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Abstract—Multi-stream carrier aggregation (MSCA) has been
recently proposed as a mechanism to increase the amount
of bandwidth available to users for heterogeneous networks
(HetNets) in 5G cellular systems. Previous studies have focused
only on maximizing the network capacity and fairness, without
considering the energy efficiency of the MSCA. In this paper, the
use of MSCA to minimize the energy consumption in a multi-
layer HetNet is studied. The convexity of the energy minimization
problem is examined, leading to the need of a quasiconvex
relaxation. With this approximation, an algorithm (BIMEM) is
designed to solve the energy minimization problem and obtain
an optimum cell-association policy. Since the operators are
generally interested in a balance between the energy minimization
and capacity maximization, such multi-objective optimization is
needed, and we studied it in this paper. The two aforementioned
conflicting objectives can be jointly analyzed and solved through
scalarization, even though the energy minimization has a qua-
siconvex objective function, and not a convex one. Performance
evaluation is provided to identify the achievable energy savings
of our proposed algorithm and to characterize the trade-offs
between the energy minimization and capacity maximization in
a multi-layer HetNet in 5G systems that support MSCA.

Index Terms—Heterogeneous networks, energy saving, cellular
networks, cell-association, multi-stream, carrier aggregation.

I. INTRODUCTION

One of the most effective methods to improve the per-
formance in cellular networks is to increase the amount
of utilized bandwidth. Therefore, to meet the requirements
of IMT-Advanced1 [1], as well as those of the operators,
the Long Term Evolution (LTE) Advanced (LTE-Advanced)
considers the use of bandwidths of up to 100MHz in several
frequency bands [2]. These bands are set by the International
Telecommunication Union (ITU) and include the follow-
ing [3]: 450-470MHz, 698-960MHz, 1710-2025MHz, 2110-
2200MHz, 2300-2400MHz, 2500-2690MHz, 3400-3600MHz.
For the fifth generation (5G) cellular systems, the use of even
higher and wider frequency bands, such as millimeter wave
ones, is a key enabling technology [4] [5]. LTE-Advanced tries
to exploit as much as possible the flexibility of supporting mul-
tiple frequency bands through the use of carrier aggregation [6]
[7].
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Carrier aggregation (CA) consists of grouping several com-
ponent carriers (CC) to achieve wider transmission band-
widths. An LTE-Advanced device can aggregate up to five
CCs, each of up to 20 MHz. With the largest configuration, this
implies a total bandwidth of 100MHz. To support backward
compatibility with LTE user equipment (UE), each of the CCs
shall be configured as a typical LTE carrier. Therefore, any of
the CCs used for CA should also be accessible to LTE UEs.
Nevertheless, mechanisms, such as barring [8], already exist
to prevent LTE UEs from camping on specific CCs. This way,
operators have the flexibility of adjusting the characteristics
of the CCs to support a mixture of LTE and LTE-Advanced
devices.

To obtain the most benefit from CA, each base station (BS)
should support the maximum number of CCs2. Nevertheless,
in current 4G and even more so in future 5G systems, cellular
networks are composed of a combination of small cells that
provide enhanced coverage in targeted areas and macrocells
that provide basic coverage, creating a HetNet [9] [10]. In
most HetNet scenarios, not all BSs support the maximum CA
configuration. This is mainly due to the hardware limitations,
which require costly upgrades. Multi-stream CA (MSCA), also
known as multi-flow CA, has been recently proposed as an
alternative method to address this problem [11] [12] [13]. In
MSCA, a UE is able to aggregate CCs belonging to multiple
BSs, allowing it to achieve the maximum CA configuration,
even if no BS can provide such configuration by itself.

In non-MSCA networks, the existing literature has looked
at multiple ways of reducing the network energy consump-
tion. In [14], the use of lean carriers with reduced signaling
overhead is proposed. By reducing the signaling overhead, the
BS can go into micro-sleep more frequently. The concept of
adjusting the cell-association policies and, therefore, the load
across BSs has also been proposed separately for energy min-
imization [15] and user fairness [16] [17] [18]. Furthermore,
cooperation among BSs has been utilized to minimize the
energy consumption by coordinating the scheduling and power
control mechanisms [19] [20] and the on-off policies [21] [22].
Compared to the literature on non-MSCA, existing work
on MSCA-enabled networks has focused on maximizing the
network capacity [23] [24], achieving a target SINR [25] [26],
and the analysis of the impact of biasing and the selection of
frequency bands [27] [28]. However, even though reducing
the energy consumption is a key design factor for 5G cellular
systems [10] [29], almost no work has been done on analyzing

2The current version of the standard specifies the maximum configuration
to be five CCs.
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Fig. 1. MSCA in a HetNet.

energy-efficient methods of exploiting MSCA [30].
The focus of our work is designing new methods of ex-

ploiting MSCA to improve the energy efficiency in multi-
layer HetNets for current 4G and future 5G cellular systems.
In particular, we show that the energy minimization problem
in MSCA-enabled networks is a non-convex optimization.
Nevertheless, such problem can be approximated through a
generalized linear-fractional program. Using this approxima-
tion, we develop a simple algorithm to solve such problem
by applying a bisection method that solves a convex fea-
sibility problem at each step, until a precision tolerance is
met. Since the operators are typically interested not only in
minimizing the energy consumption, but also in maximizing
the network capacity, we analyze these problems jointly as a
multi-objective optimization. Based on the analysis done for
the energy minimization problem, we provide a solution for the
multi-objective one, according to the priority assigned by the
operators to each objective. Moreover, we show that an explicit
analytical expression for the UE-to-CC association policy can
be obtained without the need of solving the multi-objective
optimization problem.

