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Abstract—Neuronal communication is a biological phe-
nomenon of the central nervous system that influences the activity
of all intra-body nano-networks. The implicit biocompatibility
and dimensional similarity of neurons with miniature devices
make their interaction a promising communication paradigm
for nano-networks. To understand the information transfer in
neuronal networks, there is a need to characterize the noise
sources and unreliability associated with different components of
the functional apposition between two cells – the synapse. In this
paper, we introduce analogies between the optical communication
system and neuronal communication system to apply results from
optical Poisson channels in deriving theoretical upper bounds
on the information capacity of both bipartite- and tripartite
synapses. The latter refer to the anatomical and functional inte-
gration of two communicating neurons and surrounding glia cells.
The efficacy of information transfer is analyzed under different
synaptic set-ups with progressive complexity, and is shown to
depend on the peak rate of the communicated spiking sequence
and neurotransmitter (spontaneous) release, neurotransmitter
propagation, and neurotransmitter binding. The results provided
serve as a progressive step in the evaluation of the performance
of neuronal nano-networks and the development of new artificial
nano-networks.

Index Terms—Synaptic Transmission, Poisson Channel, Chan-
nel Capacity, Neuronal Nano-Network, Intra-Body Communica-
tions.

I. INTRODUCTION

THE beauty of Shannon’s information theory is the gen-
erality that encompasses all communication and process-

ing systems regardless of whether the signals communicated
are digital or analog. This enables researchers to deploy
information theory to numerous fields, including the analysis
of biological communication systems such as the brain and
neuronal communication networks, where the signals involved
are analog.

Neurons are analyzed and involved by the ICT community
in the creation of artificial neural-like nano-networks for intra-
body communications [1]–[5]. They respond with stochastic
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Fig. 1. The classical information theory model and its equivalent in the
neuroscience. Figure adapted by authors from [7, Chapter 3].

action potentials (spiking sequences) that are further commu-
nicated over synapses which are often unreliable. Although
it is not clear whether this unreliability is a ‘bug’ or a
‘feature’ of neurons [6], the question that arises is: How
does one examine measurements to determine how close
to the limits the neuronal system is operating [7]? Here
comes another beauty of information theory and the ability
to transform the previous question to: How effectively does
the output represent the input? Henceforth, instead of finding
good measurement techniques in assessing effectiveness and
establishing performance limits, the key information-theoretic
quantities are used [8]. Fig. 1(a) shows the well-established
model underlying classical information theory [7], [8].

The available information-theoretic analysis are ubiqui-
tously applied to a single neuron to obtain theoretic quantities
on how much information a neuronal output/response carries
about the time-varying input/stimulus (see [7], [9]–[13], and
references therein). Unlike these analysis, we apply informa-
tion theory to a single synapse with an objective to quantify
how much information a receiving/post-synaptic neuron car-
ries about the transmitting/pre-synaptic neuron. The synaptic
channel capacity is investigated with particular emphasis since
the communication paradigms within a synapse and within
a single neuron are phenomenologically different. Namely,
the communication within a synapse in a neuron-to-neuron
communication channel means the molecular transmission
of particles (neurotransmitters) from the pre-synaptic terminal
to the post-synaptic terminal. The communication within a
neuron, however, means the electrochemical transmission of
ions, e.g., Na+, Ca2+, K+ and Cl− [14]. The information-
theoretic model for a single synapse is shown in Fig. 1(b).

Let us get back to the quantification on how much infor-
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mation the spiking sequence carries about the stimulus where
two methods are straightforward [10]. The first is the ‘direct’
method of calculating mutual information from the neuronal
response R by estimating its entropy, H(R), and neuronal
noise, H(R|S), i.e.,

I(R,S) = H(R)−H(R|S). (1)

In this method, the spike train noise is determined by repeating
a dynamic stimulus many times to get the response distribu-
tion under the same stimulus conditions. The second method
adds the assumption that the neuronal response amplitudes
have Gaussian probability distributions in the frequency do-
main, and computes an upper bound on mutual information
– capacity. These approaches, however, can be adopted to
the analysis of noisy and unreliable synapses. As an exam-
ple, if the capacity is estimated, one should assume i) the
post-synaptic response1 amplitudes have Gaussian probability
distribution in the frequency domain [15], ii) the stimulus
S is the mean post-synaptic response obtained from many
repetitions of identical stimulus conditions, and iii) the ac-
tual response R is the response on individual trials, which
equals the mean signal plus a noise term. With this approach,
one does not need knowledge on neuronal physiology and
information processing. It is enough to treat a channel as a
black box and apply tools from statistical estimation theory in
estimating the capacity from empirically recorded input and
output signals. This is unambiguously the advantage of this
approach. The disadvantage is, however, that one must collect
data to estimate theoretical limits. But, can we understand
neuronal compartments (peculiarly those forming the synapse)
as communication devices and bypass the need to record the
data?

1The post-synaptic response can be referred to as changes in the membrane
potential of the post-synaptic terminal that should not be confused with action
potentials, or to the current that causes changes in membrane potential.
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Fig. 2. Schematic diagram of the neuronal anatomy with bipartite and
tripartite synapses. Alike neurons, astrocytes can release glutamate into the
cleft in response to an increased activity of adjacent neurons, acting as
feedback units to the neuron.

