the quality function characterizes the quality of each state-
action pair that indicates the differences between current state
and steady state. Furthermore, the long-term revenue indicates
the total rewards an agent can expect to accumulate over time
with respect to each system state. Whereas the reward is given
after each agent’s current action, this revenue shows the long-
term desirability of states regarding the future states that will
be followed and their respective rewards. Last, the system
model mimics the behavior of the real environment system,
and gives a good reward prediction of the next state and quality
from the current ones.

Towards this, Markov decision processes (MDPs) provide a
mathematical framework for the system modeling with respect
to the reinforcement learning. In particular, a MDP is denoted
by the quadruple (S,A, P,R), where S denotes the finite state
set, A denotes the finite action set, P denotes the set of
state transition probabilities, and R denotes the reward set.
Moreover, the reward prediction function should be designed
according to the problem of interest. In the following, we first
examine the details of action policy and quality function. The
reward function design for our routing problem is provided
later in Section IV-C.

1) Action Selection Policy: The policy specifies an agent’s
action selection and maps the state to the action. It balances
the trade-off between action exploitation and exploration to
maximize the quality value, as the agent aims to explore
the state space in the beginning. Three policies are widely-
used, i.e., the greedy, the ε-greedy, and the softmax [18].
For the greedy policy, the agent takes the action with the
highest quality at every step. It simply exploits the current
agent’s knowledge base of state and quality function, and
does not explore unknown states for possibly higher quality.
This makes the policy undesirable when the quality function
is non-stationary, which changes over time. Moreover, ε-
greedy balances the current knowledge exploitation with action
exploration that follows the greedy policy with probability
1−ε and takes a random action with probability ε. It serves as
an effective policy when there are a great variety of possible
actions. However, the drawback of ε is that when it explores
it chooses equally among all actions. This implies that it is as
likely to choose the worst-appearing action as it is to choose
the next-to-best action, which is unsatisfactory when the worst
actions are very bad.

Towards this, we consider softmax and adopt it later in our
designated routing. Regarding softmax, the probability πt(s, a)
of choosing an action at with the current state st follows

πt(st, at) =
exp (Qt(st, at)/τn)∑n

b=1 exp (Qt(st, bt)/τn)
, (1)

where n is the number of possible actions, Qt(st, at) denotes

2828

the corresponding quality function, and τn is a parameter
called temperature. This time-varying temperature controls the
trade-off between exploration and exploitation. High tempera-
ture causes all actions to be equally probable (i.e., exploration),
while low temperature favors the action with the maximum
quality (i.e., exploitation of current knowledge base) that
skews the policy toward a greedy one. In this way, the tem-
perature parameter is annealed over the training phase that has
greater exploration in the beginning and greater exploitation
near the end. It means τn remains a high value in highly
dynamic environments while decreases towards a low value
in static environments where the convergence is assured.

To achieve the learning convergence in finite time, the
temperature is thus set as a linear function over time as

τn = −
(τ0 − τT)n

T
+ τ0, n ≤ T, (2)

where T denotes the time to reach the convergence, and τ0
and τT are the initial temperature and last temperatures at
time T , respectively. It implies that τn �= 0 for all time and
τn = τT ≈ 0 for n ≤ T until any system-parameter change.

2) State-Action Quality Function: In addition to estimate
the quality solely by the possible next system state, the agent
can set up its quality function based on both the state and
action. Specifically, the quality function Q(s, a) is introduced
that shows the quality for taking action a at the current state
s. Thus, when the agent needs to choose an action for current
state s, it simply calculates Q(s, a) for each possible action a
and chooses the next action according to these quality values.
In the following, two methods for setting quality function are
provided as the conventional Q-learning [9] and SARSA [10],
and SARSA is adopted later in our designated routing. First,
the well-known Q-learning, being an off-policy reinforcement
learning, updates the Q function as follows

Qt+1(st, at):=Qt(st, at)

+α
[
Rt + γmax

a
Qt(st+1, a)−Qt(st, at)

]
(3)

where γ ∈ [0, 1) is the discount factor that determines the
importance of future rewards, α ∈ [0, 1) is the learning rate
that determines the override extent of the newly acquired
information to the old one, and Rt is the reward at time t. In
Eq. (3), the agent updates the quality based on the maximum
possible quality value among its actions. Specifically, the
agent chooses and takes action at for the current state st via
action selection policy, observes Rt and state st+1, and the Q
function can be updated accordingly.

On the other hand, regarding the on-policy reinforcement
learning of SARSA, the quality function is updated by

Qt+1(st, at):=Qt(st, at)

+α [Rt + γQt(st+1, at+1)−Qt(st, at)] .(4)

In this time, the agent updates Q function strictly on the
knowledge base from the experience. Specifically in Eq. (4),
different from Q-learning, the agent uses the action and the
state at time t+1 to update quality value. Therefore, the only

TABLE I: QoS Requirements With Respect to Traffic Types
and Applications.

