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Abstract—In this paper, a QoS-aware traffic classification
framework for software defined networks is proposed. Instead of
identifying specific applications in most of the previous work of
traffic classification, our approach classifies the network traffic
into different classes according to the QoS requirements, which
provide the crucial information to enable the fine-grained and
QoS-aware traffic engineering. The proposed framework is fully
located in the network controller so that the real-time, adaptive,
and accurate traffic classification can be realized by exploiting
the superior computation capacity, the global visibility, and
the inherent programmability of the network controller. More
specifically, the proposed framework jointly exploits deep packet
inspection (DPI) and semi-supervised machine learning so that
accurate traffic classification can be realized, while requiring
minimal communications between the network controller and
the SDN switches. Based on the real Internet data set, the
simulation results show the proposed classification framework
can provide good performance in terms of classification accuracy
and communication costs.

Keywords: Traffic classification, SDN, QoS, Semi-supervised
Machine Learning

I. INTRODUCTION

Currently, software defined networking (SDN) is envisioned
as an emerging and promising networking paradigm with the
promise to dramatically improve network resource utilization,
simplify network management, reduce operating costs and pro-
mote innovation and evolution [1]. As the key feature of SDN,
the separation between the control plane and the data plane
necessitates the revisit and redesign of the traffic engineering
(TE) solutions so that the promising features of SDN, such
as openness, programmability, and global visiability, can be
actively exploited. In particular, traffic engineering in SDN
focuses on efficiently and effectively identifying, regulating,
and forwarding traffic flows in the whole network [2].

As SDN manages the network traffic on the basis of "flows”,
the accuracy and efficiency of the traffic classification (TC)
engine plays a crucial role in SDN. Different from the most of
the existing work which focuses on identifying the applications
that generate the traffic flows, we aim to propose a novel
QoS-aware TC framework capable of identifying the QoS
class, such as interactive video gaming or bulky data transfer,
for different traffic flows in a real-time and cost-efficient
fashion. On one hand, providing desired QoS for different
traffic flows is an essential part of the traffic engineering in
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SDN. Thus, the TC engine has to identify the QoS class
for the particular traffic flows so that the suitable routing
paths can be chosen. On the other hand, the conventional
traffic classification solutions, which aim to identify the exact
application of every traffic flow, is not an effective way to
identify the QoS class of the traffic flows because many
different applications may belong to the same QoS class,
which demands the similar QoS requirements. Moreover, as
many new applications appear every day, it is time-consuming
and impractical to maintain the real-time update of the list of
all applications existing within the Internet.

To counter the above-mentioned challenge, we jointly apply
machine learning with DPI, in a novel framework that can
be fully implemented in a SDN controller. The proposed
framework consists of two components: (i) the local traffic
identification component at SD switches at the network edge
and (ii) the global traffic classifier at the network controller.
The former one aims to detect the long-lived, i.e., “elephant”
flows among the new incoming ones, while the latter part
performs the QoS-aware traffic classification for identifying
the QoS class of the traffic flow through a mapping function.
The mapping function is simply a function that takes a few
features of the traffic flow, e.g., the average packet interarrival
time, Hurst parameter and port number, as the inputs and gives
the QoS class of the traffic flow as the output. The global traffic
classifier at the controller is responsible for learning, building
and refining the mapping function based on the historical
traffic information.

The proposed traffic classification system has three advan-
tages. First, the SD-switches are kept as simple as possible
by only incorporating light-weight elephant flow identification
module. Second, the network controller is utilized to guarantee
the accuracy and the adaptability of the QoS traffic classifier.
This is achieved by exploiting the global view of the network
flows to build the accurate mapping functions through time-
consuming but accurate DPI along with the semi-supervised
machine learning that only requires limited information, e.g.,
first 20 packets, from the elephant flows detected at the
SD switches. Third, the whole framework follows a modular
design principle so that every component in the framework
can be improved at any time. The proposed QoS traffic
classification solution can be adopted to enable fine-grained
QoS-aware traffic engineering in SDN [3].
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The rest of the paper is organized as follow: in Section II,
the related work is provided; the details of the QoS-aware
traffic classification framework can be found in Section III;
Section IV gives the description of evaluation process and
provides the simulation results; and a conclusion of this paper
is given in Section V.