The knowledge about the neuronal anatomy, physiology, and
the manner in which information is processed and communi-
cated at various stages in single neurons has accumulated [6],
[7], [16]. The main neuronal compartments with two possible
configurations forming the concepts of bipartite and tripartite
synapses are depicted in Fig. 2. The bipartite synapse is an
important component of the communication channel between
neurons. Specifically, it is the site of functional apposition
between two cells, where a transmitting pre-synaptic neu-
ron/terminal converts the spiking signal into neurotransmitter
molecules, that are released into the synaptic cleft to propa-
gate and bind to the AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate)
receptors2 located on the membrane of the receiving post-
synaptic neuron/terminal. When the astrocyte cell is in the
vicinity of the synapse, the concept of tripartite synapse is
introduced to underline the presence of the astrocytic terminal
in the vicinity of two neurons. An astrocyte is a particular
star-shaped type of neuroglia which fills the spaces between
neurons. Astrocytes cannot produce spikes and therefore were
not initially suspected as playing an important and active
role in neuronal communication. However, they are numerous,
accounting for over 70% of all cells in the central nervous
system (this number is specific for higher mammals), and are
now known to appreciably support neuronal functions and
intercellular coordination. The mechanisms behind tripartite
synapse and feedback provided from astrocytes are complex
and take into account several physiological processes. The
reader is referred to [17]–[20] for details.

Concerning the synaptic communication channel, the closest
related work is the work by Manwani and Koch [21] who
relied on neuronal hardware to look at the issue of information
transmission over unreliable synapses. They derived theoret-
ical lower bounds on the information capacity of a simple
model of the bipartite synapse under signal estimation and
signal detection paradigms. The first assumes the information
to be encoded in the mean spiking rate/intensity of the pre-
synaptic neuron, with the objective to estimate the continuous
input signal from the post-synaptic response. The second
observes the input as binary, and the presence or absence of
a pre-synaptic spike is to be detected from the post-synaptic
response.

As spoken of earlier, the ultimate goal of this paper is
to quantify how much information a receiving/post-synaptic
neuron carries about the transmitting/pre-synaptic neuron. This
quantification should provide a supplementary insight into
the efficacy of information transmission between neurons by
deriving theoretical upper bounds on the information capacity
of bipartite and tripartite synapses. To this end, we tackle
different system models and set-ups (relative to [21]) with
progressive complexity and analyze a noisy bipartite synapse
with: i) reliable vesicle3 release, ii) unreliable vesicle release

2In case the neuroplasticity (dynamic wiring of neurons) is not considered
(as in this study), it is common in neuroscience to analyze only AMPA
receptors since they mediate most of the synaptic excitation in the central
nervous system. Otherwise, NMDA receptors are also important.

3A vesicle is a small structure within a cell containing neurotransmitters
(see Fig. 2).
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with constant release probability, iii) unreliable vesicle release
with time-varying release probability, and iv) unreliable vesicle
release followed by an unreliable neurotransmitter propagation
and binding to the receiving neuron. Then, we extend analysis
to the concept of a noisy and unreliable tripartite synapse.
The findings and results shall be of primary importance in
understanding the performance of the neuronal communication
paradigm as a candidate for future nano-networks.

The remainder of this paper is organized as follows. Sec-
tion II defines a system model used for capacity computation.
Section III provides a brief introduction to the recognized
analogies between neuronal and optical communication sys-
tems vastly used throughout the paper. The theoretical upper
bounds on the capacity of a synapse under the five scenarios
defined above are derived in Section IV, and plotted in
Section V. An illustrative example of a realistic hippocampal
channel is considered in Section VI. Our concluding remarks
and notes on future work are given in Section VII.

II. SYSTEM MODEL

Given the stimuli θ(t) at the input of the pre-synaptic neuron
(refer to Fig. 2), which is typically a dendritic current, Id, or
somatic current, Is, the spike encoder generates a sequence
of action potentials encoding the information contained in the
stimulus. The simplest model of the spike train is the non-
homogeneous Poisson process [22] with rate depending on the
magnitude of the stimulus. However, the neuronal membrane is
refractory immediately after a spike, which leads to the firing
probability that depends not only on the stimulus but also on
the preceding spike train. As a consequence, the refractoriness
precludes two consecutive spikes to be independent and causes
the spike train to become more regular than a Poisson process
with the same firing rate [13]. Thus, a more theoretically
grounded way would be to modify the Poisson process to
include refractoriness. Albeit Berry and Meister [23] did that
way by defining the instantaneous firing rate as the product of
a free firing rate, which depends only on the stimulus, and a
recovery function, which depends only on the time since the
last spike, they proved the free firing to be a more fundamental
response measure if neurons use a “firing rate code” in which
the message lies in the instantaneous spiking. A refractory
period actually causes the modified rate to saturate and miss
out gradations in the stimulus. Motivated by this inference, we
practically neglect the refractoriness in the synaptic capacity
analysis; we believe that a spiking sequence v(t) described as
a non-homogeneous Poisson impulse process directed by the
intensity that is proportional to the stimulus, i.e., λ1(t) ∝ θ(t),
is adequate for derivation of upper bounds on information rates
in neuronal synapses. Thus,

v(t) =

N1(t)∑
n=1

δ(t− tn), (2)

where tn is the arbitrary spike generation time, and {N1(t) :
0 ≤ t ≤ T} is a non-homogeneous Poisson process whose
rate, λ1(t), is a temporal function, and

E[N1(t)] =

∫ t

0

λ1(u)du. (3)

The operator E[·] denotes expectation. The signal v(t) prop-
agates down the axon, a nerve fiber that conducts impulses
away from the neuron’s body (see Fig. 2), and reaches the
pre-synaptic terminal of the transmitting neuron.

