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Abstract—Molecular motor networks (MMNs) are networks
constructed from molecular motors to enable nanomachines to
perform coordinated tasks of sensing, computing, and actuation
at the nano- and micro- scales. Living cells are naturally enabled
with this same mechanism to establish point-to-point communi-
cation between different locations inside the cell. Similar to a
railway system, the cytoplasm contains an intricate infrastructure
of tracks, named microtubules, interconnecting different internal
components of the cell. Motor proteins, such as kinesin and
dynein, are able to travel along these tracks directionally, carry-
ing with them large molecules that would otherwise be unreliably
transported across the cytoplasm using free diffusion. Molecular
communication has been previously proposed for the design and
study of MMNs. However, the topological aspects of MMNs,
including the effects of branches, have been ignored in the existing
studies. In this paper, a physical end-to-end model for MMNs is
developed, considering the location of the transmitter node, the
network topology, and the receiver nodes. The end-to-end gain
and group delay are considered as the performance measures, and
analytical expressions for them are derived. The analytical model
is validated by Monte-Carlo simulations and the performance of
MMNs is analyzed numerically. It is shown that, depending on
their nature and position, MMN nodes create impedance effects
that are critical for the overall performance. This model could be
applied to assist the design of artificial MMNs and to study cargo
transport in neurofilaments to elucidate brain diseases related to
microtubule jamming.

Index Terms—Nanonetworks, molecular motors, molecular
communication, wave propagation, channel modeling.

I. INTRODUCTION

Molecular motors are biological nanomachines that enable
living organisms to perform efficient mechanical work, includ-
ing muscle contraction and the intracellular cargo transport.
In particular, kinesin and dynein are two important motor
proteins enabling the intracellular cargo transport towards and
away from the cell nucleus, respectively. They convert energy
in the form of adenosine triphosphate (ATP) to transport
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large molecules inside a cell between different organelles and
vesicles.

Molecular motor communication (MMC) is a walkway-
based molecular communication (MC) mechanism. MMC
underlies intercellular neuron communication [18] by trans-
porting large molecules along the axons of a neuron cell,
as well as intracellular communication between the nucleus
and the organelles of a cell. MMC has several advantages
over other MC physical solutions. Diffusion-based molecular
communication [23] is not fast enough to transport molecules
over large distances (� 1 µm). In addition, diffusion-
based molecular communication cannot happen against the
concentration gradient in the medium. Similarly, flow-based
communication cannot occur against the flow direction. MMC
does not have this limitation. In fact, molecular motors can
transport molecules in non-equilibrium mediums, regardless
of the concentration gradient, by using chemical energy (e.g.,
in the form of ATP) to produce a mechanical movement in a
similar way to a car engine. The ability to control the motion of
molecular motors using molecular switches [5] makes MMC
a promising solution to realize nanonetworks [1].

Unlike macro-scale motors, molecular motors are highly
stochastic in nature. MMC has been conceptually considered
as a molecular communication mechanism in [27]. In [19], the
noise effects of molecular motors traveling along microtubular
tracks have been simulated using a one-dimensional random
walker with drift. In [22], MMC using microtubular transport
over kinesin-coated surfaces has been simulated as a random
walker with drift on a two-dimensional geometry. These
works are based on mobility models that assume empirically-
measured drift velocity and diffusivity. In reality, the drift
velocity and diffusivity are highly coupled. Moreover, molec-
ular motors often detach from their track. The paper in [10]
provides experimental results for the transport of microtubules
on kinetic-coated surfaces, demonstrating the feasibility of
MMC. The paper also utilizes DNA hybridization to create a
MC addressing scheme. The paper in [13] uses Monte-Carlo
methods to simulate molecular motor transport on cytoskeletal
filaments. The paper has the advantage of taking into account
the mutual exclusion of molecular motors, but considers only
two molecular motor states (forward motion, and detachment
state). Several computational models have been proposed to
capture this behavior with varying levels of complexity [14]
[15].

In this paper, a fully analytical propagation model of the
MMC channel is developed and its performance analysis
is conducted based on the mobility parameters (backward
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motion, forward motion, and detachment) of the molecular
motor protein (kinesin and dynein) moving along a bifurcating
network of microtubules. The end-to-end gain and group delay
in a MMN are derived analytically in the frequency domain.
They depend on the MMN topology, the locations of the trans-
mitter and receiver nodes, and the mobility parameters of the
molecular motors. In order to verify the analytical model, we
compare the model with the results of Markov Chain Monte-
Carlo simulations of a molecular motor. Our results could be
used for medical applications. For example, molecular motors
are involved in several diseases and therapeutic methods. In
fact, several brain diseases are associated with jamming in
microtubules, which prevents the transport of key proteins
needed for the repair of brain cells [9]. Our analytical results
could be used to find the molecular properties that cause
jamming and diagnose the jamming points in a MMN.