Traffic Type Application QoS-awareness

Elastic

Telnet connection; Delay, losses
FTP session

Simple web page
Delay(HTTP)

Heavy web page Throughput(HTTP)
STMP/POP3/IMAP Losses
FTP data connection Throughput

Data with Telnet Losses

Inelastic Real-time multimedia Delay, throughput,
jitter

Control message Delay

difference between these two methods is the way they set up
for the future reward. In particular, whereas Q-learning utilizes
the highest quality function at state st+1 regarding all possible
actions, SARSA adopts the quality function at state st+1 with
action at+1. General speaking, Q-learning simply assumes an
optimal policy will be followed in the future; SARSA utilizes
the policy that the agent indeed follows in the future. It means
that the agent with SARSA can explicitly adopt the future
reward that is really obtained, rather than assuming the optimal
action with highest reward will be taken.

C. QoS-aware Reward Design

In this section, we propose QoS-aware reward functions that
suits our design of QoS-aware routing. Specifically, based on
reinforcement learning, the agent finds the routing path with
the maximum QoS-aware reward with regard of traffic types
and users’ applications. In particular, TABLE I summarizes
various QoS requirements of widely-applied traffic and appli-
cations. For example, real-time traffic, inelastic to adapt packet
transmission rates, has great QoS-awareness among others.

Towards this, a QoS-aware reward function is proposed as

Rt:=R(i→ j|st,at
)

=−g(at) + β1(θ1delayij + θ2queuej) + β2lossj

+β3(φ1B1ij + φ2B2ij), (5)

which shows that the system at state st, receiving action at,
forwards packets from node i to node j. In Eq. (5), g(·)
denotes the cost to take action at that reveals the action impact
to switch operations, and β1, β2, β3, θ1, θ2, φ1, φ2 ∈ [0, 1) are
the tuneable weights, determined by the QoS requirements
of flow. Aiming at QoS provisioning, the cost g is set to a
constant value over actions, and the QoS-aware functions in

2929

��
��
� ��

����������	
����	���
���

(a) Link transmission delay.

	

�

� �
�

���������������
����	��	
���

(b) Queueing delay.

��
��
��

�������
(c) Packet loss.

����

�
� �
�

(d) Available bandwidth in next node.

�������������
	��	������
��
����

�
� �
�

(e) Difference of available bandwidth in next
node and average bandwidth.

Fig. 3: QoS-aware reward functions.

Figure 3 are defined as follows:

delayij=
2

π
arctan(dlij −

∑A(i)
k=1 d

l
ik

A(i)
); (6a)

queueij=
2

π
arctan(dqij −

∑N
k=1 d

q
ik

N
); (6b)

lossij=1− 2%lossij ; (6c)

B1ij=
2BWA

ij

BWT
ij

− 1; (6d)

B2ij=
2

π
arctan(0.01(BWA

ij −

∑N

k=1 BWA
ik

N
)), (6e)

where dlij and dqj are the link transmission delay and packet
queueing delay from node i to node j, respectively, A(i) is
the number of node i’s neighbors and N is the number of
switches in the considered switch subnet, and %lossij , BWA

ij ,
and BWT

ij characterizes the packet loss, available bandwidth,
and total bandwidth of link i-j, respectively. Eq. (6a) considers
the link delay of link i-j comparing to other possible next
hops, Eq. (6b) considers the queueing delay with respect to
the average delay over the subnet, and Eq. (6c) characterizes
the loss rate. Note that the different comparisons in Eq.
(6a) and Eq. (6b), i.e., the neighbors A(i) and the switches
N in a subnet, respectively, indeed provides the thorough
consideration of packet latency over the hierarchical structure
and switch subnets. Eq. (6d) and Eq. (6e) indicate the available
bandwidth of link i-j and that with respect to the average link
bandwidth over the subnet, respectively. From Figure 3, all
these QoS functions have the values within [−1, 1], where the
value closes to one means the link selection is preferred by the

respective parameter and otherwise the value closes to negative
one as the penalty.

D. QoS-aware Adaptive Routing (QAR)

Inspired by our previous study of adaptive computation
framework for routing paths [19], we propose a QoS-aware
adaptive routing (QAR) in Algorithm 1 with a flow diagram in
Figure 4 through reinforcement learning and designated QoS-
aware rewards in multi-layer hierarchical SDNs. Specifically,
as mentioned in Section III, this distributed SDN system con-
sists of various switch subnets, and each subnet has a domain
controller, one or many slave controllers, and many underlying
switches. Moreover, domain controller takes charge of path
calculation for each incoming flow, while slave controllers
gather the network state and send the information updates
to the domain controller shown in Figure 4. Therefore, QAR
determines the forwarding path inside each subnet for the re-
spective domain controller and the global forwarding direction
among subnets for the super controller. The procedures are
explained in detail as follows.