Numerous physiological mechanisms [14], [17], [24] con-
vert the spiking sequence v(t) into a chemical form q(t)
generated by means of neurotransmitter release machinery.
• The release of neurotransmitters upon arrival of individ-

ual action potentials is modulated by the vesicle release
probability, Prel, driven by the intracellular calcium
concentration within the pre-synaptic terminal of the
transmitting neuron, [Ca2+]pre. For the tripartite synapse,
[Ca2+]pre is found from the Pinsky-Li-Rinzel model [19],
[20], [25], [26]. The relation between [Ca2+]pre and Prel
is found from the Bertram-Sherman-Stanley four-gate
model of the vesicle release process. The model contains
four independent gates (S1 – S4) with different opening
and closing rates, and with S4 closing most rapidly and
S1 closing most slowly, i.e., [27]

Prel(t) = O1(t)O2(t)O3(t)O4(t), (4)

where Ojs are the open gate probabilities associated with
gates Sjs, and

dOj(t)

dt
= k+

j [Ca2+]pre(t)−
Oj(t)

τj
, j = 1, 2, 3, 4. (5)

k+
j and k−j are opening and closing rates (ms−1×µM−1),

respectively: k+
1 = 3.75 × 10−3, k−1 = 4 × 10−4, k+

2 =
2.5× 10−3, k−2 = 1× 10−3, k+

3 = 5× 10−4, k−3 = 0.1,
k+

4 = 7.5× 10−3, k−4 = 10, and τj = 1/(k+
j [Ca2+]pre +

k−j ).
Owing to the property of splitting non-homogeneous
Poisson processes [28], we define the neurotransmitter
sequence that is injected into the synaptic cleft by the pre-
synaptic terminal as a non-homogeneous Poisson process
given as

q(t) =

N2(t)∑
n=1

qnδ(t− tn), (6)

where qn is the number of injected neurotransmitters at
the arbitrary time tn, {N2(t) : 0 ≤ t ≤ T} is a non-
homogeneous Poisson process, and

E[N2(t)] =

∫ t

0

Prel(u)λ1(u)du. (7)

There are two more sources of unreliability in the remaining
communication pathway between two neurons:
• The neurotransmitter propagation towards the post-

synaptic membrane is random and caused by the stochas-
tic nature of the Brownian motion of neurotransmitters in
a fluid medium of synaptic cleft. Based on the analogy
between the advection-diffusion equation and the Fokker-
Planck equation, Chahibi and Akyildiz [28] found a single
drug particle delivery in particulate drug delivery system
within the cardiovascular network to follow a Bernoulli
distribution. The advection-diffusion equation is based on
the generalized Taylor dispersion equation that governs
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the crosssectional concentration of particles. The Fokker-
Planck equation is the basis of the random motion of
particles. As the mentioned analogy is valid in fluid
synaptic cleft, a single neurotransmitter delivery (not
binding), described with the neurotransmitter propaga-
tion probability, Ps, should then also follow a Bernoulli
distribution.

• The neurotransmitter binding to the membrane of the
post-synaptic neuron is characterized by the ligand-
binding mechanism. The first time derivative of the
probability of having nb bound receptors among the
NR receptors, dPnb

/dt, is found to depend on three
terms: the probability Pnb−1 of having nb − 1 bound
chemical receptors and having a binding reaction, the
probability Pnb+1 of having nb + 1 bound chemical
receptors and having a release reaction, and the negative
of the probability Pnb

of having either a release reaction
or a binding reaction [29], i.e.,

dPnb
(t)

dt
= cR(t)k+(NR − nb + 1)Pnb−1(t)

+ k−(nb + 1)Pnb+1(t) (8)
− [k−nb + cR(t)k+(NR − nb)]Pnb

(t).

In (8), cR(t) is the neurotransmitter concentration, and
k+ and k− are the neurotransmitter binding and release
rates, respectively.
The binding of neurotransmitters to the AMPA and
NMDA described with the neurotransmitter binding
probability, Pb, similarly depends on the number of
receptors in an open state. Hence, we define the first
derivative of the probability Pb as

dPb(t)

dt
= cR(t)k+(NR − nb)Pb(t). (9)

In a simplified scenario, the neurotransmitter binding
probability, Pb, can be modeled to follow a Bernoulli
distribution.

III. SYNAPTIC POISSON CHANNEL

Given the system model in previous section, we motivate
with a principal analogy between the optical communication
system and synaptic communication system. This principal
analogy turns out to be essential to this study, as it enables the
calculation of the capacity of a Poisson-type synaptic channel,
using results derived for the optical communication channel.
The capacity of the optical communication channel was found
in [30]–[35].

The transmitter in the optical communication system is
a laser and is related to the pre-synaptic terminal in the
synaptic communication system. The channel in the optical
communication system is an optical fiber and is related to
the synaptic cleft in the synaptic communication system. The
receiver in the optical communication system is a photo-
detector and is related to the post-synaptic terminal in the
synaptic communication system. The analogy stems from the
following:
• At the transmitter in the optical communication system, a

laser emits a stream of photons with a time-varying rate

that is proportional to the amplitude of the input current.
It has been shown [36] that the emission of photons
corresponds to the point process, and the transmitted
beam fluctuations generated by a single-mode laser obey
Poisson statistics. Hereof, the sequence of photons is
typically modeled as a non-homogeneous Poisson point
process with a time-varying rate [36], [37].
The analogy between the emissions of photons and neu-
rotransmitters arises as the neurotransmitter sequence in-
jected into the synaptic cleft by the pre-synaptic terminal
can also be modeled as a non-homogeneous Poisson point
process (see (6)) [22], as justified in the previous section.

• The relation between channels is of less relevance, but
evident: the photon particles propagate through the fiber
in the optical communication system; the neurotransmit-
ter particles propagate/diffuse through the cleft in the
synaptic communication system.

• A stream of photons is received by a photo-detector
which is able to determine and count the arrival times of
individual photons. The expectation of the count varies as
the input signal that modulates the laser beam, plus the
effect of noise [36]. The noise is due to detector “dark
current” and background radiation, which is thought to
obey Poisson statistics.
The analogy between the receptions of photons and
neurotransmitters arises from the following. A stream of
neurotransmitters is received by AMPA and NMDA re-
ceptors at the post-synaptic terminal. AMPA and NMDA
receptors become conductive for Na+ and K+ ions lead-
ing to a change (increase) in post-synaptic membrane
potential known as an Excitatory Post-Synaptic Poten-
tial (EPSP). Multiple EPSPs that are generated by the
dendritic compartments of the receiving neuron sum up
constructing a membrane potential that may lead to an-
other spiking sequence4. As the photon counting process,
the neurotransmitter binding and influx of ions into the
receiving neuron varies as the input spiking sequence at
the pre-synaptic terminal, plus the effect of noise. The
noise here is due to spontaneous vesicle release, which
is also thought to obey Poisson statistics [20].