The paper is organized as follows. In Sec. II, the system
model is presented, including the network topology and the
molecular motor mobility. In Sec. III, the propagation model
of molecular motors over a network is explained. In Sec. IV,
numerical results stemming from the numerical evaluation of
the MMC network are presented, discussed, and compared
with the results of Monte-Carlo simulations. Finally, Sec. V
concludes the paper.

II. ANALYSIS OF POINT-TO-POINT MOLECULAR
COMMUNICATION WITH MOLECULAR MOTORS

In this section, the topology and elements of a MMN are
presented, the mobility of molecular motors on microtubules
is described and modeled through a Markov Process, and a
Fokker-Planck equation for the probability density function of
the presence of a molecular motor on the MMN is provided.

A. Molecular Motor Network Model

Fig. 1 shows the topology of a MMN. The root node of the
MMN is the soma. The microtubule tracks may bifurcate, as
is the case in neurons [11] and plants [4]. A microtubule is
abstracted as a link. The bifurcations are abstracted as nodes.
The location of cargo production is abstracted as a transmitter
node. The location of cargo absorption is abstracted as a
receiver node. The nodes that do not have any children nodes
are called terminal modes. An example of cargo is messenger
ribonucleic acid (mRNA). The transport of the cargo is carried
out by molecular motors which travel along the microtubules.
The molecular motors consist of kinesin, which is a motor
protein that travels towards the (+) end of the microtubule,
and dynein, which travels in the opposite direction towards
the (−) end. The cargo can be blocked when it reaches the
terminal nodes of the MMN.

The topology of the MMN is assumed to be a binary
tree graph, i.e., one node can only have up to two children
nodes. This is the case for microtubules in neurons, due to
the shape of dendritic trees. The MMN has a finite number of
nodes (vertices) N and N − 1 links (edges). The nodes can
be transmitter nodes, branching nodes, or receiver nodes. An
example of a binary tree topology with 5 nodes is illustrated
in Fig. 2. The node that is the closest to the cell soma is
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Fig. 1: Molecular motors travel along the cytoskeleton, away
from the soma and towards the ends of the dendrites. However,
they can also travel in the opposite direction due to their
random behavior. Molecular communication is used to abstract
the propagation of molecular motors on the cytoskeleton as a
communication network.
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Fig. 2: Illustration of a MMN with a binary tree topology.

called the root node and has index 1. A conventional indexing
scheme is used for any other node. If it is located to the left of
its parent k, the index is 2k, otherwise, the index is 2k+1. In
the figure, the nodes 2, 2k = 6, and 2k + 1 = 7 are terminal
nodes with k = 3.

B. Molecular Motor Mobility

The mobility model for molecular motors is based on
the experimental observations regarding the biophysics of
protein transport inside the cell. It has been observed in [21]
that molecular motors undergo stochastic transitions between
different motion states, namely the backward motion state, the
detachment state, and the forward motion state. The molecular
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Fig. 3: State representation of molecular motors motion.

motor moves with a velocity −ν in the backward motion state,
with a velocity 0 at the detachment state, and with a velocity
ν at the forward motion state. In the detachment state, the
molecular motor does not move and may irreversibly detach
from the microtubule track at a rate κ, otherwise it returns to
one of the two motion states at a rate α.

Fig. 3 shows a molecular motor traveling along a micro-
tubule and carrying a cargo. The mechanical energy of the
molecular motor comes from the available chemical energy
contained in ATP molecules. As shown in the figure, α is the
rate at which the molecular motors moves from a detached
state to a backward or forward state. β+ and β− is the rate at
which the molecular motor move from a forward motion state,
or a backward motion state, respectively, to a detached state.
We note that a molecular motor cannot directly transition be-
tween a forward motion state and a backward motion state [8].
At the detached state, the molecular motor does not move and
may either irreversibly detach by the surrounding environment
or return to one of the motion states The molecular motor
irreversibly detaches from the microtubule when it reaches the
end of the microtubules. The transmitter and receiver nodes
can be located anywhere in the network.

Mechanochemical studies of motor proteins under differ-
ent ATP concentrations [25] have shown that their velocity
increases with the ATP concentration. It reaches a maximum
velocity at saturating levels of ATP. More precisely, the ve-
locity is related to ATP concentration according to Michaelis-
Menten kinetics [28]. This model defines a constant KATP ,
named Michaelis constant, as the concentration of ATP cATP
at which the velocity is half of νmax. In this paper, we use
νmax = 0.1µs, which is approximately equal to the velocity
observed in experiments [3]. Thus, the velocity ν is a function
of the chemical energy as follows [21]

ν =
νmaxcATP

cATP +KATP
. (1)

C. Markov Process Model of Molecular Motors

A convenient way to describe the switching of molecular
motors between different states is through a Markov process

[21]. The kinetics of a molecular motor can then be described
as a Markov process with different states (backward motion,
detachment, and forward motion). In this section, the Markov
process and its set of parameters are described in detail.

