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Abstract—Scheduling is one of the most important resource

allocation for networked systems. Conventional scheduling poli-

cies are primarily developed under light-tailed (LT) traffic

assumptions. However, recent empirical studies show that heavy-

tailed (HT) traffic flows have emerged in a variety of networked

systems, such as cellular networks, the Internet, and data centers.

The highly bursty nature of HT traffic fundamentally challenges

the applicability of the conventional scheduling policies. This

paper aims to develop novel throughput-optimal scheduling

algorithms under hybrid HT and LT traffic flows, where classic

optimal policies (e.g., maximum-weight/backpressure schemes),

developed under LT assumption, are not throughput-optimal

anymore. To counter this problem, a delay-based maximum-

weight scheduling policy with the last-in first-out (LIFO) service

discipline, namely LIFO-DMWS, is proposed with the proved

throughput optimality under hybrid HT and LT traffic. The

throughput optimality of LIFO-DMWS gives that a networked

system can support the largest set of incoming traffic flows,

while guaranteeing bounded queueing delay to each queue, no

matter the queue has HT or LT traffic arrival. Specifically,

by exploiting asymptotic queueing analysis, LIFO-DMWS is

proved to achieve throughout optimality without requiring any

knowledge of traffic statistic information (e.g., the tailness or

burstiness of traffic flows). Simulation results validate the derived

theories and confirm that LIFO-DMWS achieves bounded delay

for all flows under challenging HT environments.

I. INTRODUCTION

Because of the emerging multimedia, data center, and the In-

ternet applications over mobile devices, network traffic in both

radio access networks and wired core networks has tremen-

dously grown in past few years while the network capacity

is rather limited. To address such a challenge, throughput-

optimal scheduling is highly demanding, which determines

the optimal transmission time for traffic flows, supports the

largest set of traffic rates, and maintains the desired network

stability. As being an important class of throughput-optimal

scheduling, the maximum-weight scheduling (MWS) policy

and many of its variants [1] are of great interests. On one

hand, MWS policy can achieve throughput optimality without

requiring any knowledge of the statistic information of arrival

traffic flows and time-varying channel conditions. On the other

hand, MWS policy has shown its throughput optimality in

a variety of network settings, such as the Internet, cellular

networks, WiFi networks, satellite networks, ad-hoc and sensor

networks, and high-performance computing clusters.

Generally developed under the assumption of light-tailed

(LT) traffic flows (e.g., Markovian or Poisson traffic), the

celebrated MWS policies achieve strong stability for LT flows,

which guarantees that each flow has bounded average queueing

delay [2] whenever the incoming traffic rates are within the

network stability region. However, this LT assumption has

large discrepancy from recent large-scale empirical studies,

which show the emergence of heavy-tailed (HT) traffic in a

variety of networked systems, such as WLAN [3], mobile

ad-hoc networks [4], cellular networks [5], and data center

networks [6]. Such HT traffic is mainly caused by the inherent

heavy-tailed distribution in traffic sources (e.g., the file size on

the Internet servers, the message size on cellular base stations,

the flow length of data centers, and the frame length of VBR

video streams [7]).

Different from conventional LT traffic, HT traffic exhibits

high burstiness or dependence over a long range of time scale.

Such a highly bursty nature can induce significant degradation

in network stability [8], thus having a destructive impact on the

throughput optimality of scheduling policies. In particular, it is

proved that the celebrated MWS policies are not throughput-

optimal anymore in the presence of HT traffic flows because

MWS can lead to unbounded average queueing delay even if

the arrival traffic rates are within network capacity region [8].

Such surprising phenomenon attributes to the fact that the

queues with HT traffic arrivals (HT queues) inherently experi-

ence heavy-tail distributed queueing delay, which implies that

HT queues have much higher chance to experience very large

queueing delay, compared with the queues with LT arrivals

(LT queues). As a result, based on MWS policies [8], [9], HT

queues will receive much more service opportunities, while LT

queues are starved for scheduling service and their queueing

delay can be of unbounded mean. To counter such chal-

lenges, maximum power weight scheduling policies (MPWS)

are investigated recently [10], [11], which make scheduling

decisions based on queue backlog raised up to the α-th power,

where α is determined by the burstiness or heavy tailness of

traffic flows. Intuitively, by properly selecting α to allocate

more service opportunities to LT queues, MPWS can guarantee

that all LT queues experience bounded average queueing delay,

completely shielding those LT queues from the destructive

impact of HT traffic. Despite such promising feature, MPWS

cannot ensure the delay boundness of the HT queues and thus

is still not a throughput-optimal scheduling policy. Moreover,
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MPWS policy requires the statistical information (i.e., tailness

or burstiness of arrival flows), which is difficult to estimate.