Applying Poissonian spiking statistics and channel results
in the capacity analysis of neurons has been done to quantify
how much information a neuronal response carries about the
time-varying stimulus [7, Chapter 3], [12], [13]. Although
the Poissonian nature of the synaptic channels has been
indicated every time the spiking sequence obeyed Poisson
statistics, to the best of our knowledge this is the first time the
analogies between the neuronal system and optical system are
introduced. Apparently, applying the optical Poisson channel
results to the capacity analysis of a neuronal synapse is done
for the first time in the literature.

IV. THE SYNAPTIC CHANNEL CAPACITY

The synaptic Poisson channel is an additive noise channel
with output Y = N + X , where N is the channel noise and

4With just one synapse and/or one incoming spiking sequence, the receiving
neuron is not capable of generating another spiking sequence.
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X is the transmitted signal into which the message θ(t) is
encoded. Both N and X are Poisson-type point processes. N
represents the noisy effect of spontaneous vesicle release and
is directed by the intensity λ′0(t) = Ps(t)Pb(t)λ0(t), where
λ0(t) is the intensity of spontaneous release at the pre-synaptic
terminal. X is directed by the spiking-dependent intensity
λ′1 (t, λ1(t, θ)) = Prel(t)Ps(t)Pb(t)λ1(t). Thus, the output Y
is also a Poisson-type point process directed by the intensity

λ2(t) = λ′0(t) + λ′1(t, λ1)

= Ps(t)Pb(t) [λ0(t) + Prel(t)λ1(t)] . (10)

Note that λ′0 and λ′1 stem from the property of splitting
non-homogeneous Poisson processes [28], and are valid only
when the neurotransmitter release, propagation and binding
processes are independent. We thoroughly consider this issue
in Section IV-D.

The rate of the spontaneous vesicle releases, λ0(t), that
can occur when the pre-synaptic membrane is not depolarized,
depends on the pre-synaptic calcium concentration [Ca2+]pre
as [20]

λ0(t) = a3

(
1 + e(a1−[Ca2+]pre(t))/a2

)−1

. (11)

The coefficients a1, a2 and a3 depend on the number of active
zones, which are the sites of neurotransmitter release.

Given λ1(t) = λ1, the pre-synaptic calcium concentration
is nontime-varying at the time instants of action potential
arrivals, [Ca2+]pre(t) = [Ca2+]pre. In other words, the envelope
of the concentration is nontime-varying, as we demonstrate
later in Section VI. This assumption implies from (11) that
λ0(t) = λ0 at the time instants of action potential arrivals.
This is applicable to the bipartite synapse where the pri-
mal contribution to the calcium concentration is due to the
action potentials arriving at the pre-synaptic terminal, i.e.,
[Ca2+]pre = [Ca2+]AP. For the tripartite synapse, the sponta-
neous vesicle release λ0(t) is time-varying, owing to additional
contribution to the calcium concentration due to the astrocytic
feedback (refer to [17]), i.e., [Ca2+]pre = [Ca2+]AP+[Ca2+]astro
(which produces the time-varying calcium concentration).

As mentioned earlier, we elaborate on the problem consid-
ering synapses with increasing complexity. For the sake of
clarity, we are not going to consider at first the uncertainties
induced by the particle propagation through the synaptic cleft
and the ligand-binding mechanism, i.e., Ps(t) and Pb(t) are
both unity. Under this simplification, the system models for
the bipartite- and tripartite synapses are

λ2(t) = λ0 + Prel(t)λ1, (12)

λ2(t) = λ0(t) + P̃rel(t)λ1, (13)

respectively. Relative to Prel(t) in (12), P̃rel(t) in (13) is
additionally affected by the astrocyte.

Throughout the paper, we analyze the information process-
ing limits subject to the rate amplitude constraint

λ2 ∈ [λ0, λ0 + Λ], (14)

where Λ is the maximum spiking rate at the input, and an
average energy constraint

E

[∫ T

0

λ2(t)dt

]
≤ (Λ0 + λ0)T, (15)

where Λ0 is an arbitrary spiking rate, 0 ≤ Λ0 ≤ Λ. The peak
constraint given in (14) is associated with neuron’s inability to
fire with the rate higher than that physiologically determined
as the neuronal membrane has an upper rate at which it
can depolarize [16]. The maximum spiking rate varies among
neuron types; refer to [38] for electrophysiological values of
maximum firing rates across neuron types. The average energy
constraint in (15) is directly associated with metabolically
expensive neuron’s signaling, as analysis of synaptic signaling
confirmed that the nervous system use much energy to generate
and communicate signals [39]. The resting metabolic energy
thus naturally constraints the flow of information between
synapses and limits neuronal performance and neuronal con-
sumption.

A. Noisy and Reliable Vesicle Release

At the outset, let us begin with a special and simple case:
the bipartite synapse with a vesicle release that is noisy –
spontaneous vesicle releases occur without neuronal spiking,
but reliable – vesicle releases follow the arrival of individual
spikes to the pre-synaptic terminal. Hence, the vesicle release
probability Prel → 1, and from (12) the output of the
channel is a non-homogeneous Poisson process directed by
the intensity λ2(t) → λ0 + λ1(t). This means the channel
output is only a noisy version of the channel input.