The rest of this paper is organized as follows. We present
the network architecture and BS energy model in Sections II-A
and II-B, respectively. In Section III, we develop the energy-
and capacity-aware mechanisms of load balancing that exploit
the use of MSCA. In particular, in Section III-A, we focus
on the single objective of minimizing the network energy
consumption. Then, the energy minimization and capacity
maximization are jointly analyzed in Section III-B. Simulation
results showing the performance of our load-balancing mech-
anisms are presented in Section IV. Finally, the conclusions
are presented in Section V.

II. SYSTEM MODEL

A. Network Architecture

An example of a network where a UE and the BSs support
MSCA is depicted in Figure 1. From Figure 1, we observe that
the UE applies MSCA by connecting to three CCs that belong
to BSs of different layers. This behavior follows from the fact
that the BSs in the same layer are typically assigned the same
frequency bands. Therefore, if a UE were to connect to mul-
tiple BSs of the same layer, it would have to utilize advanced
intercell interference cancellation (ICIC) techniques to recover
the signal from each BS [31] [32] [33]. While not impossible,
such functionality is not within the scope of MSCA; rather, it is
included in cooperative multipoint transmission and reception

(CoMP) [34] [35]. CoMP requires not only advanced ICIC at
the UE, but also a significant amount of coordination between
the BSs, so that their transmission scheme is suitable for
the application of advanced ICIC at the UE [36] [37] [38].
Compared to CoMP, the overhead associated with MSCA is
significantly smaller since there is no need to coordinate or
synchronize among the CCs used for MSCA how the physical
resources are utilized.

For the purpose of MSCA, we stipulate that any pair of BSs
that belong to different layers will utilize CCs that operate
on different frequency bands. On the other hand, BSs that
belong to the same layer may utilize CCs that operate on the
same frequency bands. We consider that the network serves
a set of users U and that each user can generate sessions
that have different quality of service (QoS) requirements
q ∈ Q. These are defined in terms of bit rates, to capture
the non-linear relationship between bit rate and power. We
also consider that each UE ui has a set Γi of active CCs. A
given Γi contains at most one CC for every frequency band.
Among all the CCs that belong to the same frequency band,
a given UE ui will add to its Γi the CC towards which the
value of pathloss plus shadowing is the smallest. While other
methods of selecting the set Γi could be explored, they are
out of the scope of this article and will be explored in future
work. In addition, we consider that each UE is capable of
partitioning every session across all of its active CCs. Such
assumption is justified by the fact that, if we were to consider
that a session can only be served through a single CC, the
overall problem would be reduced to a flow-to-CC association
problem, which is equivalent to the traditional UE-to-CC cell-
association problem when no MSCA is considered. Moreover,
we consider that the processes of partitioning the traffic at
the UE and recombining such traffic at the network introduce
a negligible bit rate overhead to the total bit rate required to
satisfy a session. Furthermore, the analysis is done considering
single-antenna systems; the extension to multi-antenna systems
will be explored in future work. In terms of the channel, we
consider path loss, shadowing and its auto-correlation effects,
and non-selective block fading. From the network perspective,
we consider the load of a BS to be represented by the total bit
rate it provides to the UEs that it serves. Thus, from now on
we will use the terms bit rate and load interchangeably. Our
definition of network load represents the input that the network
needs to support, regardless of how the network utilizes its
own resources to handle the input - which is the definition of
load used in some existing work [39]. As a result, with our
definition, the load metric becomes a function of the traffic,
i.e., the input, and not of what our algorithm does with the
network resources.

B. Base Station Energy Model

In terms of the energy consumption of the BS, we consider
that each BS b has a set Sb of CCs. From now on, we will
utilize the notation CCj,k to denote CC k of BS j. We consider
the energy consumption model of an active CCj,k during a
time interval ∆t to be

Êtotal(CCj,k) = ∆t
[
P̂on,min(CCj,k) + P̂on,dyn(CCj,k)

]
, (1)
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where Êtotal(CCj,k) represents the total energy consumption
of CCj,k, P̂on,min(CCj,k) represents the amount of power
consumed regardless of the traffic handled by CCj,k, and
P̂on,dyn(CCj,k) represents the dynamic power consumption
of CCj,k, which varies with the traffic dynamics. Since
P̂on,min(CCj,k) is constant with respect to the traffic handled
by a CC, it can be excluded from the rest of the analysis.
We consider that P̂on,dyn(CCj,k) is a linear function of the
RF output power required to satisfy the QoS requirements
requested by the UEs connected to that CC, as generally done
in the literature [40] [41] [42]. Thus, we have that

P̂on,dyn(CCj,k) = wj,k
∑
i

Pi,j,k, (2)

where Pi,j,k represents the amount of RF output power re-
quired by CCj,k to satisfy the QoS requested by UE i and
wj,k is a constant unique for every CCj,k. The value of not
only wj,k, but also P̂on,min(CCj,k), depends on the internal
components associated with the operation of the CC and their
interconnection [43] [44].