To counter above challenges, in this paper, we propose a

delay-based maximum-weight scheduling policy with LIFO

service discipline (LIFO-DMWS) and prove its throughput op-

timality in the presence of HT traffic. Specifically, rather than

adopting queue backlog as link weight, we focus on delay-

based scheduling, which exploits the head-of-line (HoL) delay

metric in inter-queue scheduling decisions (i.e., determining

the serving order for the packets from different queues).

Moreover, instead of using the classic FIFO service discipline,

we exploit LIFO service discipline for intra-queue scheduling

(i.e., determining the serving order for the packets within

each queue). Furthermore, by exploiting asymptotic queueing

delay analysis along with moment theory, we prove that LIFO-

DMWS is throughput-optimal with respect to strong stability

in the presence of heavy tails. That is, we show that with

LIFO-DMWS, no matter the incoming traffic flows are HT or

LT, all queues will experience bounded average queueing delay

as long as the incoming traffic rates are within the network

capacity region. Such a throughput optimality feature is of

great importance, since it prevents the QoS performance of

LT traffic from being significantly degraded by the bursty HT

traffic. Simulation results confirm the throughput optimality of

LIFO-DMWS and show that LIFO-DMWS brings consider-

able delay reduction as compared to classic maximum-weight

scheduling policies [12]. To the best of our knowledge, this

work is the first throughput-optimal scheduling for bounded

delay with emerging HT traffic.

The rest of the paper is organized as follows. Section II

introduces the system model and preliminaries. Section III

proposes the LIFO-DMWS policy for system stabilization with

hybrid HT and LT traffic. Section IV presents the performance

evaluation and Section V concludes the paper.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider a multi-queue single-server queueing system,

where F queues share a single server. Such a queueing system

can be used to model downlink/uplink scheduling in cellular or

WiFi networks, where multiple users compete a single wireless

channel or a set of wireless channels.

We consider a time-slotted system. A traffic flow f ∈
{1, . . . , F} is a discrete-time stochastic arrival process

{Af (t); t ∈ Z+}, which represents the total number of packets

that arrive at a queue at the beginning of the time slot t and

is independent and identically distributed from time slot to

time slot. The arrival processes or traffic flows are mutually

independent. Let λf = E[Af (0)] > 0 be the rate of traffic

flow f and λ = (λ1, . . . , λF ) be the rate vector.

Let stochastic processes {Qf(t); t ∈ Z+} and {Df(t); t ∈
Z+} be the number of packets and the queueing delay,

respectively, in queue f at the beginning of time slot t. Q(t) =
(Q1(t), . . . , QF (t)) captures the queue backlog at time slot t,
and its initial state Q(0) can be an arbitrary element of Z

F
+.

Moreover, not all traffic flows can be served simultaneously

due to wireless interference. Accordingly, a set of flows that

can be served simultaneously is called a feasible schedule. In

our network model, each feasible schedule only contains one

flow, because only one queue can be served during each time

slot. Let S denote the set of all feasible schedules. Then, for

each feasible schedule π ∈ S, let πf (t) denote the number of

packets transmitted from queue f under schedule π at time t.
For simplicity, we assume that the service rate is one packet

per time slot. Thus, the average service rate of queue f under

schedule π is E[πf (t)] = πf ≤ 1. Accordingly, the time-

varying scheduling vector S(t) = (π1(t), . . . , πF (t)), π ∈ S
is determined by the proposed scheduling policy. Hence, the

set of processes {Q(t), D(t), S(t)} with Q(0) completely

captures the dynamic of the entire stochastic queueing system.