The optical counterpart of this problem is known in the
literature; see the work by M. Davis [31]. At this point, we
refer to fundamental analogies provided in Section III, and
associate the upper bound for the synaptic Poisson channel
capacity with the upper bound for the optical Poisson channel
capacity. The analogy allows us to omit detailed derivation.
When adapted to the synaptic Poisson channel, the upper
bound is given as [35]

C(a)
UB = max

0≤µ≤σ
[µφ(Λ)− φ(µΛ)] , (16)

where φ(x) = (λ0 + x) ln(λ0 + x) − λ0 lnλ0, µ is the
probability of the channel input taking the value Λ, and σ
is the ratio of average-to-peak power, 0 ≤ σ ≤ 1. Eq. (16) is
maximized for

µ(a)
max =

λ0

Λ

[
1

e

(
1 +

Λ

λ0

)(1+λ0/Λ)

− 1

]
, (17)

whence the upper bound on the capacity for the bipartite
synaptic Poisson channel with reliable vesicle release is cal-
culated as [31]

C(a)
UB =


µφ(Λ)− φ(µΛ), µ < µ

(a)
max,

λ0

e

(
1 +

Λ

λ0

)(1+λ0/Λ)

−

λ0 ln

[(
1 + Λ

λ0

)(1+λ0/Λ)
]
, µ ≥ µ(a)

max.

(18)
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C(b)
UB =


µφ(prelΛ)− φ(µprelΛ), µ < µ

(b)
max,

λ0

e

(
1 +

prelΛ

λ0

)(1+(prelΛ)−1λ0)
− λ0 ln

[(
1 +

prelΛ

λ0

)(1+(prelΛ)−1λ0)
]
, µ ≥ µ(b)

max,
(24)

This result resembles the capacity of a single neuron cell
described with a Poisson channel [7, Chapter 3], where the
noise effects come from spontaneous spike generation. In case
randomness in the synapse is involved, the data processing
inequality [8] suggests the channel capacity must be less than
or equal to (18).

B. Noisy and Unreliable Vesicle Release with Constant Re-
lease Probability

If the synaptic channel output is directed by the intensity

λ2(t) = λ0 + Prel(t)λ1(t), (19)

where Prel(t) ∈ [0, 1], we can adapt the approach taken by
Chakraborty and Narayan in the analysis of the optical Poisson
fading channel [35], where the output rate is

λ2(t) = λ0 + S(t)λ1(t), (20)

with S(t) representing the channel fade, and λ0 the effect of
“dark current” and background radiation in optical communi-
cation channel. The probability Prel(t) in (19) corresponds to
the channel fade S(t) in (20).

In this subsection, we derive the channel capacity for a
noisy and unreliable bipartite synapse where vesicle releases
follow the arrival of individual spikes to the pre-synaptic
terminal with constant release probability. This problem can be
associated with the scenario in optical communication system
when channel fade in (20) is constant, i.e., S(t) = s, and the
receiver possess perfect channel state information (CSI) while
the transmitter has no CSI. The assumption of known CSI
is pivotal for the mathematical tractability. Note that the best
solution to this problem would be to derive the upper bound
on information rate when neither the pre- and post-synaptic
terminal would have the CSI. However, the unknown close-
form bound without CSI at present is of primary importance
in future research efforts since this will help in finding more
exact capacity bounds for neuronal synapses. Furthermore, we
prefer the case with known CSI at the post-synaptic side and
no CSI at the pre-synaptic side over the case with perfect CSI
at both the pre- and post-synaptic terminals, as the former is
likely to be the tightest upper bound. Under these assumptions,
the corresponding channel capacity is found as [35]

C = max
0≤µ≤σ

[µφ(sΛ)− φ(µsΛ)] , (21)

where µ is the probability of the channel input taking the value
Λ, σ is the ratio of average-to-peak power, 0 ≤ σ ≤ 1, and s
is the channel fade.

Unlike the problem of capacity calculation for Poisson
channels [30], [31], capacity calculation for Poisson fading
channels has to account for the output rate that is not only
a noisy, but also a diluted (scaled) version of the input rate.

Nonetheless, we found the problem of maximization given by
(21) for Poisson fading channel to be equivalent to the problem
of maximization for Poisson channel defined by Y. Kabanov
as [30]

C = max
0<λ<Λ

[
λ

Λ
φ(Λ)− φ(λ)

]
, (22)

where λ ∈ [0,Λ] denotes the input rate. By comparing (21)
and (22),

µ ≡ λ/Λ and sΛ ≡ Λ. (23)

Hence, as long as the receiver has the CSI as advocated
in [35], the scaling of the output rate does not impose principal
changes to the method of maximization described by Kabanov.

Following this important inference and Section III, we de-
fine the upper bound on the capacity for the bipartite synaptic
Poisson channel with constant vesicle release probability as
given by (24), where µ

(b)
max is obtained by maximizing (21)

with s = prel, i.e.,

µ(b)
max =

λ0

prelΛ

[
1

e

(
1 +

prelΛ

λ0

)(1+(prelΛ)−1λ0)
− 1

]
. (25)

C. Noisy and Unreliable Vesicle Release with Time-Varying
Release Probability

If the probabilities from the previous scenario are time-
varying, i.e., S in (20) is a random variable, and the receiver
possesses perfect CSI while the transmitter has no CSI, the
corresponding optical channel capacity is found similarly
(refer to (21)). The maximum of the averaged conditional
mutual information is then given as [35]

C = max
0≤µ≤σ

E [µφ(SΛ)− φ(µSΛ)] , (26)

where the expectation is taken over the distribution of random
variable S, and µ is the probability of the channel input taking
the value Λ, σ is the ratio of average-to-peak power, 0 ≤ σ ≤
1, and S is the channel fade.

Considering the vesicle release probability Prel in synaptic
communication system is time-varying, as defined by (4), the
upper bound on the capacity for the bipartite synaptic Poisson
channel with time-varying vesicle release probability is

C(c)
UB = max

0≤µ≤σ
E [µφ(PrelΛ)− φ(µPrelΛ)] , (27)

where the expectation is taken over the distribution of the
random variable Prel.