II. RELATED WORK

Historically, traffic classification relies on TCP or UDP port
matching [4]. However, because of the increasing usage of the
private and dynamic ports, the port-based techniques are not
effective any more. To counter this challenge, two schemes are
introduced, i.e., Deep packet inspection (DPI) and Machine
Learning (ML). DPI inspects the packet payload and searches
for known signatures to infer the most likely application [5].
DPI is of high accuracy but fails with the encrypted payload.
Meanwhile, ML-based approaches [6] learn from the big data
and use statistical properties of the traffic flow to infer the
application used. However, most of the related work [7] [8] [9]
were using supervised ML, which means all available traffic
traces are labeled with known applications, but in reality,
limited information can be captured and the ever-changing
new applications makes supervised ML less effective. To
address such issue, unsupervised ML was investigated [10]
[11], which exploits unlabeled database as the training set.
However, it is difficult for unsupervised ML-based approaches
to realize a good performance with low complexity. Then,
semi-supervised ML was proposed [12], which combines the
benefits of both supervised or unsupervised ML. However,
unsupervised ML-based algorithms cannot be directly applied
in SDN without exploiting and conforming the decoupled
control and data planes. In this paper, we aim to develop a
traffic classification engine which takes into account the unique
architectural features of SDN.

III. A QOS-AWARE TRAFFIC CLASSIFICATION
FRAMEWORK

Our proposed framework aims to classify a traffic flow into
a QoS category in a real-time and adaptive fashion without
the need of identifying the exact application from which
the traffic flow is generated. On one hand, real-time traffic
classification is of critical important, which, however, has not
been properly explored. Many existing algorithms use flow-
level features for traffic classification, which is “a posteriori”
method and may generate classification results when the flow
ends. On the other hand, an adaptive traffic classification
system is required, which should be adapted to the ever-
changing network applications by periodically re-training the
classifiers.

A. Overall framework

To conform the SDN architecture, our traffic classification
(TC) engine is located within the centralized SDN controller.
The purposed TC engine performs: (1) efficient network
monitoring with low-overhead and minimal switch changes;
(2) detection of QoS-significant (i.e., “elephant”) flows; (3)
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As shown in Fig. 1, the system consists of two main
parts. The first component is responsible of detecting the
QoS-significant flows in the new incoming flows. The second
component performs the QoS-aware traffic classification and
the related network management tasks. The main process of
the operation of the system is explained as follow:

1) 7Elephant” flows detection: After the network flows go
through the edge switches, those switches detect the QoS-
significant “elephant” flows. Several approaches have been
proposed to detect “elephant” flows in literature. Since the
SDN controller can monitor the network, the detection cri-
terion used is that if a flow uses more that K% of the link
bandwidth, it is recognized as an “elephant” flow, where K
could go from 1% to 10% depending on the bandwidth of that
link. The OpenFlow defaultly supported pull-based statistics
can be utilized in this detection process. By receiving the
traffic statistics sent from the switch, the controller gets to
know the existence of “elephant” flows.

2) Statistics collection and features extraction: In net-
work controller, the ML algorithms build a mapping function
g(X) y where X corresponds to measurable statistical
properties of an “elephant” flow while y refers to the most
likely QoS that flow needs. Therefore, before classifying a
flow, two steps need to be done. One is to obtain the measured
vector X, and the other is to train the ML-based classifier. As
long as an “elephant” flow is detected by a SDN switch, the
flow information needs to be sent to the controller through the
least congested path immediately. Once the controller gets the
flow information, it starts to calculate the statistical properties
and group them in X.

Information is firstly gathered from the packet trace of the
flow and then the statistical features are extracted out from
that information. The features used to train the ML algorithm
and to classify the flows are categorized into the following
classes:

1)

2)

Time information: inter-arrival period;

Packet information, e.g., packet length and direction of
the packet;

Protocol information, e.g., IP/Port of source/destination
and transport protocol;

stochastic information, e.g., Hurst parameter

3)

4)
To build a real-time classifier only the information of first
N (N = 20 in our work) packets in a flow is used to calculate



X. The simulation results proof that using only 20 packets is
enough to have a good classification. As the socket information
is always the same, the information of the packet belonging
to the same socket should be gathered only once.