B. Mathematical Preliminaries

Definition 1 (Heavy Tail) A random variable (r.v.) X is

heavy-tailed (HT), if for all θ > 0, limx→∞ eθxPr(X > x) =
∞, or equivalently, E[ezX ] = ∞, ∀z > 0. A r.v. is light-tailed

(LT), if it is not HT, or equivalently, if there exists z > 0 so

that E[ezX ] < ∞.

A HT r.v. has tail distribution decreases slower than exponen-

tially (e.g., Pareto and log-normal); a LT r.v. has tail distribu-

tion decreases exponentially or even faster (e.g., exponential

and Gamma). From the existence of the moments, we define

the tail index of a nonnegative r.v. X as

κ(X) := sup{k ≥ 0 : E[Xk] ≤ ∞}, (1)

which defines the maximum order of finite moments that X
can have. Moreover, to show the sufficient condition for finite

tail indexes [13], we have the following: A nonnegative r.v. X
has κ(X) if and only if the tail distribution of X satisfies

lim
t→∞

log Pr(X > t)

log t
= −κ(X). (2)

In the following, we define an important class of HT

distributions (i.e., regularly varying distributions).

Definition 2 (Regularly Varying) A r.v. X is called regularly

varying with tail index β > 0, denoted by X ∈ RV(β), if

Pr(X > x) ∼ x−βL(x), where for any two real functions

a(t) and b(t), a(t) ∼ b(t) denote limt→∞ a(t)/b(t) = 1 and

L(x) is a slowly varying function.

Regularly varying distributions are a generalization of

Pareto/Zipf/power-law distributions and can effectively,

stochastically characterize a wide range of network attributes,

including the frame length of VBR traffic, the session duration

of network users in WLANs, the files sizes at the Internet

severs, and the message sizes at cellular base stations. The

smaller values of β imply heavier tail. In particular, if the

arrival process Af (t) follows regular varying distribution,

Af (t) ∈ RV(β), then κ(Af (t)) = β. This indicates that if

0 < β < 1, X has infinite mean and variance. If 1 < β < 2,

X has finite mean and infinite variance.



C. System Stability and Throughput Optimality

Definition 3 (Steady-state Stability) Given the queueing sys-

tem described in Section II-A, if there exists a scheduling

policy under which the Markov chain of queue lengths is

positive Harris recurrent (i.e., {Q(t); t ∈ Z+} converges in

distribution), then the queueing network is steady-state stable.

Steady-state stability only guarantees the convergence of the

steady-state distribution for queue backlog. To characterize the

delay performance of queueing systems, strong stability needs

to be adopted as follows.

Definition 4 (Strong Stability) A queueing system is strongly

stable, if all traffic flows experience bounded average queueing

delay (i.e., E[Wf ] < ∞, ∀f ∈ F ).

The throughput-optimality of scheduling algorithms char-

acterizes their capability of achieving strong stability in the

network capacity region, defined as follows.

Definition 5 (Network Capacity Region [1]) The network

capacity region Φ of the queueing system is the set of

all traffic rate vectors that are admissible by the system

(i.e., λ can be covered by a convex combination of fea-

sible schedules). Mathematically, Φ := {λ ∈ R
F
+|λ ≤

σ componentwise, for some σ ∈ Co(S)}, where Co(S) de-

notes the convex hull of all feasible schedules.

Definition 6 (Throughput Optimality) A scheduling policy

is throughput-optimal, if it can achieve strong stability for

any admissible rate vector (i.e., any rates within the network

capacity region).

III. DELAY-BASED MAXWEIGHT SCHEDULING WITH

LIFO SERVICE DISCIPLINE (LIFO-DMWS)

MWS policies activate a feasible scheduler with the maxi-

mum weight at any given time slot. The classic MWS policies

adopt FIFO service discipline for intra-queue scheduling and

utilize queue-length as the weight to regulate inter-queue

scheduling. That is, at each time slot, the queue f with the

maximum queue length is served, i.e.,

QFIFO
f (t) = max

j∈F
QFIFO

j (t), ∀f ∈ F. (3)

The following theorem shows the instability of MWS algo-

rithms in the presence of HT traffic flows.

Theorem 1 (Network Instability of MWS [10], [11]) Under

MWS, if one of queues has a HT traffic arrival with tail index

smaller than 2 (i.e., Af ∈ RV(α) with α < 2), all queues have

bounded average queueing delay (i.e., E[Df ] = ∞, ∀f ∈ F ).