First, when a new flow arrives to a switch, the switch
forwards the first packet of the flow to the domain controller
and requests the forwarding path. The domain controller
then updates the current network state regarding the latest
information from slave controller(s), exploits the proposed
reinforcement learning in Algorithm 2 to select a feasible
path with respect to QoS requirements of the flow, and
modifies the forwarding tables of switches along the selected
path. Furthermore, if the domain controller realizes that the
destination switch does not belong to its subnet, the first packet
will also be sent to the super controller. The super controller

3030

��������������

���

����
��
 �����		��

!	���
 �����		��

"�#����
�

$%�����#��#��������������������
$%�����#��&	�����!�����
�������
$ ��'�����(��	���
�������
	�
��#��������
$!�������������
���'����

Fig. 4: Flow diagram of QAR.

then performs Algorithm 2 to find the forwarding direction
among subnets (i.e., subnet-path), and send the corresponding
notifications to the domain controllers of involved subnets. In
this way, the path searching of mater controller and several
domain controllers can be executed simultaneously and thus
save much computation time to facilitate time-efficient QAR.

Note that the computation loads, distributed among three
levels of controllers, are largely reduced through this hierarchi-
cal load-sharing. Moreover, being complied with OpenFlow, if
there exists the matching entry of the incoming flow, the switch
will not send the packet to domain controller but simply for-
wards the packet following the existing matching. Thus, QAR
successfully provides a QoS-aware, time-efficient, adaptive
routing, particularly effective for large-scale SDNs. Finally,
such a better routing function with the proper consideration
of QoS requirements and changes of network status offers
one of the best candidate for an innovative service-enabled,
virtualized, and generalized network function that could be
easily integrated with other network planning and management
systems.

Algorithm 1: QoS-aware Adaptive Routing (QAR)

1 New flow f arrives to a switch in the subnet.
2 Switch forwards the first packet to domain controller Ef .
3 if Dest(f) is not in the same subnet then
4 Super controller executes Algorithm 2;
5 Domain controllers along the subnet-path executes

Algorithm 2;
6 else
7 Domain controller Ef executes Algorithm 2;
8 end
9 Rest packets of flow are forwarded following the

established flow tables in switches.

Algorithm 2: Reinforcement Learning

1 At source i (i.e., either switch or domain controller.)
2 Initialize Q0(s0, a0) = 0 and R0 from Eq. (5).
3 At time t:
4 Choose next-hop via at acc. to softmax in Eq. (1).
5 Observe Rt and st+1.
6 Update Qt+1 function acc. to Eq. (4).
7 Continue from step 4 to choose next-hop at time t+ 1.

V. PERFORMANCE EVALUATION

We evaluate the proposed QAR and compare it with the
conventional learning approach over a real Sprint GIP net-
work [16] with multi-layer hierarchical architecture as shown
in Figure 2b. In particular, this network has 25 deployed nodes
as switches and 53 links, and the actual link delay profiles
can be obtained in [16]. In the following, we first evaluate the
impact of step-size parameters in QAR, and then compare its
performance with the Q-learning scheme [20].

A. Impacts of Step-Size Parameters in QAR

Based on the reinforcement learning, the performance of
QAR is governed by the selection of step-size parameters
(α,γ) as shown in Eq. (4). In particular, α adjusts the error
that is included in the Q updating; γ ∈ [0, 1) has zero value
if the routing only considers the current reward and acts as
greedy algorithm, and has the value close to one if the routing
considers the long-term revenue. Figure 5 provides the number
of hops of a suitable path via QAR with respect to (α,γ).
It shows QAR converges only when γ ∈ [0.7, 0.99], which
implies the recent action indeed affects system performance
more than the future ones. Moreover, with these large γ values,
QAR performs better with few fluctuations when α ∈ [0.5, 1).
Thus, these evaluations provide the preferred ranges of the
step-size parameters with regards of routing performance,
facilitating the practical implementation of QAR.

B. Performance Comparison of QAR and Q-Learning [9]

We examine the time evolution of QAR without and with
QoS provisioning, and compare QAR with the conventional
Q-learning [9]. First, Figure 6 shows the QAR results with
respect to different time-to-live (TTL) values that denote the
maximum allowable number of searching iterations in each
episode (TTL is set as 100 in Section V-A). In particular,
without QoS provisioning, the weights β1, β2, β3 in Eq. (5)
are set to zero, and Figure 6a shows that the greater the
TTL is the faster the QAR converges. However, there exists
a trade-off between algorithm convergence and end-to-end
delay. Specifically, while an increasing TTL brings better
convergence, it also increases the computation time of each
searching episode and thus increases end-to-end delay.