A molecular motor can be in the position X(t) ∈ R and
at the state S(t) ∈ (+,−, 0). X(t) is a continuous random
process defining the coordinate along the microtubule at time
t and S(t) is a discrete random process defining the state of
the molecular motor at time t. The motion and state dynamics
are as follows

• Backward motion state −: the molecular motor moves
in the backward direction of the microtubule with a
velocity ν, the molecular motor can go from this state to a
detachment state with a rate β−. Let h−(x, t) denote the
joint probability that x < X(t) < x+ dx and S(t) = −.

• Detachment state 0: The molecular motor is still and
detaches from the microtubule. It can disappear at rate κ
or go to either the forward motion state or the backward
motion state with a rate α. Let h0(x, t) denote the joint
probability that x < X(t) < x+ dx and S(t) = 0.

• Forward motion state +: The molecular motor moves in
the forward direction of the microtubule with a velocity
ν, the molecular motor can go from this state to a
detachment state with a rate β+. Let h+(x, t) denote the
joint probability that x < X(t) < x+ dx and S(t) = +.

From the Markov process model of molecular motors, we
can derive the master equations of the molecular motors which
describe the variations over time of the probability density
functions h−(x, t), h0(x, t), and h+(x, t).

A molecular motor is in state − at position x and time
t+ dt either if it was a state − at position x+ νdt and time
t or if it moved to the state − from the other states m ∈
{−, 0,+} and did not move out from the state − and other
states m ∈ {−, 0,+}. Thanks to the Chapman-Kolmogorov
equation applied to a discrete Markov process, this is written
as the following

h−(x, t+ dt) = h−(x+ νdt, t) (2)

+
∑
m

(
P(m,−)hm(x, t)− P(−,m)h−(x, t)

)
where P(m,n) is the probability of moving from the state m ∈
{−, 0,+} to the state n ∈ {−, 0,+} during the time interval
[t, t+ dt]. Similarly, for states + and −, we have

h+(x, t+ dt) = h+(x− νdt, t) (3)

+
∑
m

(
P(m,+)hm(x, t)− P(+,m)h+(x, t)

)
For the detachment state

h0(x, t+ dt) = (4)

+
∑
m

(
P(m,0)hm(x, t)− P(0,m)h0(x, t)

)
.

By using the definition of the rates α, β+, β−, and κ
and developing the previous equations to a first-order Taylor
approximation with respect to dt, we get the following sys-
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tem of master equations which governs the evolution of the
probability densities for the states m ∈ {−, 0,+}.
∂h+(x, t)

∂t
= −ν ∂h+(x, t)

∂x
− β+h+(x, t) + αh0(x, t) (5)

∂h−(x, t)

∂t
= ν

∂h−(x, t)

∂x
− β−h−(x, t) + αh0(x, t) (6)

∂h0(x, t)

∂t
= β+h+(x, t) + β−h−(x, t)− (2α+ κ)h0(x, t) .

(7)

We note that although the equations in (5) are linear, solving
them directly using Fourier analysis leads to intractable so-
lutions due to third degree polynomial equations. The master
equation in (5) can be solved stochastically by using the kinetic
Monte-Carlo Gillespie algorithm [7] or deterministically by
using finite-element methods [12]. Although these methods
are accurate, they are computationally expensive. At the ex-
pense of a first-order approximation, the quasi-state reduction
of the master equation to a one-dimensional Fokker-Planck
equation [17] is much more computationally efficient and can
be used for accurate mathematical analysis of the MMNs.

D. Fokker-Plank Equation

The one-dimensional Fokker-Planck equation governing the
probability density function h(x, t) for the presence of the
molecular motor at position x and time t can be found from
the aforementioned master equation (5). This is done along the
lines with the approaches proposed in [20], [21], [24] and [26].
The difference from the previous work is that we assume that
the molecular motor may be irreversibly detached at any time
and position along the microtubule independently of the target.
We omit the full derivation here due to lengthiness. Basically,
the master equation (5) is written in matrix form, projected on
the orthogonal space of the matrix, the orthogonal projection
is expanded asymptotically. Keeping only the first order terms
of the expansion, the orthogonal projection is substituted in
the matrix form of the master equation, where the diffusion,
drift, and reaction terms are identified. The probability density
function h(x, t) for the molecular motor at position x and time
t is then found to obey the following Fokker-Planck equation

∂h(x, t)

∂t
= −V ∂h(x, t)

∂x
+D

∂2h(x, t)

∂x2
− Λh(x, t) . (8)

where
• The diffusion term D is expressed as

D =
2ν2

γ3β2
+β

2
−α

2

(
β2
−−4α2 + 2αβ−+αβ+ +αβ−

)
.

(9)

with γ = 1/β+ + 1/β− + 1/α.
• The drift term V is expressed as

V =
ν

γ

(
1

β+
− 1

β−

)
. (10)

• The reaction term Λ is expressed as

Λ =
κ

γα
. (11)
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Fig. 4: Link response in a MMN Hn,k(x, f), the node response
in a MMN φn,k(f) , and the parent node response φn,b k2 c(f)
in a link k. The x-axis corresponds to the space coordinate
x along the link k. The y-axis corresponds to the frequency
transform of the probability density function of molecular
motor presence.