The above theorem indicates the classic MWS is not

throughput-optimal anymore with HT traffic. Such surprising

phenomenon can be attributed to the fact that HT queues

inherently experience heavy-tail distributed queueing delay,

which implies that compared with LT queues, HT queues

have much higher chance to experience very large queueing

delay, which can be of unbounded mean. As a result, based

on MWS policies, HT queues will receive much more service

opportunities, while LT queues are seriously starved and thus

their average queueing delay can be unbounded.

To counter such a problem, we propose a LIFO-DMWS

policy. Different from the classic MWS policies, the proposed

LIFO-DMWS exploits LIFO service discipline for intra-queue

scheduling and employs the HoL delay as the weight for

inter-queue scheduling. In this case, the HoL packet delay

{WLIFO
f (t)} is the queueing delay {Df(t)} experienced so

far by the HoL packet in the queue. Specifically, at each

time slot, the LIFO-DMWS policy serves queue f with the

maximum HoL delay, i.e.,

WLIFO
f (t) = max

j∈F
WLIFO

j (t), ∀f ∈ F (4)

where ties are broken randomly. Despite its simplicity, LIFO-

DMWS is the first throughput-optimal scheduling for bounded

delay with heavy-tailed traffic.

Theorem 2 (Throughput Optimality of LIFO-DMWS) The

LIFO-DMWS policy is throughput optimal by ensuring that

all queues have bounded average queueing delay E[Df ] <
∞, ∀f ∈ F whenever (1) all arrival traffic flows have

bounded mean λf = E[Af (t)] ∈ ∞, ∀f ∈ F . That is,

all arrival traffic flows have a tail index larger than 1, i.e.,

minf∈F κ(Af (t)) > 1; (2) the incoming traffic rates are

within the network capacity region.

Intuitively speaking, the promising feature of LIFO-DMWS

comes from the optimal asymptotic delay performance of

the HT queues under LIFO service discipline, which can

guarantees that HT queues experience sufficiently reduced

delay, which are of bounded mean. Then, by adopting HoL

delay as the weight metric, we can ensure that the delay of LT

queues is at least of the same order as the delay of HT queues.

This implies the queueing delay of LT queues is also of the

bounded mean. Accordingly, we can show that LIFO-DMWS

is throughput-optimal. More importantly, LIFO-DMWS does

not require any knowledge of the statistical information of

traffic arrivals.

Despite the intuitive advantage of LIFO-DMWS, prov-

ing its throughput optimality is very challenging. To prove

the throughput optimality of delay-based maximum-weight

scheduling (DMWS) with FIFO, fluid model-based schemes

are generally adopted, which establish the linear relation-

ship between queueing delay and queue length through fluid

model solutions. This implies the throughput optimality of

DMWS, since queue-length based policies are throughput-

optimal. However, under HT environment, fluid model based

schemes cannot be applied because Little’s law does not hold

for HT queues with LIFO discipline, which indicates that the

linear relationship between queueing delay and queue length

may not hold for HT queues in the fluid domain.

To counter this challenge, we adopt our developed asymp-

totic queueing analysis tools to prove the throughput optimality

of LIFO-DMWS. In the following subsections, we first intro-

duce the advantage of LIFO service discipline for HT traffic

by showing the asymptotic queueing delay of LIFO queues



under single-queue, single-server scenario in Section III-A.

Then, we prove the throughput optimality in Section III-B by

deriving the asymptotic queueing delay of each queue under

the LIFO-DMWS policy.

A. Asymptotic Queueing Delay of LIFO Discipline

Informally speaking, LIFO discipline allows the waiting

time or queueing delay to be “the same degree heavier” as

the service time in the case of HT arrival. Specifically, as

shown in [14], the tail distribution D of the queueing delay

of a single queue with FIFO discipline follows Pr(D >
x|FIFO) ∼ ρ

1−ρ
Pr(Br > x) = ρ

1−ρ
1

E[B]

∫∞

x
Pr(B > u)du,

where f(x) ∼ g(x) denotes limx→∞ f(x)/g(x) = 1, and B,

Br and ρ denotes the service time, the residual service time

and the traffic load, respectively.