III. ENERGY- AND CAPACITY-AWARE LOAD BALANCING

In a HetNet, the macrocells transmit at a much higher power
than the small cells. Thus, regions will exist where a UE will
be relatively close to a small cell, but the SINR of a macrocell
will still be higher. Therefore, an association policy based on
the CC that provides the maximum SINR, i.e., a max-SINR
policy, tends to favor the association towards the macrocells
over small cells in the aforementioned regions. As a result, a
UE close to a small cell may still connect to a macrocell even
if

• communicating with the macrocell requires more energy,
in uplink or downlink, than communicating with the small
cell or

• the macrocell is overloaded, and the small cell resources
are being underutilized. Such situation may cause the user
QoS requirements to not be satisfied by the macrocell,
even though the small cell could have done so.

Moreover, even if a user is capable of following a cell-
association policy different from the max-SINR one, the fact
that it can only connect to a single BS means that

• no single cell may have enough capacity to satisfy the
downlink and uplink QoS requirements or

• a user may connect to a cell that can satisfy the downlink
or uplink QoS requirements, but not both or

• the non-linear relationship between the minimum power
received and bit rate would require a disproportional
amount of power to satisfy the QoS requirements.

Thus, MSCA can address the aforementioned issues, given that
we design mechanisms to balance the load across small cells
and macrocells while accounting for the energy consumption
and the capacity of each one. The design of such mechanisms
for the downlink is the focus of this work. The uplink could
be analyzed by following a similar approach, assuming that
an accurate model for the UE total energy consumption is
available.

For UE i and CCj,k, the maximum spectral efficiency θi,j,k
of the communication link is a logarithmic function of the
SINR:

θi,j,k = β log2

1 + hi,j,k
Pi,j,k
ηi,j,k︸ ︷︷ ︸

SINR

 , (3)

where Pi,j,k is the RF output power used by CCj,k on
the resources assigned to UE i, hi,j,k is the channel gain
between UE i and CCj,k, ηi,j,k represents the noise plus
interference experienced by UE i when connected to CCj,k,
and 0 < β < 1 is an attenuation factor that accounts for
implementation losses and can be chosen to represent different
modem implementations and link conditions [45]. The factor
hi,j,k includes the path loss, fading, and shadowing effects. By
considering a large time scale for the association between a
user and a CC, the short-term channel dynamics, such as fast
fading, can be averaged out, allowing us to consider the SINR
and the spectral efficiency as constants during the association
duration. For the factor ηi,j,k, we consider that there is no
intra-cell interference and, to make the formulation tractable,
that the expected inter-cell interference within a given layer is
known or managed through existing techniques, such as inter-
cell interference coordination.

Even though the maximum spectral efficiency θi,j,k is a
good metric for the quality of the channel between user i
and CCj,k, the overall bit rate is the metric of interest when
determining if the QoS is satisfied. The bit rate achieved over
the aforementioned channel depends not only on θi,j,k, but
also on the amount of resources assigned to such channel by
the BS. Particularly, for user i, CCj,k with bandwidth ρj,k, the
maximum bit rate θ̃i,j,k over a channel that has a maximum
spectral efficiency θi,j,k is

θ̃i,j,k = ρj,kyi,j,kθi,j,k

= ρj,kyi,j,kβ log2

(
1 + hi,j,k

Pi,j,k
ηi,j,k

)
, (4)

where the factor 0 ≤ yi,j,k ≤ 1 represents the fraction of
resources reserved for user i by CCj,k, and θi,j,k is obtained
from Eq. (3). By considering that the resource allocation is
performed within the coherence time of the channel, the latter
can be considered static during every allocation period. Such
assumption is valid for low-mobility scenarios.

Typically, yi,j,k < 1 since the BS serves more than one user;
therefore, it must allocate the limited resources among those
users. As a result, the achievable rate of a user depends not
only on the channel quality towards a particular CC, but also
on the number of other users associated with such CC and the
resource allocation policy followed. The latter depends directly
on how much bit rate, i.e., load, each UE requests from each
CC.

In Section III-A, we focus on finding an optimal load-
balancing and cell-association policy that minimizes the en-
ergy consumption of the network. Then, in Section III-B,
we utilize the results from Section III-A to develop an
optimal load-balancing and cell-association policy capable
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of addressing the conflicting objectives of minimizing the
network energy consumption and maximizing its capacity.

A. Load Balancing for Energy Minimization
Based on the QoS requirements of all the sessions that a

user i needs to support, a total bit rate ri can be computed for
such user. By using MSCA, ri can be split across all the CCs
to which the UE is capable of connecting. If UE i requests
a fraction 0 ≤ ξi,j,k ≤ 1 of ri to CCj,k, then the following
relationship must hold:

ξi,j,kri ≤ θ̃i,j,k

= ρj,kyi,j,kβ log2

(
1 + hi,j,k

Pi,j,k
ηi,j,k

)
, (5)

where θ̃i,j,k is obtained from Eq. (4). The above expression
conveys that the amount of bit rate requested by any UE to
any CC should not exceed the capacity of the channel between
them for a given amount of bandwidth and power allocated to
the user. Typically, the above inequality can be treated as an
equality, since there is no benefit to the user or BS to have
an underutilized channel. Assuming that yi,j,k > 0, i.e., that
CCj,k is assigning a non-zero amount of bandwidth to user i,
the amount of output RF power at the antenna of CCj,k for
user i can be obtained as follows,

Pi,j,k =

[
exp

(
1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

)
− 1

]
ηi,j,k
hi,j,k

=
ηi,j,k
hi,j,k

exp

(
1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

)
− ηi,j,k
hi,j,k

. (6)

As discussed in Section II-B, the total dynamic power P̂on,dyn
consumed by CCj,k to output the RF power required to satisfy
the QoS requirements of the UEs is a linear function of
Pi,j,k,∀i, j, k:

P̂on,dyn(CCj,k) = wj,k
∑
i

Pi,j,k

= wj,k
∑
i

ηi,j,k
hi,j,k

exp

(
1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

)
− wj,k

∑
i

ηi,j,k
hi,j,k

. (7)

Based on the expression above, the network energy minimiza-
tion problem can be described as

minimize
∑
j

∑
k

P̂on,dyn(CCj,k), (8a)

subject to
∑
j

∑
k

ξi,j,k = 1, ∀i, (8b)∑
i

yi,j,k ≤ 1, ∀j, k, (8c)

ξi,j,k ≥ 0, ∀i, j, k, (8d)
yi,j,k ≥ 0, ∀i, j, k, (8e)
riξi,j,k − ρj,kθmaxyi,j,k ≤ 0, ∀i, j, k, (8f)
ξi,j,k = 0; ∀i, j, k,CCj,k /∈ Γi

(8g)
yi,j,k = 0; ∀i, j, k,CCj,k /∈ Γi

(8h)

where θmax denotes the maximum spectral efficiency sup-
ported by the network3. Constraint (8b) indicates that the
UE total QoS requirement ri must be satisfied with equality.
Constraint (8c) indicates that CCj,k cannot allocate more
bandwidth than it has available. Constraints (8d) and (8e)
indicate that the allocation variables ξi,j,k and yi,j,k are non-
negative. Constraint (8f) indicates that every channel should
operate within the maximum spectral efficiency supported by
the network. Constraints (8g) and (8h) indicate that a UE i can
associate only with the CCs that belong to its active set Γi of
CCs. All the constraints in the optimization problem (8) are
linear expressions. Also, note that in addition to the intrinsic
parameters associated with the CCs, the total QoS requirement
of each UE and the SINR between the UEs and each BS
CC would be required as inputs to solve the optimization
problem (8).

The optimization problem (8) is equivalent to

minimize
∑
i,j,k

wj,k
ηi,j,k
hi,j,k

exp

(
1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

)
, (9a)

subject to Constraints (8b)-(8h), (9b)

where the optimization variables are all the ξi,j,k and yi,j,k,
and we drop the last term of Eq. (7) because it is a constant
that does not affect the solution of the problem. It is important
to highlight that objective function (9a) does not allow for
yi,j,k = 0, even though constraint (8e) does. We will later
see that the objective function can be further approximated to
allow yi,j,k = 0.

Since the factors wj,k, ηi,j,k, and hi,j,k are positive con-
stants, the optimization problem (9) can be further rewritten
as

minimize
∑
i,j,k

exp

(
αi,j,k +

1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

)
, (10a)

subject to Constraints (8b)-(8h), (10b)

where αi,j,k is a constant defined as

αi,j,k , ln

(
wj,k

ηi,j,k
hi,j,k

)
. (11)

We now analyze the convexity of the optimization prob-
lem (10). Consider a single term of the summation in the
objective function. Any such term is an exponential function
whose argument is a linear-fractional function. Since a linear-
fractional function is quasiconvex, and the exponential func-
tion is a non-decreasing function, it follows that each term
in the above summation is also quasiconvex. Nevertheless,
while convexity is preserved by a non-negative weighted sum
operation, quasiconvexity may not be [46]. Therefore, the
optimization problem (10) needs to be reformulated before any
convex or quasiconvex optimization technique can be applied.

3In LTE, θmax is approximately 4.8 bits/sec/Hz, based on 64 QAM and 4/5
code rate [45].
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First, since the logarithmic function is a monotonically
increasing function, we apply it to the objective function (10a)
to create an equivalent optimization problem:

minimize ln

∑
i,j,k

exp

(
αi,j,k +

1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

),
(12a)

subject to Constraints (8b)-(8h). (12b)

Second, we exploit the log-sum-exp approximation

max
i=1...n

xi ≤ ln
n∑
x=1

exi ≤ max
i=1...n

xi + lnn. (13)

The lower bound is met when there is only one non-zero
xi; the upper bound is met when all the xi are equal. For
a given n, minimizing maxi=1...n xi reduces the values of
both the upper and lower bounds of ln

∑n
x=1 e

xi . Applying
the above approximation to the optimization problem (12), it
then becomes

minimize max
i,j,k

[
αi,j,k +

1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

]
, (14a)

subject to Constraints (8b)-(8h). (14b)

The objective function (14a) is a maximization of linear-
fractional functions and, therefore, of quasiconvex functions.
Such formulation is also known in the literature as a general-
ized linear-fractional program. Since a nonnegative weighted
maximum of quasiconvex functions is also quasiconvex, so is
the above objective function. We can now apply any general
approach for quasiconvex programming. One such approach
consists in representing the sublevel sets of the quasiconvex
function via a family of convex inequalities [46], as we will
now describe.

First, we define g0 (ξ, y) as our current objective function:

g0 (ξ, y) = max
i,j,k

[
αi,j,k +

1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

]
. (15)

Second, for a given parameter µ, g0 (ξ, y) ≤ µ if and only if

max
i,j,k

[ξi,j,kri ln (2)− βρj,kyi,j,k [µ− αi,j,k]] ≤ 0. (16)

If we define the convex function ϑµ (ξ, y) as

ϑµ (ξ, y) = max
i,j,k

[ξi,j,kri ln (2)− βρj,kyi,j,k [µ− αi,j,k]],

(17)

then
g0 (ξ, y) ≤ µ⇔ ϑµ (ξ, y) ≤ 0. (18)

Therefore, the µ-sublevel set of the quasiconvex function g0
is the 0-sublevel set of the convex function ϑµ.

