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On the Solution of the Steiner Tree NP-Hard Problem
via Physarum BioNetwork
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Abstract—In the last several years, many algorithms trying to
mimic biological processes have been proposed to enhance the
performance of communication networks. However, the bio-in-
spired algorithms represent only the very first step toward the
design of a smart adaptive communication network since: 1) they
model only a limited set of the rules underlying the biological
processes, thus, omitting fundamental functionalities; 2) they are
executed on traditional computer architectures, thus, failing to
achieve the intrinsic parallelism exhibited by biological processes.
To overcome these issues, in this paper, the BioNetwork paradigm
is proposed, a novel communication network paradigm in which
the traditional network nodes are replaced by living organisms.
The BioNetwork paradigm provides very attractive features over
traditional network paradigms, such as efficiency, adaptivity, reli-
ability, self-organization, and scalability. Moreover, it has a huge
potential since it can be adopted in many different applications,
such as health and military ones. In the paper, this potential is
shown by proving that a BioNetwork can solve one of the most
fundamental NP-hard problems in networks, i.e., the Steiner tree
problem. To this aim, a BioNetwork constituted by a unicellular
organism, the Physarum polycephalum slime mold, is designed.
Throughout the paper, it is proven that a Physarum BioNetwork
can solve the Steiner tree problem with an exponential conver-
gence rate toward the optimal solution. The theoretical solutions
are validated through a case study.

Index Terms—Biological networks, BioNetworks, Physarum
polycephalum, Steiner tree.

I. INTRODUCTION

B IOLOGICAL organisms exhibit remarkable properties of
self-organization, efficiency, and reliability when accom-

plishing the tasks needed to survive, as a direct consequence of
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Fig. 1. BioNetwork model: Each bionode hosts one or more living organisms,
and the responses of the living organisms to the external stimuli received
through the bio-interfaces provide the network functionality.

the evolutionary process. For this, in the last 10 years, many al-
gorithms and protocols mimicking the biological processes have
been proposed to enhance the performance of communication
networks [1].
Despite these efforts, the bio-inspired algorithms represent

only the very first step toward the design of smart adaptive com-
munication networks mainly for the following two reasons.
• Bio-inspired algorithms model only a limited set of the
rules underlying the biological processes [2]. Hence, they
omit undiscovered yet fundamental functionalities, thus
failing to achieve the efficiency and the reliability exhib-
ited by the original biological organisms.

• Bio-inspired algorithms are executed on traditional com-
puter architectures, which do not offer the intrinsic paral-
lelism exhibited by biological processes.

To overcome the aforementioned issues, in this paper we pro-
pose a novel communication network paradigm, referred to as
BioNetwork paradigm, in which the network nodes host one or
more biological organisms and the network operates according
to the interactions among them. More specifically, in a BioNet-
work, the traditional nodes are replaced by bionodes, i.e., by
living organisms interfaced with each other through dedicated
bio-interfaces, as shown in Fig. 1. The responses of the living
organisms to the external stimuli received through the bio-inter-
faces provide the network functionalities.
Therefore, by exploiting a community of living organisms

that interact with each other, the BioNetwork paradigm pro-
vides the following advantages over traditional algorithm-based
network paradigms for building smart adaptive communication
networks.
• Biological organisms are intrinsically efficient and re-
liable when accomplishing their processes by adapting

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



CALEFFI et al.: ON THE SOLUTION OF THE STEINER TREE NP-HARD PROBLEM VIA PHYSARUM BIONETWORK 1093

themselves to the environmental conditions. BioNetworks
inherit these properties since they are constituted by bio-
logical organisms.

• Biological processes are intrinsically autonomous and dis-
tributed, able to operate without the need of a centralized
control or a global knowledge. Hence, BioNetworks are
able to provide self-organizing and scalable communica-
tion services.

• Generally, several biological species coexist in the same
ecosystem, either by competing for the same resources or
by mutually benefiting from each other. Hence, BioNet-
works constituted by different biological species are able
to provide heterogeneous services with a fair resource
allocation.