III. PROPAGATION ANALYSIS IN A MOLECULAR MOTOR
NETWORK

We analyze the propagation of one molecular motor along
a MMN. The molecular motor is located at the inlet of a link
n at the time t = 0, and we would like to predict how likely
the molecular motor will be at another location of the MMN
at some t. The case of multiple transmitters and sinks can be
considered by the superposition principle since the system of
master equations is linear. The analysis is performed in the
frequency domain. In this goal, key quantities involved in the
propagation analysis are defined as follows

Definition 1. The link response in a MMN Hn,k(x, f) is
the Fourier transform of hn,k(x, t), the probability density
function, i.e. the characteristic function, for the presence of
the molecular motor in the link k at position x and time t
given that the molecular motor was located at the inlet of the
link n at time t = 0. f is the frequency.

Definition 2. The node response in a MMN φn,k(f) is equal
to Hn,k(Lk, f), where Lk is the length of the link k.

In Sec. III-A, the link responses in a MMN Hn,k(x, f) are
found as an expression of the node responses φn,b k2 c(x, f)

and φn,k(f) delimiting the links k, as shown in Fig. 4. In
Sec. III-B, the node responses in a MMN φn,k(f) are found
as an expression of the topology and mobility parameters of
the MMN. As it will be shown in the derivation, the advantage
of this approach is that the link response does not need to be
evaluated for the calculation of the node responses, unless it
is needed. In fact, given only the length of the links, the link
responses can be directly calculated from the node responses.

A. Link Response in a Molecular Motor Network

Here we introduce the procedure for the calculation of a
link response Hn,k(x, f) in a MMN depending on the node
responses φn,b k2 c

(x, f) and φn,k(f) delimiting the links k
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and the index of the transmitter node n. After applying the
Fourier transform to the Fokker-Planck equation in the time
domain derived in (8), the link response in a MMN Hn,k(x, f)
can be found analytically by solving the following differential
equation[

D
∂2

∂x2
− V ∂

∂x
− (2πjf + Λ)

]
Hn,k(x, f) = dn,kδ(x)

(12)
where dn,k is the Kronecker symbol (if n = k then dn,k = 0,
otherwise dn,k = 1) and δ(·) is the Dirac function.

By using standard methods [16], the solution is

Hn,k(x, f) = HG
n,k(x, f) +HI

n,k(x, f) (13)

where HG
n,k(x, f) is the homogeneous function of the equation

(12) , and HI
n,k(x, f) is the inhomogeneous solution of the

equation (12) satisfying the boundary conditions imposed by
φn,b k2 c

(f) at x = 0 and φn,k(f) at x = Lk.
By using a Laplace transform with respect to the spa-

tial coordinate [20], we find that the homogeneous solution
HG
n,k(x, f) is expressed as

HG
n,k(x, f) =

ψ(x− Lk, f)ψ(x, f)

DWk(f)
dn,k (14)

where
ψ(x, f) = eµ1(f)x − eµ2(f)x

µ1(f) =
V+
√

8jπDf+4DΛ+V 2

2D

µ2(f) =
V−
√

8jπDf+4DΛ+V 2

2D

Wk(f) = (µ2(f)− µ1(f))
(
e−µ1(f)Lk − e−µ2(f)Lk

)
.
(15)

By using the same method, we find that HI
n,k(x, f) is

expressed as follows

HI
n,k(x, f) = φn,b k2 c

(f)
ψ(x− Lk, f)

ψ(−Lk, f)
+ φn,k(f)

ψ(x, f)

ψ(Lk, f)
(16)

where ψ(x, f) is defined in (15).
Finally, the link response in a MMN is obtained as follows

Hn,k(x, f) = φn,b k2 c
(f)

ψ(x− Lk, f)

ψ(−Lk, f)
+ φn,k(f)

ψ(x, f)

ψ(Lk, f)

+
ψ(x− Lk, f)ψ(x, f)

DWk(f)
dk,n

(17)

where ψ(x, f) and Wk(f) are direct expressions of the diffu-
sion term D, the drift term V , and the reaction term Λ of the
Fokker-Planck equation in (8).