Let us denote the optimal value of the quasiconvex opti-
mization problem (14) as χ∗. If the feasibility problem

find ξ, y, (19a)
subject to ϑµ (ξ, y) ≤ 0, (19b)

Constraints (8b)-(8h), (19c)

is feasible, then χ∗ ≤ µ and any feasible point (ξ, y) is
also a feasible point for the quasiconvex problem (14). If the

problem (19) is not feasible, then χ∗ > µ. Problem (19)
is a convex feasibility problem. Therefore, we can verify
whether χ∗ is greater or less than a particular value µ by
solving problem (19). Based on this last observation, a simple
procedure to find χ∗, BIMEM, is designed through a bisection
method that solves a convex feasibility problem at every step,
as described in Algorithm 1.

Algorithm 1 BIMEM: Bisection method for energy minimiza-
tion.

1: given l1 ≤ χ∗, l2 ≥ χ∗, ε > 0
2: repeat
3: µ = (l2 + l1) /2
4: Solve the convex feasibility problem (19)
5: if (19) is feasible then
6: l1 = µ
7: else
8: l2 = µ
9: end if

10: until l2 − l1 ≤ ε

In Algorithm 1, assuming that the quasiconvex problem (14)
is feasible and that we know an interval [l1, l2] that contains
the optimal value χ∗, we solve the feasibility problem at
the midpoint µ = (l1 + l2)/2 of such interval by applying
any convex optimization technique, e.g., interior-point method.
The result of the feasibility problem indicates whether χ∗

is in the lower or upper half of the interval, which we
then use to update the interval accordingly. The new interval
is half the size of the initial one, i.e., it is bisected. This
procedure is repeated until the size of the interval satisfies
some lower bound ε. After m iterations, the size of the interval
is 2−m(l2 − l1). Therefore, the number of iterations required

before the algorithm terminates is
⌈

log2

(
(l2 − l1)/ε

)⌉
.

To apply Algorithm 1, we need the initial interval [l1, l2] that
is guaranteed to contain the optimal value χ∗. Such interval
can be obtained from constraint (19b), as shown below. For
such constraint to be satisfied, the following expression must
be true:

max
i,j,k

[ξi,j,kri ln (2)− βρj,kyi,j,k [µ− αi,j,k]] ≤ 0, (20)

which is equivalent to

ξi,j,kri ln (2)−βρj,kyi,j,k [µ− αi,j,k] ≤ 0, ∀i, j, k. (21)

Since ri is positive and ξi,j,k is non-negative, then the first
term is also non-negative. Therefore, we need the second term
to be non-positive. As a result, there are two possible necessary
conditions for the above expression to be satisfied for any
given i,j,k:

µ− αi,j,k ≥ 0, or (22)
ξi,j,k = yi,j,k = 0. (23)

From Eq. (22) we have that µ ≥ αi,j,k. Since χ∗ corresponds
to the smallest µ for which g0 (ξ, y) ≤ µ, we can now obtain
an interval [l1, l2] that is guaranteed to include the optimal
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value χ∗ by finding the minimum and maximum values of
αi,j,k:

l1 = min
i,j,k

αi,j,k, (24)

l2 = max
i,j,k

αi,j,k. (25)

With such interval, we can now apply Algorithm 1 to find the
optimal value χ∗ for the energy minimization problem. Once
such value is found, the energy minimization problem can be
expressed as a single convex feasibility problem:

find ξ, y, (26a)
subject to ξi,j,kri ln (2)− βρj,kyi,j,k [χ∗ − αi,j,k] ≤ 0,

∀i, j, k, (26b)
Constraints (8b)-(8h). (26c)

However, the optimum UE-to-CC association policy can be
directly obtained from knowing χ∗ without the need to solve
this last optimization problem. From Eq. (22) and Eq. (23), we
have that if χ∗ ≤ αi,j,k, then ξi,j,k = yi,j,k = 0. By plugging
in the definition of αi,j,k from Eq. (11), we can state in an
equivalent way that the optimum UE-to-CC association policy
for energy minimization is for UE i to associate with CCj,k
if and only if

hi,j,k
ηi,j,k

> wj,ke
−χ∗

. (27)

Since we obtained the above solution using the log-sum-
exp approximation described in Eq. (13), it follows that the
approximation gap is lnn, where n is the product of the
number of UEs, the number of layers, and the number of CCs
per layer.

B. Load Balancing for Joint Energy Minimization and Capac-
ity Maximization

In Section III-A, we analyzed the energy minimization
problem in a HetNet where MSCA is supported. Even though
the operators are able to reduce their economic and environ-
mental impact by minimizing the energy consumption, they are
typically interested in finding a balance between reducing the
energy consumption and maximizing the network capacity. In
this section, we analyze how these two conflicting objectives
can be addressed jointly.