D. Noisy and Unreliable Bipartite Synapse

The most complex and realistic scenario has the added
effects of unreliability incurred by the neurotransmitter prop-
agation through the synaptic cleft and the ligand-binding
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mechanism. The output rate of the Poisson channel is then
directed by the intensity

λ2(t) = Ps(t)Pb(t) [λ0 + Prel(t)λ1(t)] . (28)

The effect of spontaneous vesicle release Ps(t)Pb(t)λ0 and
the probability product Prel(t)Ps(t)Pb(t) in (28) now corre-
spond to the “dark current” λ0 and the channel fade S(t) in
(20), respectively. Nevertheless, the problem of calculating the
channel capacity for a noisy and unreliable bipartite synapse
is not equivalent to the problem of calculating the capacity
for the optical Poisson fading channel, where the output rate
is given by (20).

Namely, the assumption in Section IV-B is that the noise
(λ0) and signal sources (λ′1 = Prel(t)λ1) are independent and
thus uncorrelated (refer to (19)). If X = λ0 and Y = λ′1,
then Cov[X,Y ] = 0, i.e., E[XY ] = E[X]E[Y ]. In the current
scenario where the system model is described with (28), the
multiplicative term Ps(t)Pb(t) is associated with the intensity
of both the noise and the signal sources. As described in Sec-
tion II, the neurotransmitter propagation probability Ps follows
a Bernoulli distribution, i.e., Ps = ps for a given synapse, and
is connected to the diffusion and neurotransmitters being lost
in the cleft. This is independent on both signal and noise,
regardless the quantity of the particles. The neurotransmitter
binding probability Pb is though random and time varying,
and is connected to the ligand-binding mechanism. Now,
if X = λ0, Y = λ′0 and Z = psPb, we consider the
uncorrelatedness of the variables U = XZ = psPbλ0 and V =
Y Z = psPbλ

′
1 (see (28)). We assume the variables X,Y, Z

are pairwise uncorrelated (Cov[X,Y ] = 0, Cov[X,Z] = 0
and Cov[Y, Z] = 0), although not pairwise independent as
Pb depends on the neurotransmitter concentration at the post-
synaptic side as given by (9), where the neurotransmitter
concentration is dependent on the input signal λ1. Under these
assumptions5

Cov[U, V ] = Cov[XZ, Y Z] = E[X]E[Y ]Var[Z] ≥ 0.

Hence, the right hand side is zero when Var[Z] = 0, i.e.,
the ligand-binding mechanism is either ideal or the neuro-
transmitter binding probability follows a Bernoulli distribution,
i.e., Pb = pb for a given synapse6. Only then the variables
U = XZ and V = Y Z are uncorrelated and the problem
of calculating the channel capacity for a noisy and unreliable
bipartite synapse is equivalent to the problem of calculating
the capacity for the optical Poisson fading channel, where the
output rate is given by (20). Otherwise, the computation of
the capacity remains an issue.

With the simplified amendment that both the neurotransmit-
ter propagation and binding follow a Bernoulli distribution,
the upper bound on the capacity for the bipartite synaptic
Poisson channel with constant vesicle release probability,
C(d′)
UB , follows similarly from (24). The upper bound on the

5We use result of Cov[AB,CD], where A, B, C and D are jointly
distributed random variables, and the conventional asymptotic approximation
procedure from [40, page 232]. Given A = X , B = Z, C = Y and D = Z
that are pairwise uncorrelated we yield the result presented.

6We are not interested in scenarios when E[X] = E[λ0] = 0 and/or
E[Y ] = E[Prelλ1] = 0.

capacity for the bipartite synaptic Poisson channel with time-
varying vesicle release probability, C(d′′)

UB , follows similarly
from (27).

E. Noisy and Unreliable Tripartite Synapse

In the set-up with the astocytic feedback to the pre-synaptic
terminal, the spontaneous vesicle release is time-varying,
λ0(t), as mentioned earlier. To compute the capacity for
the tripartite synapse, we adapt the result provided by Frey
[32] who considered the information capacity of the Poisson
channel with random noise intensity in optical channels.

Hence, the upper bound on the capacity for the tripartite
synaptic Poisson channel with constant vesicle release proba-
bility is given as

C(e′)
UB =

1

T

∫ T

0

C(d′)
UB (λ,Λ, µ)dt. (29)

The upper bound on the capacity for the tripartite synaptic
Poisson channel with time-varying vesicle release probability
is given as

C(e′′)
UB =

1

T

∫ T

0

C(d′′)
UB (λ,Λ, µ)dt. (30)

The capacities C(d′)
UB and C(d′)

UB are defined in previous subsec-
tion for the case when both the neurotransmitter propagation
and binding follow a Bernoulli distribution. The results from
(29) and (30) are proved by the proof of Theorem 1 given
in [32] by making changes analogous to those made by Davis
in Kabanov’s proof [31].

V. ANALYTICAL EXAMPLES

The best way to test the credibility of theoretical models
would be to estimate the rates from experimental data and then
compare results. To this end, we must collect data to estimate
experimental information limits, which is a challenging task
as we discussed in the Introduction. Instead, we provide a
graphical evaluation of the closed-form expressions for the
information capacity bounds derived in Sections IV-A, IV-B
and IV-C. The provided numbers depend on selection of
parameters (λ0 and prel) that are cell-type specific.

The upper bound on information rate from (18) for bipartite
synaptic Poisson channel with reliable vesicle release consid-
ered in Section IV-A is plotted in Fig. 3 given various rates λ0.
As observed, the information capacity is higher for less noisy
synapses. Given λ0 = 0.1 [s−1], the information rate goes up
to 36.5 [bit/s] and saturates for peak spiking rates higher than
37 [spike/s]. For lower peak spiking rates, the information rate
rises exponentially. Conversely, for very noisy synapses, the
maximum information capacity is lower, e.g., given λ0 = 20
[s−1], the capacity reduces to 20 [bit/s], but becomes less
sensitive as λ0 increases.