B. Node Response in a Molecular Motor Network

In this section, a method to determine the node responses
φn,k(f) in a MMN is proposed, given the topology and
geometric properties of the MMN. Based on flux conservation,
the analytical expression (18) of node responses in a MMN
φn,k(f) is obtained. The rest of this section is composed of
two parts. First, the problem of deriving the node responses in
a MMN φn,k(f) is put in matrix form, and second, the matrix
form is inverted using an iterative method.

a) Node Responses Matrix Equation: The node response
in a MMN matrix equation is obtained by applying the
conservation of fluxes at the nodes k. The link inflow and
outflow are defined as followsIk(f) = − D

∂Hn,k(x,f)
∂x

∣∣∣
x=0

+ V Hn,k(0, f)

Ok(f) = − D
∂Hn,k(x,f)

∂x

∣∣∣
x=Lk

+ V Hn,k(Lk, f)
(19)

where Ik(f) is the link inflow and Ok(f) is the link outflow.
The flux operator F {·} of any function is defined as follows

F {·} =

[
−D ∂

∂x
+ V

]
{·} . (20)

Thus Ik(f) = F {Hn,k(x, f)} |x=0 and Ok(f) =
F {Hn,k(x, f)} |x=Lk

. The flux conversation imposes the
following equality

Ok(f) =
∑

m∈{0,1}

I2k+m(f) = I2k(f) + I2k+1(f) (21)

where m ∈ {0, 1} is the relative index of the left and right
children links, respectively. Using the definition of flux in (19),
the conversation of flux in (21), the definition of the flux
operator in (20), and the expression of the link response in
a MMN in (17), we obtain an equation that relates the node
responses in a MMN as follows

φn,b k2 c
(f) F

{
ψ(x− Lk, f)

ψ(−Lk, f)

}∣∣∣∣
x=Lk

+ φn,k(f) F
{
ψ(x, f)

ψ(Lk, f)

}∣∣∣∣
x=Lk

+ dn,k F
{
ψ(x− Lk, f)ψ(x, f)

DWk(f)

}∣∣∣∣
x=Lk

=
∑

m∈{0,1}

(
φn,k(f) F

{
ψ(x− L2k+m, f)

ψ(−L2k+m, f)

}∣∣∣∣
x=0

+ φn,2k+m(f) F
{
ψ(x, f)

ψ(Lk, f)

}∣∣∣∣
x=0

+ d2k+m,n F
{
ψ(x− L2k+m, f)ψ(x, f)

DWk(f)

}∣∣∣∣
x=0

)
.

(22)

Reorganizing the terms in (22), the following is obtained

φn,b k2 c
(f)gk(f) + φn,k(f)sk(f) + dn,krk

=
∑

m∈{0,1}

[φn,k(f)s̄2k+m + φn,2k+m(f)ḡ2k+m

+ d2k+m,nr̄k]

(23)

where the function gk(f) is an input transmission coefficient
(the ratio of molecules inflowing from the parent node that go
past the outlet of the link k), sk(f) is an output transmission
coefficient (the ratio of molecules outflowing from the node
that go past the outlet of the link k), rk(f) is a link trans-
mission coefficient (the ratio of molecules emitted within the
link k that go past the outlet of the link k), s̄k(f) is an input
reflection coefficient (the ratio of molecules outflowing from
the child node that move to the outlet of the link k), ḡk(f) is an
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(18)φn,k(f) =
(−1)k

′
q̂n,1

p̂1(f)

k′−1∏
j=0

gbk.2(j−k′)c(f)

p̂bk.2(j−k′)c(f)
+
k′−1∑
j=0

(−1)k
′−j−1

q̂
n,bk.2(j−k′)c

p̂bk.2(j−k′)c(f)

k′−1∏
r=j+1

gbk.2(r−k′)c(f)

p̂bk.2(r−k′)c(f)

output reflection coefficient (the ratio of molecules reflected
from the child node that move to the outlet of the link k),
and r̄k(f) is a link reflection coefficient (the ratio of molecules
emitted within the link k that move the inlet of the link k).
The functions gk(f), sk(f), rk(f), s̄k(f), ḡk(f), and r̄k(f)
are obtained by identification with (22) as follows

(24)



gk(f) = F
{
ψ(x−Lk,f)
ψ(−Lk,f)

}∣∣∣
x=Lk

sk(f) = F
{
ψ(x,f)
ψ(Lk,f)

}∣∣∣
x=Lk

rk(f) = F
{
ψ(x−Lk,f)ψ(x,f)

DWk(f)

}∣∣∣
x=Lk

s̄k(f) = F
{
ψ(x−Lk,f)
ψ(−Lk,f)

}∣∣∣
x=0

ḡk(f) = F
{
ψ(x,f)
ψ(Lk,f)

}∣∣∣
x=0

r̄k(f) = F
{
ψ(x−Lk,f)ψ(x,f)

DWk(f)

}∣∣∣
x=0

) .

Using the equations in (15), gk(f), sk(f), rk(f), s̄k(f), ḡk(f)
and r̄k are expressed as a function of the Fokker-Planck
diffusion term D, drift term V , reaction term Λ, the link length
Lk, and the frequency f as follows

gk(f) =

e
LkV

2D

√
8iπDf+4DΛ+V 2

2 csch
(
Lk

√
8iπDf+4DΛ+V 2

2D

)
sk(f) =

V
2 +

√
8iπDf+4DΛ+V 2

2 coth

(
Lk

√
8iπDf+4DΛ+V 2

2D

)
rk = 0

r̄k = −1

s̄k(f) = −sk(f) + V

ḡk(f) = −e
−V Lk

D gk(f)

(25)

where csch (·) is the hyperbolic cosecant function and coth (·)
is the hyperbolic cotangent function.