3) QoS-aware traffic classification: The QoS classifier ex-
ploits the semi-supervised ML algorithm, e.g., Laplacian SVM
which is hosted inside the centralized SDN controller. Before
performing the actual traffic classification, the classifier needs
to be trained by following the steps below:

1) Setting up a database storing network traffic traces;

2) Filtering out the “elephant” flows from the database;

3) Applying DPI to find out the application of each re-
mained “elephant” flows (i.e., labeling the flows). Note
that a significant portion of all flows are still unlabeled
due to limited information;

4) Defining QoS classes based on the applications found.
Delay, jitter, and loss rate are mainly concerned factors.
The corresponding detected applications are assigned to
each class as its representative applications. For instance,

« Voice: GoogleVoice

o Video conference: Skype, GoogleTalk

o Streaming: USstream, Sopcast

o Bulk data transfer: FTP, Mega

« Interactive data: SSH, Telnet

o Best-effort traffic: default class
Notice that not all kinds of application are considered
in the QoS class definition, because the only “elephant”
flows enters our TC engine ;

5) Labelling all flows with their corresponding QoS classes
to complete the “labeling” process;

6) Measuring the statistical parameters of each flow and
calculating the feature vector X used in the ML algo-
rithm;

7) Training the classifier using semi-supervised learning. In

particular, Laplacian SVM is adopted.

Instead of performing fine-grained application classification,
coarse-grained classification with better generalization proper-
ties is used here. It is assumed that applications that require the
same QoS, tend to exhibit similar statistical properties. This
is a typical semi-supervised learning assumption [16], called
the cluster assumption.

Semi-supervised ML algorithms use labeled, X7, and un-
labeled, Xy, data to infer the classification model. In semi-
supervised learning, the data set consists of n vectors X =
(74)se[n) and two subsets depending on the label. The first one
X1 = (X1, Xa, ..., X;) are labeled data set with the labels Yy, =
(¥1,¥2, -+, y1)- The second one Xy = (Xj41, X142, -+, Xi4u)
are unlabeled ones. Considering X = X, UAXy and [4+u = n,
on one hand, when | = 0 we do not have labeled data
and X is used for unsupervised learning. On the other hand,
when v = 0 all samples are labeled and X is used for
supervised learning. Each element x; is composed of a series
of features. Specifically, each x; has m features f; so that
x; = (f1,fs,...,f,). Fig. 2 summarizes the structure of the
data.
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Fig. 2. Data structure for semi-supervised learning

In our scheme, the graph-based semi-supervised learning
[17] is adopted which utilizes a graph representation of the
data, with each node corresponding to a labelled or unla-
belled sample. The graph may be constructed using domain
knowledge or similarity of examples, while two common
methods are used, which connect each data point either to
its k nearest neighbours or to nodes within some distance e.
The weight W;; of an edge between x; and x; is typically set

—llei—=j;l1?
toe v .

Using the principles behind manifold regularization [18] and
the regularization formulation of SVM [19], the SVM can be

formulated with the manifold regularaizer as:

n

f = argmin {szax((l 1—yf () + vl 13+ vzl F1I7
1=1

We adopt the similar methods in [20] to solve the The
procedure of solving above problem. The detailed procedures
are omitted for brevity.

The training phase of the ML-based classifier is usually
done offline. With the labeled traffic traces obtained through
DPI in 3)-5), when a calculated feature vector X is fed into the
classifier, the coefficients of the ML algorithm will be adjusted
based on the difference (i.e., error) between the temporary
outcome and the actual labeled result. After training with a
number of the labeled traces, the coefficients are adjusted well
enough to stop the training phase (i.e., the temporary outcome
and the actual labeled result match well).