In a capacity maximization problem, the objective function
generally follows the form of

f1 (ξ) =
∑
i

riU

∑
j

∑
k

ξi,j,k

 , or (28)

f2 (ξ) =
∑
j

U

(∑
k

∑
i

riξi,j,k

)
, (29)

where U is a concave function. A typical approach used in
the literature is to consider U to be a logarithmic function.
In such case, f1 (ξ) represents a metric of fairness across
multiple UEs, i.e., it is better to increase the bit rate of
a user that is experiencing a low bit rate than to increase
that of a user with an already high bit rate. Similarly, f2 (ξ)

represents a metric of load fairness across BSs, i.e., it is better
to increase the total load (bit rate) carried by an underloaded
BS than to increase the load of a BS that is already carrying
a high load. Rather than focusing on a specific case, we will
utilize a generic concave function f3 (ξ). For such function,
the capacity maximization problem can be expressed as

maximize f3 (ξ) , (30a)

subject to
∑
j

∑
k

ξi,j,k ≥ 1, ∀i, (30b)∑
i

yi,j,k ≤ 1, ∀j, k, (30c)

ξi,j,k ≥ 0, ∀i, j, k, (30d)
yi,j,k ≥ 0, ∀i, j, k, (30e)
riξi,j,k − ρj,kθmaxyi,j,k ≤ 0, ∀i, j, k. (30f)
ξi,j,k = 0; ∀i, j, k,CCj,k /∈ Γi

(30g)
yi,j,k = 0; ∀i, j, k,CCj,k /∈ Γi

(30h)

The only difference between the above constraints and the ones
of the energy minimization problem is that here, the UE total
QoS requirement ri no longer needs to be satisfied with equal-
ity; rather, it is the lower bound, specified by constraint (30b).
Therefore, the domain of the energy minimization problem is
a subset of the one of the capacity maximization problem.
Moreover, any feasible point for the energy minimization
problem (8) is also feasible for the capacity maximization
problem (30). Also, note that the inputs required from the
UEs to solve the capacity maximization problem (30) are the
same as for the energy minimization problem (8).

We can reformulate the capacity maximization problem as
a convex minimization problem:

minimize f4 (ξ) ≡ −f3 (ξ) , (31a)
subject to Constraints (30b)-(30h), (31b)

where f4 (ξ) represents the new objective function. Since f4 is
the negative of a concave function, it is convex. If we denote
by f0 (ξ, y) the objective function of the energy minimization
problem, then the problem of jointly minimizing the energy
consumption and maximizing the network capacity can be
expressed as

minimize
[
f0 (ξ, y)
f4 (ξ)

]
, (32a)

subject to Constraints (30b)-(30h), (32b)

i.e., as a multi-criterion or multi-objective optimization prob-
lem. It is important to note that f0 and f4 are competing
functions, i.e., one of them is minimized at the expense of
increasing the other. Because of this competing nature, no
single point is capable of jointly achieving the minimum value
that f0 and f4 could achieve separately. However, since a
multi-objective optimization is a vector optimization defined
over a cone K = Rm+ for some m > 0, we can scalarize the
problem to find Pareto-optimal points for the original problem.
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Applying scalarization to the optimization problem (32), we
obtain

minimize υf0 (ξ, y) + (1− υ)f4 (ξ) , (33a)
subject to Constraints (30b)-(30h), (33b)

where 0 ≤ υ ≤ 1 is a parameter that is adjusted to find the
Pareto-optimal points. Intuitively, υ is selected to indicate the
operator’s balance point between the energy minimization and
the capacity maximization. For υ close to 1, a greater weight
is given to the energy minimization. Conversely, for υ close
to 0, a greater weight is given to the capacity maximization.

In general, for a given υ, if f0 and f4 are convex func-
tions, then the scalarized optimization problem is a convex
one. We have shown that f4 is a convex function, and, in
Section III-A, we found that the energy minimization problem
can be expressed as the convex feasibility problem (26). The
issue with using the objective function of the latter is that,
by definition, the objective function of a feasibility problem
is a constant independent of the optimization variables. If
we were to consider f0 a constant, then it would have no
effect on the solution of the optimization problem (33), i.e.,
such optimization problem would be reduced to the capacity
maximization problem. Therefore, f0 cannot be directly taken
from the convex feasibility problem (26). However, we can
obtain an appropriate f0 from the original formulation of
energy minimization problem, as we will now describe.

If we apply the weight factor υ to the objective function of
the original formulation of the energy minimization problem
in (8), such problem becomes

minimize υ
∑
j

∑
k

P̂on,dyn(CCj,k), (34a)

subject to Constraints (8b)-(8h), (34b)

which, after similar transformations as the one followed during
the analysis of the energy minimization problem, becomes
equivalent to

minimize ln

∑
i,j,k

exp

(
ln (υ) +

ξi,j,kri ln (2)

βρj,kyi,j,k
+ αi,j,k

),
(35a)

subject to Constraints (8b)-(8h). (35b)

Applying the log-sum-exp approximation described in Sec-
tion III-A, the above optimization problem can be approxi-
mated as

minimize max
i,j,k

[
ln (υ) + αi,j,k +

1

β

ξi,j,kri
ρj,kyi,j,k

ln (2)

]
,

(36a)
subject to Constraints (8b)-(8h). (36b)

For υ = 1, the above problem is reduced to the original energy
minimization problem. Therefore, for υ = 1 and following
a similar development as in Section III-A, the optimization

problem (36) is equivalent to a single convex feasibility
problem

find ξ, y, (37a)
subject to ξi,j,kri ln (2)− βρj,kyi,j,k [(χ∗ − ln (υ))

−αi,j,k] ≤ 0, ∀i, j, k, (37b)
Constraints (8b)-(8h). (37c)