Therefore, the following linear system of equations is ob-
tained

• If k is a root node∑
m∈{0,1}

(
φn,2k+m(f)e

−V L2k+m
D g2k+m(f) + dn,2k+m

)

+φn,k(f)

sk(f)− 2V +
∑

m∈{0,1}

s2k+m(f)

 = 0 .

(26)

• If k is a terminal node (i.e. the node k does not have any
children nodes)

φn,b k2 c
(f)gk(f) + φn,k(f) (sk(f)− 2V ) = 0 . (27)

• For all other nodes k:∑
m∈{0,1}

(
φn,2k+m(f)e

−V L2k+m
D g2k+m(f) + dn,2k+m

)
+ φn,b k2 c

(f)gk(f) (28)

+ φn,k(f)

sk(f)− 2V +
∑

m∈{0,1}

s2k+m(f)

 = 0 .

The linear system of equations composed of (26), (27), and
(28) can be written in matrix form as the following

(29)A(f)Φn(f) = Bn

where A(f) = {ak′,k(f); k, k′ = 1 . . . N} is a matrix defined
as
• If k is a root node

ak′,k(f) = −dk′,k

sk(f)− 2V +
∑

m∈{0,1}

s2k+m(f)


−

∑
m∈{0,1}

dk′,2k+me
−V L2k+m

D g2k+m(f) .

(30)

• If k is a terminal node

ak′,k(f) = −dk′,b k2 cgk(f)− dk′,k (sk(f)− 2V ) . (31)

• For all other nodes k

ak′,k(f) = −dk′,b k2 cgk(f)

− dk′,k

sk(f)− 2V +
∑

m∈{0,1}

s2k+m(f)

 (32)

−
∑

m∈{0,1}

(
dk′,2k+me

−V L2k+m
D g2k+m(f)

)
.

Bn = {bn,k; k = 1 . . . N}T is a vector defined as follows
• If k is a terminal node

bn,k = 0 . (33)

• For all other nodes k

bn,k =
∑

m∈{0,1}

dn,2k+m . (34)

Therefore bn,k = 1 if k is the parent node of n, and
bn,k = 0 otherwise since we will have (n 6= 2k and
n 6= 2k + 1).

Φn(f) is a vector defined as Φn(f) =
[φn,k(f); k = 1 . . . N ]

T , which are node responses in a
MMN for all nodes k, as defined previously in Sec. III-A.
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The matrix A(f) is nonsingular, since the boundary condi-
tions are well posed. Therefore the node responses in a MMN
can be obtained as

(35)Φn(f) = A−1(f)Bn

where A−1(f) is the inverse matrix of A(f), which can be
found by Gaussian elimination in O

(
N3
)
. However, exploit-

ing the structure of the matrix, it can be calculated through an
iterative procedure in O (N). Since Bn is a vector consisting
of all zeros except the n-th element which is equal to 1. The
node responses in a MMN are simply the columns elements
of the matrix A−1(f), i.e.

A−1(f) = [Φn(f);n = 1 . . . N ] (36)

which depends only on the topology and geometry of the
MMN, as it is explicitly shown through the expression of the
coefficients of the matrix A(f) in (26), (27), and (28).

b) Node Responses Matrix Inversion: The itera-
tive procedure to obtain the MMN matrix A−1(f) =
[Φn(f);n = 1 . . . N ], based on the Molecular Motor Network
Model, geometrical properties, and the frequency f is pre-
sented here.

Definition 3. The network-independent coefficient pk(f) for
a non-terminal node k is defined as

pk(f) = sk(f)− 2V +
∑

m∈{0,1}

s2k+m(f) . (37)

Definition 4. The network-independent source-dependent co-
efficient qn,k for a non-terminal node k is defined as

qn,k = −
∑

m∈{0,1}

dn,2k+m . (38)

Corollary 1. The network-independent source-dependent co-
efficient qn,k is equal to the following

qn,k = −dbn2 c,k . (39)

Definition 5. The network-dependent coefficient p̂k(f) for a
non-terminal node k is defined recursively as

p̂k(f) = pk(f)−
∑

m∈{0,1}

g2k+m(f)ḡ2k+m(f)

p̂2k+m(f)
(40)

where g2k+m(f) and ḡ2k+m(f) are defined in (25).

Definition 6. The network-dependent coefficient q̂n,k for a
non-terminal node k is defined recursively as

q̂n,k = qn,k −
∑

m∈{0,1}

ḡ2k+m

p̂2k+m(f)
q̂n,2k+m (41)

where p̂2k+m(f) is defined in (40).