If traffic arrival A(t) is HT with tail index κ(A(t), i.e.,

A(t) ∈ RV(κ(A(t)), the service time for A(t) follows HT

distribution which asymptotically behaves as x−κ(A(t)), i.e.,

lim
t→∞

log Pr(B > t|FIFO)

log t
= −κ(A(t)). (5)

As a result, the queueing delay tail distribution behaves as

x1−κ(A(t)), i.e.,

lim
t→∞

log Pr(D > t|FIFO)

log t
= −κ(A(t)) + 1, (6)

which is one degree heavier than the service time tail distri-

bution in (5). This implies by Definition 2 that if traffic arrival

process has unbounded variance, i.e., κ(A(t)) < 2, then the

queueing delay has unbounded mean. On the other hand, the

queueing delay tail distribution with LIFO discipline becomes

Pr(D > x|LIFO) ∼ 1
1−ρ

Pr(B > x(1−ρ)). This means that if

traffic arrival process is HT with tail index κ(A(t)), the service

time for A(t) follows HT distribution which asymptotically

behaves as

lim
t→∞

log Pr(B > t|LIFO)

log t
= −κ(A(t)). (7)

As a result, the queueing delay tail distribution behaves as

lim
t→∞

log Pr(D > t|LIFO)

log t
= −κ(A(t)). (8)

It means that the queueing delay is as heavy as that of the

service time which has the same tail index of arrival process.

This implies by Definition 2 that the average queueing delay

is bounded as long as service time is of bounded mean or has

a tail index larger than one, i.e., κ(A(t) > 1.

B. Throughput Optimality Analysis of LIFO-DMWS

In this section, we first investigate the asymptotic queueing

delay performance under general work-conserving scheduling

policies in Lemma 3, which gives the upper bound of queueing

delay tail index under LIFO-DMWS. In Lemma 2, we derive

the asymptotic delay performance under LIFO-DMWS, which

yields the lower bound of queueing delay tail index. Then, we

prove the throughput optimality of LIFO-DMWS by showing

that the upper and lower bounds coincide and are larger than

one as long as the arrival traffic has tail index larger than one.

This indicates that all queues are of bounded average queueing

delay under LIFO-DMWS. Before going to the main theorems,

we first introduce Lemma 1 that is used in the later proofs.

Lemma 1: For any work-conserving scheduling with single-

hop hybrid traffic, we have the following: Under FIFO,

κ(
∑

f∈F

Qf ) = [min
f∈F

κ(Af (t))] − 1; (9)

under LIFO,

κ(max
f∈F

Df ) ≥ min
f∈F

κ(Af (t)). (10)

Proof: The result for FIFO service discipline is ob-

tained by the analysis of the fictitious queue. Specifically,

consider a fictitious qv, which has the arrival process Av(t) =
∑

f∈F Af (t) under the original single-hop queueing sys-

tem. As we adopt regularly varying distributions for HT

flows, i.e., flow f ∈ HT with Af (t) ∈ RV(βf ) and

κ(Af (t)) = βf , it implies by regular variation that the

arrival Av(t) ∈ RV(minf∈F βf ). Let Dv, Qv, and Qv(t)
denote the steady-state queueing delay, the steady-state queue

backlog, and the queue backlog at time t of qv, respectively.

Regarding FIFO service discipline, it follows by Eq. (6)

that κ(Dv) = (minf∈F βf ) − 1. Under any work-conserving

scheduling policy in the original queueing system, we have

Qv(t) =
∑

f∈F Qf(t), which implies that Qv =
∑

f∈F Qf .

By distributional Little’s law, we have Pr(Qv > t) ∼
Pr(E[Av(t)]Dv > t), which indicates that κ(

∑

f∈F Qf ) =
(minf∈F βf )− 1, and prove the result for FIFO discipline.

The result for LIFO service discipline is obtained by

union bound and regular variation. Specifically, we have that

Pr(maxf∈F Df > t) = Pr(D1 > t ∨ · · · ∨ DF > t) ≤
Pr(D1 > t) + · · · + Pr(DF > t). This, combing with

Eq. (2) and Definition 2, implies that κ(maxf∈F Df ) ≥
minf∈F κ(Af (t)); thus, we complete the proof.