Figure 6b further shows the results with QoS provisioning,
where β1 = β2 = β3 = θ1 = φ1 = 1 and θ2 = φ2 = 0.5.
It indicates that the longer convergent time is required when
considering QoS requirements. In particular, while QAR does

3131

Fig. 5: Number of hops with respect to different step-size parameters (α,γ) of QAR.

(a) Without QoS provisioning. (b) With QoS provisioning.

Fig. 6: Time evolution of QAR.

not converge when TTL= 10, it requires double episodes
to converge when TTL= 50. For TTL= 100, QAR takes
almost the same episode to converge with or without QoS
provisioning. Note that the fluctuations after the graph con-
verges means that even finding a suitable forwarding path,
QAR still tries to find the better solution with greater reward.
Next, Figure 7 shows the comparison between QAR and

Q-learning. It indicates that both approaches have similar
convergent performance without QoS provisioning, but QAR
outperforms with QoS provisioning. Therefore, this paper
provides an effective and efficient routing algorithm upon
multi-layer hierarchical architecture for large-scale SDNs.

3232

(a) Without QoS provisioning.

(b) With QoS provisioning.

Fig. 7: Comparison between QAR and conventional Q-
learning [9].

VI. CONCLUSION

In this paper, QAR is proposed via reinforcement learning
in multi-layer hierarchical SDNs. This distributed hierarchical
control plane is first introduced to minimize the signaling
delay, serving as a realistic SDN architecture. QAR is then pro-
posed to enable adaptive, time-efficient, and QoS-aware packet
forwarding upon the proposed architecture. Performance eval-
uation confirms that QAR outperforms the conventional Q-
learning approach with fast convergence when considering
QoS provisioning. We have presented a novel design to
facilitate on-line, QoS-aware routing in practical large-scale
SDN and software service-defined network implementations.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, , and J. Turner, “Openflow: Enabling innovation
in campus networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Apr. 2008.

[2] I. F. Akyildiz, P. Wang, and S. C. Lin, “Softair: A software defined
networking architecture for 5g wireless systems,” Computer Networks,
vol. 85, pp. 1–18, 2015.

[3] I. F. Akyildiz, S. C. Lin, and P. Wang, “Wireless software-defined
networks (w-sdns) and network function virtualization (nfv) for 5g
cellular systems: An overview and qualitative evaluation,” Computer
Networks, vol. 93, pp. 66–79, 2015.

[4] ONF, “OpenFlow Switch Specification,” version 1.4.0. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

[5] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A distributed control platform for large-scale production networks,” in
OSDI, 2010.

[6] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in ACM HotSDN, Aug.
2012, pp. 19–24.

[7] J. McCauley, A. Panda, M. Casado, T. Koponen, and S. Shenker,
“Extending sdn to large-scale networks,” in ONS, 2013.

[8] M. Luo, Q. Li, M. Bo, K. Lin, X. Wu, C. Li, S. Lu, and W. Chou,
“Design and implementation of a scalable sdn-of controller cluster,”
in the 4th International Conference on Smart Systems, Devices and
Technologies (SMART): INFOCOMP 2015, Jun. 2015.

[9] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: The MIT Press, 1988.

[10] G. A. Rummery and M. Niranjan, “On-line q-learning using connec-
tionist systems,” Tech. Rep., 1994.

[11] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach. Addison-Wesley, 2008.

[12] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in sdn-openflow networks,” Computer Networks
(Elesvier) Journal, vol. 71, pp. 1–30, Oct. 2014.

[13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in ACM SIGCOMM, Aug. 2013, pp. 3–14.

[14] C. Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in ACM SIGCOMM, Aug. 2013, pp. 15–26.

[15] S. C. Lin, P. Wang, and M. Luo, “Control traffic balancing in software
defined networks,” Computer Networks, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128615002571

[16] Sprint, Overland Park, KS, “Sprint IP network performance,” 2011,
online available: http://www.sprint.net/performance.

[17] M. N. Katehakis and A. F. Veinott, The Multi-Armed Bandit Problem:
Decomposition and Computation. Mathematics of OR, 1987.

[18] B. F. Lo and I. F. Akyildiz, “Reinforcement learning for cooperative
sensing gain in cognitive radio ad hoc networks,” Wireless Networks,
Springer, vol. 19, no. 6, pp. 1237–1250, 2013.

[19] M. Luo, Y. Zeng, J. Li, and W. Chou, “An adaptive multi-path computa-
tion framework for centrally controlled networks,” Computer Networks
(Elesvier) Journal, vol. 83, pp. 30–44, 2015.

[20] C. Watkins and P. Dayan, Q-Learning. Machine Learning, 1992, vol. 8.

3333