Theorem 1. The node responses in a MMN φn,b k2 c
(f) and

φn,k(f) are governed by the following equation

(42)φn,b k2 c
(f)gk(f) + φn,k(f)p̂k(f) = q̂n,k

Proof. (42) is proved by backward induction [2], starting from
the terminal nodes. Let k be a terminal node. Terminal nodes
have open children nodes, which are negligible. Therefore (40)

q̂n,k = qn,k and p̂k(f) = 0 for k. Hence, using the definitions
in (37) and (38), (27) becomes

φn,b k2 c
(f)gk(f) + φn,k(f)p̂k(f) = q̂n,k (43)

which proves (42) for the terminal node k. Let k be now a
non-terminal node. Let us assume that (42) holds true for its
two children nodes 2k +m with m ∈ {0, 1}, i.e.

φn,2k+m(f) =
q̂n,2k+m − φn,k(f)g2k+m(f)

p̂2k+m(f)
(44)

for m ∈ {0, 1}. Using the definitions (37) and (38), (28)
becomes∑

m∈{0,1}

(φn,2k+m(f)ḡ2k+m(f)) + φn,b k2 c
(f)gk(f)

+ φn,k(f)pk(f) = qn,k . (45)

Plugging (44) into the previous equation, the following is
obtained∑

m ∈{0,1}

((
q̂n,2k+m − φn,k(f)g2k+m(f)

p̂2k+m(f)

)
ḡ2k+m(f)

)
+ φn,b k2 c

(f)gk(f) + φn,k(f)pk(f) = qn,k .

(46)

Expanding the equation, and factorizing the terms with
φn,k(f), the following is obtained

φn,b k2 c
(f)gk(f)

+ φn,k(f)

pk(f)−
∑

m∈{0,1}

g2k+m(f)ḡ2k+m(f)

p̂2k+m(f)


=

qn,k − ∑
m∈{0,1}

ḡ2k+m(f)

p̂2k+m(f)
q̂n,2k+m

 . (47)

Finally, by using the definitions in (40) and (6) in the previous
equations, the following is obtained

(48)φn,b k2 c
(f)gk(f) + φn,k(f)p̂k(f) = q̂n,k

which the relationship (42) for the non-terminal node k, and
hence, by backward induction, for all nodes k, including the
root node k = 1 for which φn,b k2 c

= 0 due to the boundary
conditions.

Corollary 2. The root node response in a MMN φn,1(f) is
an expression of the network-dependent coefficient p̂1(f) and
the network-dependent source-dependent coefficient q̂n,1 as
follows

φn,1(f) =
q̂n,1
p̂1(f)

. (49)

Theorem 2. The node responses in a MMN φn,k(f) are
expressed as a function of the index of the transmitter node n,
the network topology, the molecular motor mobility, and the
network geometrical parameters. The expression is given in
(18) where k′ = blog2(k)c, and (40) and q̂n,k(f) and p̂k(f)
are defined in (40) and (6), respectively.

Proof. This theorem stems from the recursive relationship
defined in (44), and can be proven by reverse induction, as
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Fig. 5: Comparison between the closed-form channel proba-
bility of presence expression and Markov chain Monte-Carlo
simulations of the molecular motors motion.

it was done for Theorem 1. Using the recursive relationship,
a mathematical sequence can be defined with the root node
response in a MMN expressed in (18) as the first term of the
sequence.

IV. NUMERICAL RESULTS

A. Monte-Carlo Simulation

Fig. 5 compares the probability density function h(x, t) for
the presence of the molecular motor at position x and time t
with the histogram of the position of a molecular motor. The
simulation environment is based on the Markov Chain Monte-
Carlo [6] method, where a number of molecular motors Nm is
placed at the initial coordinate x = 0, and the motion of each
molecular motor is dictated by a coin toss according to the
transition diagram shown in Fig. 3. Depending on this random
outcome, the molecular motor either moves backward by a
distance −νdt, forward by a distance νdt, or remains in a still
position, where dt is the time increment of the simulation. The
coin tossing is repeated until the end of the desired simulation
time.

Finally, the probability of presence is estimated by evaluat-
ing the histogram of the positions of the Nm molecular motors,
with a spatial averaging distance dx, and compared with the
analytical solution of the Fokker-Planck equation. The closed-
form and simulated probabilities of presence match favorably.
We notice that contrary to diffusion transport, the noise seems
to reduce as the distance increases, and that the noise remains
very high compared with the high number of molecular motors
Nm on which the results have been averaged.

B. Link Responses in a Molecular Motor Network

As a numerical evaluation, a network topology with 8 nodes
has been simulated with the parameters listed in Table I, which
are homogeneous for all links.

Fig. 6: Evolution of the link response in a MMN within a
link separating two nodes. Molecular motors propagate in a
wave-like fashion with significant dispersion. In this evaluated
scenario, the signal travels over a 100 nm within one second.
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0

1
h3,1(x,t)
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t=1.60 s

0 25 50 75 100
x [nm]

h3,2(x,t)

0 25 50 75 100
x [nm]

h3,4(x,t)

Fig. 7: The link response in a MMN evolution within three
connected links at three different time steps t = 0.04 s, t =
0.82 s, and t = 1.60 s, with a transmission from the node
1. The signal is continuous in the bifurcation points but can
change drastically over one link. In this evaluated scenario, the
signal propagation is clearly favored towards the direction of
the drift, away from the root node, where the signal is heavily
attenuated.