Lemma 2: Consider any work-conserving scheduling with

arrival traffic satisfying minf∈F κ(Af (t)) > 1. Under FIFO

discipline, the steady-state queueing delay Df of flow f with

κ(Af (t)) follows

κ(Af (t))− 1 ≥ κ(Df ) ≥ [min
f∈F

κ(Af (t))]− 1; (11)

under LIFO discipline, the steady-state delay Df follows

κ(Af (t)) ≥ κ(Df ) ≥ min
f∈F

κ(Af (t)) (12)

whenever incoming traffic rates are within the network capac-

ity region.

Proof: By Definition 5 and the work in [1], the pre-

requisite that the incoming rates are within the convex hull

of the set of all feasible schedules ensures the steady-state

stability of queueing systems and thus the existence of steady-

state queueing distributions. This implies that the steady-state

queue backlog Qf and delay Df exist for all f ∈ F , and the

asymptotic queueing delay analysis can be readily applied.

We prove the asymptotic results in Eq. (11) with queue qf as

follows. Specifically, it is evident that the queue backlog Qf



is stochastically dominated by the composite queue backlog
∑

f∈F Qf , which by Lemma 1 and distributional Little’s law

that Pr(Df > t) ∼ Pr(Qf/λf > t), proves the lower bound

of Eq. (11), i.e., κ(Df ) ≥ [minf∈F κ(Af (t))] − 1. As to

the upper bound, we consider the best scheduling policy for

qf , which allows qf to receive the service whenever qf is

not empty. This scheduling policy yields the best asymptotic

results for the queue qf , since qf does not have to compete

with other queues for the service and thus behaves like a single

flow queue with FIFO discipline. Invoking Eq. (6), the upper

bound of Eq. (11) hods, i.e., κ(Df ) ≤ κ(Af (t))− 1, and thus

proves Eq. (11) for the FIFO discipline.

We prove Eq. (12) for LIFO service discipline as fol-

lows. The lower bound is simply obtained from the result

in Lemma 1. Specifically, it is obvious that the queueing

delay Df is stochastically dominated by the maximum delay

maxf∈F Df , i.e., Pr(Df > t) ≤ Pr(maxf∈F Df > t)
for all t ≥ 0. This, combing with Eq. (10), implies that

κ(Df ) ≥ κ(maxf∈F Df ) ≥ minf∈F κ(Af (t)). The upper

bound is obtained by using the best scheduling policy and Eq.

(8). Specifically, consider the best scheduling for qf , which

implies that qf has an exclusive access to the scheduler, like

a single queue with LIFO discipline. Invoking Eq. (8), the

upper bound of Eq. (12) hods, i.e., κ(Df ) ≤ κ(Af (t)); thus,

we complete the entire theorem proof.

Now, we derive the upper bound of the tail index for

queueing delay.

Lemma 3: Under LIFO-DMWS, the tail index κ(Df ) of the

steady-state queueing delay Df is upper bounded by

κ(Df ) ≤ min
f∈F

κ(Af (t)). (13)

Proof: We exploit our asymptotic queueing analysis

tools [10] to study queueing delay for LIFO-DMWS. Specif-

ically, we construct a fictitious queueing system with F
flow queues {q̄f}f∈F , where each queue q̄f has the same

input process as qf . Consider a particular queue q̄f , and

let all queues {q̄j}j 6=f except q̄f have the exclusive access

to their own scheduler without competing with each other

(i.e., these queues operate as single flow queues with LIFO

discipline). The queue q̄f receives service if and only if

W̄LIFO
f = maxj∈F W̄LIFO

j . In such a system, it is easy to

prove that the fictitious queue q̄f has less queueing delay than

the queue qf in the original system, i.e., Df (t) ≥ D̄f (t). We

assume that the fictitious system is in the steady state. Let

Φj denote the event where q̄j is not empty and all the other

queues excluding q̄f are empty, i.e.,

Φj := {D̄j 6= 0 ∧
⋂

k 6=f,j

D̄k = 0} (14)

and Pr(Φj) := Pr(D̄j > 0)
∏

k 6=f,j(1 − Pr(D̄k > 0)). Thus,

we have the lower bound of the dth moment of Df as

E[Dd
f ] ≥

∑

j 6=f

Pr(Φj)E[D̄d
f |Φj ]. (15)