As explained before, since not all applications can be
detected and the labeled traces are not enough considering
the existence of unknown applications, supervised ML can-
not provide good performance in the real world. As semi-
supervised ML learns from both labeled and unlabeled data
traces simultaneously, those unlabeled flows will be classified
into the same QoS class as the labeled ones, because they share
the most similar statistical features. Even if the application that
yields the unlabeled flows cannot be identified, fortunately,
those unlabeled traffic flows can still be categorized into
certain QoS classes based on the statistical correlation for the
proper traffic regulating or forwarding.
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4) Groud truth update and classifier re-trainning: It is
known that machine learning learns from the big data and
builds a mapping function ¢g(X) = y. Thus, having good and
meaningful data traces as references is important to build clas-
sifiers with good accuracy and generality. However, different
types of applications and traffic patterns arise depending on the
specific purpose of a network; for example, the applications
used in residential networks are different from those used in
research networks or data enterprise networks. Furthermore,
new applications keep emerging every day and even the current
ones may be experiencing updates which change their func-
tionalities and consequently change the statistical properties.
Therefore, it is necessary to deploy a policy to gather new
data from the network and update the ground truth database
periodically, so that it can be used to re-train the QoS classifier
after a duration of ,pdate-

Basically, it is required to save N (e.g., N = 20) packets
of various “elephant” flows flowing through the network so
that later we can update the classifiers used. For real-time
requirement, it is desirable that a small number of packets
is needed to estimate the statistical features because the
parameter estimation should be fast. The following method
is proposed to gather the data needed:

1) When an “elephant” flow is detected, its information will
be stored with a probability of p, the value of which
depends on the network state;

2) If an “elephant” flow is selected to be stored, then one of
the intermediate SDN switch along the path of the flow
will be randomly selected and send the information (i.e.,
N packets) of the flow to the controller. Those packets
received by the controller will be stored in a historical
database.

B. Key features of the proposed architecture

(1) A modular approach is used, so that each block could be
updated in the future;

(2) The framework is a generic one, which could be deployed
in various kinds of networks such as campus network,
enterprise network and etc.;

(3) DPI and machine learning are combined into a single
framework, which takes the benefits of both worlds.
DPI provides accurate dection for known application,
while machine learning provides a superior classification
performance for unknown applications ;

(4) A periodic network statistics gathering scheme is pro-
posed so that it is possible to update the ’ground truth”
database and re-train the classifier to make them adapt to
future changes;

(5) This is the first engine in SDN that utilizes truly semi-
supervised ML algorithms.

IV. EVALUATION

To evaluate our design, we conducted traffic classification
simulations on the real internet data, which was captured
by the Broadband Communication Research Group in UPC,
Barcelona, Spain. The data set is a 59GB traffic trace file in
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which the packets of the internet traffic flows on the campus
were stored. Note that, the payload of most packets are not
stored for the consideration of storage space and privacy
issues. Before starting the traffic classification engine, several
preprocessing stages need to be done in order to trim the traffic
trace file into a set of feature vectors of the traffic samples,
which are fed into the classifier.

First, for the data set in use, the flow information was also
collected during its capturing process. The packets in the data
set has already been categorized into more than 760000 traffic
flows. The flow information is stored in a .info file with a
format shown in Fig. 3. After going through all the flows, we
found that more than half of the flows were torrent traffic, so
that from the perspective of building a more diverse data set,
440000 torrent flows were removed which finally produced
the 59GB .csv file.

flow_id start_time | end_time local_ip
. remote_ | transport_p
remote_ip | local_port port rotocol
operating_ | process_ content_
urls
system name types

Fig. 3. Data structure used for flows in the .info file

Secondly, based on the design of our traffic classification
framework, “elephant flow” detection/filtering was conducted
on all the flows in the data set to extract all elephant flows
which were the objective flows in our classification simulation.
As a result, there are 3377 flows satifying the requirement.

The next step was to label each flows selected in the
previous step. All the flows went through a DPI module
which outputs the label of each flow. The labeled flows
were then categoried into 4 QoS classes including voice/video
conference, interactive data, streaming, and bulk data transfer.
Examples of the mapping policy between the application and
the QoS class is shown in Table 1. Because it is hard for us to
put all the existing applications on our list, there exist a large
number of unlabeled flows within all the flows. Moreover, as
new applications appear every day, it is not possible to have
all flows labeled in a real traffic classification application. In

QoS Class

Voice/Video Conference
Interactive Data
Streaming

Bulk Data Transfer

Applications
Skype, QQ, Google Hangout, ...
Gaming, Web, Http Services, ...
PPStream, Vimeo, SopCast, Putlocker, ...
FTP, Torrent, Dropbox, ...