The upper bound on the information rate for an unreliable
(constant prel) and noisy bipartite synapse considered in
Section IV-B is plotted in Fig. 4 given various rates λ0 and
vesicle release probability prel = 0.4, and in Fig. 5 given
various probabilities prel and rate λ0 = 10 [s−1]. Relative
to Fig. 3, the information rates in Fig. 4 are lower. From
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Fig. 3. The upper bound on information rate as a function of the peak spiking
rate Λ given various rates λ0 for a synapse with reliable vesicle release,
prel = 1. Vertical line segments show boundaries Λ× µ(a)max.

Fig. 4, given λ0 = 0.1 [s−1], the information rate goes up
to 22 [bit/s] and saturates for peak spiking rates higher than
37 [spike/s]. For lower peak spiking rates, the information rate
rises exponentially. As in Fig. 3, for very noisy synapses, the
maximum information capacity is lower, e.g., given λ0 = 20
[s−1], the capacity drops bellow 10 [bit/s], but becomes less
sensitive as λ0 increases. Ultimately, as shown in Fig. 5,
intuitively higher information rates are observed for higher
prel values. With prel = 1, the information capacity coincides
with the capacity in (18).

The upper bound on the information rate for an unreliable
and noisy bipartite synapse considered in Section IV-C is
plotted in Fig. 6 by assuming the probability of the vesicle
release Prel follows a beta distribution with shaping parame-
ters α = 2, β = 5 (shown in the inset). We select beta density
function after considering Fig. 2b from [41]. This result is
essential for evaluation of the capacity upper bounds for
unreliable synapses with time-varying vesicle release. Given
λ0 = 1 [s−1], the information rate goes up to 9 [bit/s] and
saturates for peak spiking rates higher than 40 [spike/s].

Albeit Manwani and Koch derived theoretical lower bounds
on the information capacity of a simple model of the bipartite
synapse [21], it is not instructive to compare the results as the
underlying system models are different.

VI. SIMULATION EXAMPLE

In this example, we simulate a hippocampal synapse to
record the signals transmitted, as well as other ionic and
numerical quantities, from which we can learn about the
synaptic behavior and extract parameters requisite for capacity
computation. The primary aim is to identify real set-up with
some of the analysis in Section IV, and then practically gain
insight into the theoretical information capacity bounds. To
this end, we develop the simulator based on the validated
models from computational neuroscience:

1) Pinsky-Rinzel model [19], [25] - The model is a 2-
compartment reduction of the complex 19-compartment
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Fig. 4. The upper bound on information rate as a function of the peak spiking
rate Λ given various rates λ0 for an unreliable synapse, prel = 0.4. Vertical
line segments show boundaries Λ× µ(b)max.
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Fig. 5. The upper bound on information rate as a function of the peak spiking
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cable model by Traub [42]. The model is shown to be
able to describe experimental observations on neuronal
behaviour, and is used in our study for current and po-
tential dynamics of the pre-synaptic hippocampal neuron;

2) Li-Rinzel model [19], [20], [26] - The model is able to
describe experimental observations on synaptic behaviour
when the astrocyte is connected to the synapse, and is
used to quantify the feedback from the astrocyte to the
pre-synaptic terminal;

3) Bertram-Sherman-Stanley model [27] - The model is used
to describe the process of neurotransmitter release that is
based on the finding that release can be gated during the
opening of individual Ca2+ channels. In this four-gate
model, all gates must be activated for release to occur;

4) Wang-Buzsaki model [43] - The model is used for current
and potential dynamics of the post-synaptic neuron.
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Fig. 7. Simulation time Ts = 10 [s]; (a) A realization of the spiking sequence (blue) with rate λ1 = 35.2 [spike/s] (spiking threshold is set to 30 mV) at
the pre-synaptic neuron given the amplitude of stimulus somatic current Is = 1.5 [µA/cm2]; Corresponding current response (orange) at the post-synaptic
neuron. (b) A realization of the spiking sequence and post-synaptic current response in t ∈ [9000, 10000] ms; this plot visualizes the regular patterns of
spiking bursts that are not visible in (a). (c) Vesicle release probability at the pre-synaptic neuron.
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Fig. 8. The upper bound on the capacity for the realistic bipartite synapse
with Prel ≈ 0.078 and λ0 = 1.44 s−1.

The simulation framework is implemented in Julia [44] – an
open-source high-level dynamic programming language that

provides high performance of utilized computational models
of neurons.

Referring back to Section IV that provides expressions
to calculate the upper bounds on the information capacity
under different set-ups, one needs to estimate the effect of
spontaneous vesicle release, λ0, and probabilities Prel, Ps and
Pb. With a simulator based on the models provided above, we
are though not able to extract the neurotransmitter propagation
and neurotransmitter binding probabilities required in Sections
IV-D and IV-E. This limitation can potentially be overcome
with additional computational models that unlike the ones used
in the simulation framework treat the diffusive propagation of
particles and the ligand-binding mechanism. Instead, we will
try to identify simulated scenarios with their simplifications
where Ps and Pb are not involved.

A. Realistic Bipartite Synapse
For the bipartite synapse, the intracellular calcium concen-

tration can be approximated as constant at the time instants
of action potential arrivals (the envelope of the concentra-
tion is constant), as demonstrated later in Fig. 9(b). Thus,
λ0(t) = λ0, and is estimated from (11), where a1 = 7181 µM,
a2 = 606 µM, and a3 = 100 ms−1 [20].

To determine the vesicle release probability, Prel, a detailed
inspection is required. In general, the vesicle release probabil-
ity is calculated from (4) as a time-varying temporal function.
Nonetheless, this may not strictly apply to all bipartite set-
ups. Namely, Fig. 7 illustrates the scenario when the bipartite
synapse is stimulated with the somatic current Is = 1.5
[µA/cm2], leading to approximately constant vesicle release
probability observed after arrivals of action potentials (see
Fig. 7(c)). In realistic scenarios, the vesicle release probability
has a small value – in the simulated scenario, Prel ≈ 0.078.