If we consider 0 < υ < 1 in the above problem, we
note that its impact translates into increasing the effective
threshold (χ∗ − ln (υ)) of the optimization problem, since
ln (υ) < 0. More importantly, in the above feasibility problem,
the factor υ is part of the constraint rather than of the objective
function. Therefore, the problem above does not suffer from
υ not impacting the optimization problem (33), as was the
case when we directly used problem (30). So, combining the
objective function and constraints of the above problem with
that of the capacity maximization as per the formulation of
problem (33), we obtain that the scalarized multi-objective
optimization becomes

minimize − f3 (ξ) , (38a)
subject to ξi,j,kri ln (2)− βρj,kyi,j,k [(χ∗ − ln (υ))

−αi,j,k] ≤ 0, ∀i, j, k, (38b)
Constraints (30b)-(30h). (38c)

From the above problem formulation, we can also directly
obtain the optimum UE-to-CC association policy without the
need to find the solution. As in the case of the energy mini-
mization problem, there are two possible necessary conditions
for constraint (38b) to be satisfied:

(χ∗ − ln (υ))− αi,j,k > 0, or (39)
ξi,j,k = yi,j,k = 0. (40)

Therefore, if (χ∗ − ln (υ)) ≤ αi,j,k, then ξi,j,k = yi,j,k = 0.
By plugging in the definition of αi,j,k from Eq. (11), we can
state in an equivalent way that the optimum UE-to-CC associ-
ation policy for any given υ in the multi-objective optimization
of energy minimization and capacity maximization is for UE
i to associate with CCj,k if and only if

hi,j,k
ηi,j,k

> wj,k exp

(
−
(
χ∗ − ln (υ)

))
. (41)

Once the UEs associate with the CCs, the values of the
optimization variables ξ and y will depend on the particular
function f3 utilized as objective function of the capacity
maximization problem. It is important to note that, to perform
the multi-objective optimization, we need to find the value of
χ∗ only once, and then the UE-to-CC association policy is
defined by that value, the operator-defined υ, and the specific
capacity maximization function of interest.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
algorithms for MSCA-enabled HetNets to minimize the energy
consumption and balance it with the capacity maximization.
The simulation parameters are shown in Table I. We have



1536-1276 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2016.2602336, IEEE
Transactions on Wireless Communications

8

TABLE I
SIMULATION PARAMETERS FOR MULTI-LAYER HETNETS WITH MSCA.

Parameter Value
CC per BS (per layer) [1,1,1] CC
Bandwidth of a CC (per layer) [20, 10, 2.5] MHz
Number of antennas at BS 1
Max. spectral efficiency (θmax) 4.8 bps/Hz
Total coverage area 1km x 1km
β 0.75
Number of active UEs 50
Altitude of UEs 1.5 m
Number of antennas at UE 1
Number of layers 3
Type of BSs (per layer) [macro,pico,pico]
Number of BSs (per layer) [1,5,15]
Altitude of BSs (per layer) [25,20,10]m
Power weight of a CC (per layer) [2.66,3.1,4.0]

chosen to assign only one CC to every BS in every layer
so that our results capture the effects of MSCA rather than
those of the classical CA. Based on the bandwidth parameters,
we have that layer 1 (L1), layer 2 (L2), and layer 3 (L3)
provide 18.6%, 46.51%, and 34.88% of the network capacity,
respectively. Thus, L1 is meant to provide basic coverage, L2
is meant to provide basic capacity, and L3 is meant to enhance
the capacity. BSs per layer and active UEs are uniformly
distributed across the total coverage area.

For the path loss, we use the following 3GPP models for
heterogeneous networks in outdoor scenarios (distance D (in
km)) [47]:

(macro)PL = 128.1 + 37.6log(D), (42)
(pico)PL = 140.7 + 36.7log(D). (43)

To evaluate the overall performance of the energy-saving
algorithm, we applied it to 100 different scenarios generated
using the parameters from Table I. For each scenario, Algo-
rithm 1 was evaluated for a minimum QoS varying in the
range [1, 10]Mbps. To solve the convex feasibility problem in
step 4 of Algorithm 1, we utilized CVX [48] [49], a Matlab-
based modeling system for convex optimization, together
with MOSEK [50], one of the leading commercial software
products for large-scale optimization problems. In 91% of the
1000 scenario-QoS combinations and a lower bound ε = 0.01,
our algorithm required 11 iterations to converge to a solution
and 12 iterations in the rest of the cases. This result highlights
the high convergence rate achieved by the initial estimation of
the interval [l1, l2] from Eq. (24) and Eq. (25).

Figure 2 depicts the percent of UEs using MSCA and the
mean UE spectral efficiency. From this figure, we observe that
the percent of UEs using MSCA increases from less than 5%
to nearly 35% as the minimum QoS requirement increases
from 1 to 10Mbps. For this same variation of the minimum
QoS requirement, the mean UE spectral efficiency grows from
nearly 2.5bps/Hz to 4.7bps/Hz, i.e., it almost reaches the
maximum spectral efficiency of 4.8bps/Hz.

The fact that most UEs are operating at nearly maximum
spectral efficiency prevents more UEs from applying MSCA
since such event would require a first set of UEs to empty
part of its currently allocated spectrum so that a second set of
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Fig. 2. Percent of UEs using MSCA and mean UE spectral efficiency.

UEs, currently connected to other layers, can utilize the freed
spectrum. However, such release of spectrum would imply that
the UEs of the first set have to further increase their own
spectral efficiency.