Fig. 6 shows the probability density function h(x, t) for the
presence of the molecular motor at position x and time t in a
link separating two nodes. We observe that molecular motors
propagate in a wave-like fashion with significant dispersion.
In this scenario, the signal travels over a 100 nm within one
second.

Fig. 7 shows for the probability density functions hn,k(x, t)
for the presence of the molecular motor at position x and time
t within three connected links, at three different time steps t =
0.04 s, t = 0.82 s, and t = 1.60 s, with a transmission from
the node 3. The signal is continuous in the bifurcation points
but can change drastically over one link. In this scenario, the
signal propagation is clearly favored towards the direction of
the drift, away from the root node, where the signal is quickly
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TABLE I: Numerical values of the molecular motor model.

Parameter Value
Forward motion rate β+ 0.1 s−1

Backward motion rate β− 0.5 s−1

Detachment rate α 0.5 s−1

Absorption rate κ 5 ms−1

Speed νmax 0.1 µms−1

ATP concentration cATP 40 µM
ATP saturation constant KATP 79.23 µM
Number of molecular motors Nm 30,000
Spatial averaging distance dx 0.045 nm
Link length Lk 300 nm

attenuated.

C. Node Responses in a Molecular Motor Network

The node responses in a MMN have been numerically
evaluated, with a transmitter node at the first bifurcation in
Fig. 8 and a transmitter node at the second bifurcation in
Fig. 8. The gain of the node responses in a MMN is shown
in the left part of the figures Fig. 8a and Fig. 9a. The gain of
a node response is denoted by |φn,k(f)|.

The gain of a node response indicates how the signal
is attenuated between the transmitter node and the receiver
node. We notice in the figures that the gain almost follows a
power-law, since the gain is almost linear with respect to the
frequency in the log-scale. Also, the steepness of the gain of
the node responses increases as the receiver nodes is farther
from the transmitter node. In Fig. 8, the transmitter node is
far from the terminal nodes, which makes the molecular motor
less likely to irreversibly detach from the network. In Fig. 8,
the transmitter node is a terminal node, which highly increases
the attenuation of the signal. Also, some molecular motors
manage to travel to the parallel branch through backward
motion.

The group delay is denoted of a node is denoted τn,k(f),
which is defined as

τn,k(f) = − 1

2π

d6 φn,k(f)

df
(50)

where 6 φn,k(f) is the phase of the node response φn,k(f).
The group delay indicates how long a pulse centered around
a frequency f is delayed. It is desirable in a communication
system to have a constant group delay across the frequencies.
We see in Fig. 8b and Fig. 9b, that the group delay drops
sharply as the frequency increases. The largest group delay
distortion is suffered in the low frequencies. In addition,
the group delay is non-linear. This makes time distortion an
important challenge in MMC. We observe in both figures that
the further the receiver nodes are from the transmitter node,
the higher the peak group delay is.

It is clear that the boundary conditions and topology heavily
affect the performance of the network. The group delay of the
node responses in a MMN is shown in the right part of the
figures Fig. 8 and Fig. 9.

V. CONCLUSION

Molecular motor communication outperforms other classes
of molecular communication such as diffusion-based and flow-
based communication, which makes it a suitable candidate
for designing bio-inspired nanonetworks. In this paper, the
propagation of molecular motors along a complex molecular
motor nanonetwork (MMN) is predicted analytically based on
the location of the transmitter, the mobility properties of the
molecular motor, and the topology of the network. The MMN
is composed of nodes which can be transmitting, receiving,
or idle. The nodes are interconnected with links composed
of microtubules. The propagation modeling is solved in the
frequency domain. The node responses and link responses are
expressed analytically. It is found that the node response in a
MMN can be calculated independently of the space dimension,
and that the link response is expressed as a function of the two
node responses that delimit the link.

The purpose of the paper is to model the propagation
channel of molecular motors in a complex network topology
carrying a large molecular cargo. An example of such cargo
is mRNA which can carry a long sequence of information.
Compared with the existing work, the approach undertaken in
this paper is completely analytical which simplifies the study
of this system. This approach can also be used to study other
networks such as microfluidic channels with bifurcations.

The results have been validated by comparison with Monte-
Carlo simulations in the time domain. Using numerical eval-
uations of the model, it is shown that the position of the
transmitter node, the mobility properties and topology of the
MMN are all critical parameters that affect the node and
link responses. Also, it was observed that a transmitter node
not only affects the propagation in the children nodes, but
also the propagation in the parent nodes which goes against
the direction of propagation and in the parallel nodes. In
comparison with transmission line network for electromagnetic
propagation, MMNs are asymmetrical due to the propagation
direction bias of molecular motors. This model can enable
the study of other aspects of molecular motors such as
energy consumption, noise, information-theoretical capacity,
and modulation schemes.
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