In the rest of the proof, we will derive the lower bound of

the conditional moments E[D̄d
f |Φj ]. Assume that the event Φj

occurs at time t. Let Br
j (t) and Be

j (t) denote the residual and

the expanded service time of the message currently in service

for the queue q̄j . By renew theory and Eq. (8) under LIFO

discipline, we have

κ(Br
j (t)) = κ(Be

j (t)) = κ(Aj(t)). (16)

If the event Φj occurs, then three possible events, namely (i)

Υ1, (ii) Υ2, and (iii) Υ3, occur to W̄LIFO
f (t). Specifically,

we define Υ1 := {W̄LIFO
f (t) ≥ W̄LIFO

j (t) +Br
j (t)}, Υ2 :=

{W̄LIFO
j (t)+Br

j (t) > W̄LIFO
f (t) ≥ W̄LIFO

j (t)}, and Υ3 :=

{W̄LIFO
j (t) > W̄LIFO

f (t)}. If (i) Υ1 occurs, we have

D̄f(t) ≥ D̄j(t) +Br
j (t). (17)

If (ii) Υ2 occurs, we have

D̄f(t) ≥ D̄j(t). (18)

In the case of (iii) Υ3, let τ denote the last time before t that q̄f
receives service. This means that W̄LIFO

f (τ) > W̄LIFO
j (τ).

Combing with the fact that W̄LIFO
j (t) > W̄LIFO

f (t) >

W̄LIFO
f (τ), it indicates that the burst being served at time t

did not begin to receive service at time τ , i.e., t− τ > Be
j (t).

This implies that

D̄f(t) ≡ W̄LIFO
f (t) = W̄LIFO

f (τ) + (t− τ) > Be
j (t).(19)

Combining Eq. (15) and Eqs. (17)-(19), we obtain

E[Dd
f ]≥

∑

j 6=f

Pr(Φj)
{

Pr(Υ1)E[
(

D̄j(t) +Br
j (t)

)d
]

+Pr(Υ2)E[D̄j(t)
d] + Pr(Υ3)E[Be

j (t)
d]
}

≥
∑

j 6=f

Pr(Φj)
{

Pr(Υ1)(E[D̄j(t)
d] + E[Br

j (t)
d])

+Pr(Υ2)E[D̄j(t)
d] + Pr(Υ3)E[Be

j (t)
d]
}

. (20)

This, combing with Eq. (8) and Eq. (16), implies that if the

order of the moments d ≥ minj 6=f κ(Aj(t)), then at least one

of the terms on the right-hand side of Eq. (20) is infinite,

which implies

κ(Df ) ≤ min
j 6=f

κ(Aj(t)). (21)

Moreover, since under any work-conserving scheduling policy,

Df is lowered bounded by that of a single exclusive queue

with LIFO discipline. This implies that

κ(Df ) ≤ κ(Af (t)), (22)

which, combing with Eq. (21) completes the proof.

Upon this stage, the throughput optimality of LIFO-DMWS

is presented in the following Theorem 2.

Proof of Theorem 2: Given that incoming traffic rates

are within the network capacity region, this implies that the

network is steady-state stable. Hence, we are ready to apply

the asymptotic queueing analysis for LIFO-DMWS as follows.

First, the upper bound of κ(Df ) under LIFO-DMWS is given

by Lemma 3. Since LIFO discipline is work-conserving, by

Theorem 2, the lower bound of κ(Df ) under LIFO-DMWS



is obtained, i.e., κ(Df ) ≥ minf∈F κ(Af (t)). Therefore, it

follows that the upper and lower bounds of κ(Df ) coincide

under LIFO-DMWS, i.e., κ(Df) = minf∈F κ(Af (t)). This,

combing with the given condition minf∈F κ(Af (t)) > 1 and

Eq. (1), completes the proof.

IV. PERFORMANCE EVALUATION

In this section, we validate our asymptotic queueing anal-

ysis. We choose Pareto and Poisson distributions to depict

HT and LT distributions, respectively. Specifically, a r.v.