Albeit not plotted in Fig. 7, the intracellular calcium con-
centration is approximately constant after arrivals of action
potentials, and [Ca2+]pre = [Ca2+]AP = 427 µM, which lead
to λ0 = 1.44 s−1. With requisite parameters estimated, the
upper bound on the capacity for the simulated bipartite synapse
is computed with (24), and plotted in Fig. 8 as a function of
the peak spiking rate. Thereby, the simulated bipartite synapse
limits the information rate to 1.6 [bit/s].
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Fig. 9. Amplitude of stimulus somatic current Is = 2 [µA/cm2]; simulation time Ts = 10 [s]; time window presented Tw = 1 [s]. (a) A realization of the
spiking sequence (blue) with rate λ1 = 46.6 [spike/s] at the pre-synaptic neuron; Corresponding current response (orange) at the post-synaptic neuron. (b)
The intracellular calcium concentration at the pre-synaptic terminal. (c) Vesicle release probability at the pre-synaptic neuron with notable modulation from
the spiking bursts.
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Fig. 10. Amplitude of stimulus somatic current Is = 0.7 [µA/cm2]; simulation time Ts = 10 [s]. (a) A realization of the spiking sequence (blue) with rate
λ1 = 4 [spike/s] at the pre-synaptic neuron; Corresponding current response (orange) at the post-synaptic neuron. (b) The intracellular calcium concentration at
the pre-synaptic terminal with notable modulation from the astrocytic activity. (c) Vesicle release probability at the pre-synaptic neuron with notable modulation
from the astrocytic activity.

In addition, we infer that an arbitrary realistic bipartite
set-up can also be approximated with scenario considered in
Section IV-B where (24) is used to define the upper bound on
the information capacity when the stimulus is within a certain
range – for hippocampal neurons we determine empirically
that the somatic current is within the range [0, 1.5] [µA/cm2].

On the other hand, when the stimulus is strong (Is > 1.5
[µA/cm2]), as in the scenario presented in Fig. 9, the vesicle
release probability is not constant after arrivals of spikes due
to the spiking bursts that appear. Thereby, an arbitrary realistic
bipartite set-up corresponds to the scenario considered in
Section IV-C where (27) is used to define the upper bound on
the information capacity when the stimulus is strong (Is > 1.5
[µA/cm2]). Note that (27) requires the probability distribution
of Prel.

B. Realistic Tripartite Synapse

For the tripartite synapse, the envelope of the intracellular
calcium concentration is time-varying due to the astrocytic
contribution. This is shown in Fig. 10 where the tripartite
synapse is stimulated with the somatic current Is = 0.7
[µA/cm2], leading also to the time-varying vesicle release
probability observed after arrivals of action potentials (see
Fig. 10(c)). The upper bound on the information capacity

for the tripartite synapse is thus computed from simplified
versions of (29) and (30) (the effects of Ps and Pb are
neglected) regardless the intensity of the stimulus.

Note, however, that the feedback from astrocytic activity
to the intracellular calcium concentration can be insignificant
in some intervals disguising the change in the vesicle release
probability Prel. As many things around neurons, the modu-
lation of the probability Prel due to the astrocyte is stochastic
in nature.

VII. CONCLUSION AND FUTURE WORK

The neuronal nano-network is developed by the evolu-
tion’s guidelines and is the most fascinating, complex, and
advanced intra-body nano-network that effectively coordinates
and influences the activity of all voluntary and involuntary
operations in the body. The way information theory char-
acterizes the neuronal channels and their ability to convey
neurotransmitters that encode the information, despite the
disturbances introduced, is very interesting to neuroscience
and ICT community that develops neural-like nano-networks.
Unlike previous contributions, in this study we have provided
the capacity upper bounds of synaptic transmission between
two neurons.
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Specifically, we have first identified the synaptic transmis-
sion channel with optical communication channel, indicating
all the relevant analogies. Then, we have considered different
set-ups with progressive complexity, that are, however, found
in the brain, to provide the capacity upper bounds of noisy
bipartite and tripartite synapses. The effects of uncertainties
confined to the neurotransmitter release, transmission, and
binding have been modeled. Analytical evaluations of the
closed-form expressions for the information capacity bounds
have been derived for the noisy bipartite synapse with reliable
vesicle release, and noisy bipartite synapse with unreliable
vesicle release with constant and time-varying release prob-
abilities. The results show that a few tenths of bits per
second can possibly be achieved, depending on the noise and
reliability levels in the synapse. Conversely, if the probabilities
associated with unreliability along the remaining communica-
tion pathway between neurons undergo distribution other than
Bernoulli’s, the closed-form formulas for the upper bound on
the information channel capacity remain unknown.

Moreover, realistic synapses have been simulated using a
developed simulator to record quantities that are indicating
synaptic nature and are required for the information capacity
evaluation. The simulated hippocampal bipartite synapse is
shown to convey up to 1.6 [bit/s]. Also, for the simulated
tripartite synapse we extracted the quantities that suggest the
way the information capacity should be computed.

Eventually, to find more exact capacity bounds for neuronal
synapses, it is of primary importance to determine close-
form bounds without CSI in general future research efforts.
As a future work, we aim at discovering the information
flow achievable by the whole neuron. To this end, we must
consider the capacity of several synapses constituted by two
observed neurons (and the astrocyte) that lead to spiking at the
post-synaptic neuron. The evaluation of the multiple-synapse
capacity requests a new system model with encompassed
role of the multiple-access interference that has not been
considered in this paper. Moreover, we indicate a verification
of theoretical results derived in this study using experimental
simulations and real data.
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