TABLE 1
EXAMPLE OF QOS CLASSES AND CORRESPONDING APPLICATIONS

the data set used, there were 1508 unlabeled flows among all
3377 flows. And the data set was further cut into two groups,
the training set and the testing set. The ratio between the size
of the training set and the size of the testing set is 7.82:1.
Note that, to correctly run the testing process, all the flows in



Total Flows Training Set Testing Set

L U L U L U
1869 1508 1486 1508 383 0
cl C2 C3 C4
1129 141 202
TABLE II

THE INGREDIENTS OF THE DATA SET USED

the testing set should be labeled, becasue the unlabeled flows
cannot be verfied with an unknown application after going
through the classifier.

The fourth step was extracting features from each flow. In
the evaluation process, 60 features were extracted from the raw
flow data, and as we mentioned before, these 60 features can
be categorized into four groups, including time information,
packet information, protocol information, and Hurst param-
eters. However, as a general issue existing in all machine
learning based traffic classification research, 60 features are
way too many for all being used in the training process of the
classifier, because the dimension is too high while the training
set is too small as compared with the level of the dimension.
This would lead to the severe overfit of the classifier and
make the classifier with a bad generalization ability, which
means both the accuracy (bias) and the variance would not
be good. So that we conducted a feature selection algorithm
(i.e., Wrapper) in which the forward selection was employed.
Since the Laplacian SVM classifier used has two parameters
(i.e.,A and o) affect the performance of the classifier a lot, a
semi-greedy search on (A, o) pairs with two steps (i.e., coarse
search and fine search) was used to find the classifier with the
best performance. Firstly, in coarse search, the log spaces of
the two parameters were used, and the result could provide
a small region of (A, o) where the accuracy of the classifier
is better than elsewhere. Based on our simulation, the area
around (A = 0.00005,0 = 0.25) was expected. Secondly, a
fine search among A = 0.00001 : 0.0001,c = 0.21 : 0.23 was
conducted to search the classifier with the highest accuracy.

Fig. 4. The accuracy of the classifier with 60 features

Based on the accuracy of the test results on different subset
of features, we finally chose a subset of 9 features among all
60 features, considering the complexity of the classification
system. The 9 features are listed in the following TABLE III.

Fig. 5. The accuracy of the classifier with 17 features

Feature Explaination

HPktLenSD Entropy of the packet length from Src. to Dst.
dstPort Dst. port

srcPort Src. port

HPktLenDS Entropy of the packet length from Dst. to Src.
avgPktLenDS Average length of packets from Dst. to Src.
avgPktLenSD Average length of packets from Src. to Dst.
rspndPkt Packets to respond from Src. to Dst.
minPktLenDS Minimum length of packets from Dst. to Src.
pktIntDegree Packet interactivity degree from Src. to Dst.
medPktLenSD  Median of the packet length from Src. to Dst.

TABLE III
FINAL SUBSET OF FEATURES USED

The comparison between the performance of our classifier
and the existing K-means algorithm based classifier in terms
of testing accuracy is shown in Fig 6. As we can see, our
TC framework using Laplacian SVM as the semi-supervised
machine learning algorithm outperforms the previous semi-
supervised machine learning scheme using K-means algorithm
[12]. In addition, it can bee seen that when the number of
features selected into the subset reaches 7-9, the test accuracy
exceeds 90% which is an acceptable value in the traffic
classification area.

V. CONCLUSION

A QoS-aware traffic classification framework for SDN is
proposed in this work. Using this framework, traffic flows
could be categorized into different QoS classes. The QoS
parameters inferred may be used to re-route efficiently “ele-
phant” flows to meet the resource utilization goals. Semi-
supervised machine learning is employed in the QoS classifier
to deal with the traffic with unknown applications. Since the
feature extraction only uses the first several packets of a
flow, the engine runs in a real-time fashion. Moreover the
traffic classification framework is adaptive to different kinds of
networks by periodically re-training the groud truth database
and the QoS classifier.
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