X ∈ PAR(β, xm), if it follows Pareto distribution with a

shape parameter β > 0 and a scale parameter xm > 0, i.e.,

P (X > x) = (xm/x)β . A r.v. X ∈ Poiss(λ), if it follows

Poisson distribution with mean λ > 0, i.e., P (X > x) =

1 − e−λ
∑⌊x⌋

i=0 λ
i/i!, where ⌊x⌋ is the floor function. In the

following, we validate the throughput optimality of LIFO-

DMWS with single-hop hybrid traffic. All simulation results

are evaluated over 105 time slots.

A. Throughput-optimal LIFO-DMWS

We consider a scenario where a HT flow and a LT flow

sharing a single channel, i.e., Ah(t) ∈ PAR(1.5, 1) and

Al(t) ∈ Poiss(3). All the following tail distribution results are

plotted on log-log coordinates, by which a HT distribution with

tail index κ manifests itself as a straight line with the slope

equal to −κ. We first examine the performance of hybrid traffic

under the classic MWS policy. To enable a fair comparison,

we also adopt delay as the weight metric for MWS instead of

queue length and denote it by (FIFO-)DMWS. Fig. 1a shows

that during 105 time slots, only around 10% of packets (as

compared to HT traffic) from LT traffic leave the scheduler

and contribute to the cumulative packet delay, given the same

packer arrival rate for both LT and HT flows. The reason is that

most of packets from LT traffic are stuck in the queue due to

the competitions with the HT flows. Moreover, Fig. 1b shows

that under the DMWS policy, the queueing delay of LT flow

follows heavy tailed distribution with a tail index smaller than

one, as its tail distribution decays slower than the reference

Pareto distribution with tail index one. This means that the

LT traffic also has unbounded average delay as that of HT

traffic. Hence, under the DMWS policy with hybrid traffic,

the LT flow necessarily has infinite average queueing delay,

and DMWS is not throughput optimal.

We next show that the bounded delay and thus throughput

optimality can be achieved for hybrid traffic by applying

the LIFO-DMWS policy. Fig. 2a shows that LT traffic can

receive sufficient service opportunities to sent a comparable

number of packets as HT traffic flows. Moreover, as shown

in Fig. 2b that under the LIFO-DMWS policy, the queueing

delay of LT flow has a tail index greater than one, as their tail

distributions decay faster than the reference Pareto distribution

with tail index one. This means the LT traffic has bounded

queueing delay. Furthermore, while the queueing delay of HT

flows are also of bounded mean. Finally, a more complicated

scenario under LIFO-DMWS is studied with three hybrid flows

in Fig. 3, i.e., Ah(t) ∈ PAR(1.5, 1), Al1(t) ∈ Poiss(3),
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Fig. 1: Queueing delay of a HT flow, i.e., Ah(t) ∈
PAR(1.5, 1), and a LT flow, i.e., Al(t) ∈ Poiss(3), under

(FIFO-)DMWS [12].

and Al2(t) ∈ Poiss(2), and the same conclusion is reached

accordingly. In particular, Fig. 3a shows that most of packets

from LT flows can exit the system. Fig. 3b further indicates

that for the tail distributions of queueing delay of all LT

and HT flows have a slope or decaying rate greater than

one, indicating the average bounded delay for all traffic

flows. Above results are consistent with Theorem 2, which

implies that under hybrid HT and LT traffic, LIFO-DMWS is

throughput-optimal by achieving strong stability.

V. CONCLUSION

LIFO-DMWS is proposed to achieve throughput-optimality

with heavy-tailed traffic. In particular, LIFO-DMWS guar-

antees bounded average delay for hybrid HT and LT flows

under any admissible traffic arrivals without any knowledge of

statistical information of the arrivals. Performance evaluations

validate our theoretical findings. The future research will be

the extension of LIFO-DMWS to multi-hop traffic flows with

possibly feedback loops.
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Fig. 2: Queueing delay of a HT flow, i.e., Ah(t) ∈ PAR(1.5, 1), and a LT flow, i.e., Al(t) ∈ Poiss(3), under LIFO-DMWS.
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Fig. 3: Queueing delay of a HT flow, i.e., Ah(t) ∈ PAR(1.5, 1), and two LT flows, i.e., Al1(t) ∈ Poiss(3) and Al2(t) ∈
Poiss(2), under LIFO-DMWS.
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