Figure 3 shows several per-layer metrics. In Figure 3a, we
depict how the UEs associate with each BS layer. Here, we
observe that as the minimum QoS requirement increases, the
percent of UEs associated with L1 and L3 experiences small
variations, indicating that most UEs remain connected to those
layers. However, the percent of UEs attached to L2, the layer
with highest capacity, increases significantly, indicating that
most UEs are applying MSCA by connecting to an additional
CC in L2. In Figure 3b, we observe that as the minimum QoS
requirement increases, the percent of the load carried by L3
decreases from 51% to 34% while that of L2 increases from
24% to 47%. From Figure 3c, we observe that the change in
the load managed by L2 and L3 produces a nearly equivalent
change in the percent of energy consumption. That of L3
decreases from 30% to 19% while that of L2 increases from
35% to 56%.

An additional metric of interest is the value of χ∗ as
the minimum QoS requirement increases. This behavior is
depicted in Figure 4. When the minimum QoS requirement
is less than 7Mbps, χ∗ increases almost linearly from -1.4
to 0.05. However, beyond 7Mbps, χ∗ increases rapidly until
reaching a value of 2.44.

To quantify the amount of energy savings provided by our
energy-saving algorithm, as well as to characterize the energy-
capacity trade-off in an MSCA-enabled HetNet, we take a
single instance of a HetNet generated with the parameters of
Table I, and analyze its performance as the factor υ varies from
0 to 1, representing a shift from the capacity maximization to
the energy minimization objective. We analyze the balance of
energy minimization against three objective functions for the
capacity maximization: classical capacity maximization (f3,1),
global UE fairness (f3,2), and per-BS UE fairness (f3,3). Their
respective definitions are as follows:

f3,1(ξ) =
∑
i

∑
j

∑
k

riξi,j,k, (44)
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Fig. 3. Users, load, and energy per layer.
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Fig. 5. MSCA UEs in the energy-capacity optimization.

f3,2(ξ) =
∑
i

log

∑
j

∑
k

riξi,j,k

, (45)

f3,3(ξ) =
∑
j

∑
i

log

(∑
k

riξi,j,k

)
. (46)

In Figure 5, we show the percent of UEs that use MSCA.
For the classical capacity maximization objective, we observe
that very few UEs apply MSCA regardless of the value of υ.
This behavior occurs because such objective tends to favor UE-
to-CC links with higher SINR; therefore, MSCA links with
distant BSs tend to be disregarded. On the other extreme,
we have the per-BS UE fairness. In this case, the number
of UEs applying MSCA is over 90%. This behavior occurs
because each BS tries to provide a fair amount of throughput
to all the UEs that it can potentially serve; therefore, this
objective function encourages the application of MSCA among
all the UEs that are under the coverage of more than one
layer. We observe that the global UE fairness, with the use of
MSCA decreasing from 64% to 30% as υ varies from 0 to 1,
falls roughly in the middle between the other two extremes -
capacity and per-BS UE fairness. These three graphs suggest
that reconfiguring the balance between energy minimization
and capacity maximization, i.e., changing the value of υ,
will have the greatest impact on the UE-to-CC association
when the objective function is that of Global UE Fairness.
Thus, the network stability would require more attention in
such reconfiguration scenario than when the other objective
functions are used.

In Figure 6, we depict the capacity usage and the energy
consumption. From Figure 6a, we observe that by applying the
energy minimization algorithm it is possible to decrease the
energy consumption to at least 15% of its maximum for all the
capacity objectives. The effect of υ on the network capacity
usage is shown in Figure 6b. From this graph, we observe
that minimizing the energy consumption has the greatest
impact, from 90% to 68%, on the capacity usage for the per-
BS UE fairness objective. Conversely, the classical capacity
objective experiences the least impact, from 99% to 91.45%.
In Figures 6a and 6b, it is important to notice that the greatest
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(a) Energy consumption.
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Fig. 6. Energy consumption and capacity usage in the energy-capacity
optimization.

changes in energy consumption and energy capacity usage
occur as the value of υ increases from zero to approximately
0.4; nonetheless, in such interval the rate at which the energy
consumption decreases is faster than that at which the capacity
usage decreases. This suggests that a good trade-off between
both objectives can be achieved.

From the above graphs, we can now generate the energy-
capacity trade-off curve for the MSCA-enabled HetNet, as
shown in Figure 7. From this graph, we observe that indeed a
good trade-off is achievable between both objectives: reducing
the capacity usage by as little as 5% allows to significantly
increase the energy savings in all of the three capacity ob-
jectives. However, even though it is possible to augment the
energy savings by further reducing the capacity usage, the
return from such reduction tends to diminish, particularly for
the per-BS UE fairness objective.

V. CONCLUSIONS

MSCA has been introduced as a mechanism to increase the
amount of bandwidth available to the users for HetNets in
5G cellular systems. However, existing work has focused on
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Fig. 7. Trade-off curve for the energy savings vs. capacity usage.

exploiting the use of MSCA to maximize the network capacity,
disregarding the energy efficiency of MSCA. In this paper, we
studied the problem of minimizing the energy consumption in
MSCA-enabled HetNets and developed an efficient algorithm
to solve it. We showed that, by utilizing a quasiconvex relax-
ation, we are able to not only solve the problem, but also to
establish a clear and simple cell-association policy. Moreover,
we showed how this cell-association policy can be easily
adjusted to obtain a new policy that balances the conflicting
objectives of energy minimization and capacity maximization.
Through extensive simulations, we characterized the effects
of our algorithm on the percent of load, users, and energy per
layer, as well as on the percent of UEs that use MSCA and
their average spectral efficiency. In addition, we obtained the
trade-off curve between the energy minimization and capacity
maximization and found that a large amount of energy savings
can be achieved in an MSCA-enabled HetNet by reducing the
network capacity usage by as little as 5%.
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