Clearly, the BioNetwork paradigm has a huge potential since
it can be adopted in many different applications, due to the virtu-
ally uncountable degrees of freedom in selecting the biological
species constituting a BioNetwork. Here, we disclose this po-
tential by proving that a BioNetwork can solve one of the most
fundamental NP-hard problems in networks, i.e., the Steiner
tree problem.1 To this aim, we design a BioNetwork constituted
by a unicellular organism, the Physarum polycephalum slime
mold2 [3], and we analytically prove that a Physarum BioNet-
work can solve the Steiner tree problem in graphs constituted by
Physarum cycles3 with an exponential convergence rate toward
the optimal solution.
The main contributions of this paper can be summarized as

follows.
• We propose the novel BioNetwork paradigm, in which
living organisms provide network functionalities.

• We design a BioNetwork for the Steiner tree problem con-
stituted by Physarum cells.

• We develop a mathematical model for the evolution of a
Physarum BioNetwork when a subset of the Physarum
cells are artificially stimulated; this new mathematical
model is able to describe the Physarum physiology when
multiple food sources are available.

• We analytically prove, through the proposed model, that a
Physarum BioNetwork can solve the Steiner tree problem
in a graph constituted by Physarum cycles with an expo-
nential convergence rate toward the optimal solution.

To the best of our knowledge, this is the first work that pro-
poses and validates a BioNetwork, i.e., a network based on a
community of living organisms that interact with each other.
The rest of the paper is organized as follows. In Section II,

we discuss the related work. In Section III, we present the
BioNetwork paradigm and discuss the challenges for BioNet-
work design. In Section IV, we design a Physarum BioNet-

1Given a weighted undirected graph and a subset of vertices, the Steiner
tree problem can be summarized as finding the minimum-cost tree spanning all
the vertices in . The formal definition of the problem and additional insights
are given in Section IV-A.

2Physarum polycephalum is an ameboid unicellular organism, whose body
contains a networks of protoplasmic veins that efficiently transport nutrients
and chemical signals among different nuclei. Further details on Physarum poly-
cephalum are given in Sections III-B and IV-B.

3The formal definition of Physarum cycle is given in Definition 14, Sec-
tion V-B.

work for the Steiner tree problem and present the mathemat-
ical model describing the evolution of a Physarum BioNet-
work. In Section V, through the aforementioned model, we
analytically prove that a Physarum BioNetwork can solve the
Steiner tree problem with an exponential convergence rate to-
ward the optimal solution. Finally, Section VI provides the
conclusions.

II. RELATED WORK

A. BioNetwork Paradigm
Very recently, researchers started to investigate the feasibility

of unconventional computation paradigms, such as chemical,
molecular, or biological computing. In [4], the feasibility of
Physarum polycephalum is investigated as substrate for a
novel computing architecture, and the study was followed
by a research project funded by the European Commission
under the Seventh Framework Programme (FP7) [5]. In [2],
a biological organism, such as a cell culture, is adopted as an
overlay structure to drive the functionalities of an underlying
traditional communication network. The above-mentioned
papers propose either a single biochip or a traditional two-tier
network architecture with a centralized management driven by
a biological process. Differently, in this paper, we propose a
novel distributed network paradigm in which the traditional
communication network is replaced by a community of living
organisms that interact with each other for providing commu-
nication services.

B. Physarum Polycephalum
Physarum physiology has been widely studied for more than

50 years, and in the following, we focus on the works related
to network aspects. In [6], the authors conduct an experimental
study of the Physarum vein network. Their statistical analysis
shows that the network geometry exhibits two remarkable prop-
erties: a short total-length and a tolerance toward accidental
network disconnection. In [7], the authors present a mathe-
matical model for the physiological mechanism underlying
the Physarum vein network shaping when two food sources
are available. Then, they successfully apply a bio-inspired
algorithm based on such a model to the shortest-path problem
for road navigation. In [8], the authors further investigate the
same model in terms of equilibrium points, while in [9], the
authors mathematically prove that the bio-inspired algorithm
proposed in [7] converges to the optimal shortest-path solution
with an exponential convergence rate. All the above-mentioned
papers limit their attention to either experimental studies or
the simple shortest-path problem. Differently, in this paper, we
focus on analytically proving that a BioNetwork constituted by
Physarum cells can solve one of the most fundamental problems
in networks, i.e., the Steiner tree problem. Finally, in [10], a
heuristic bio-inspired algorithm is proposed for the Steiner tree
problem, which is a slight modification of the already-proposed
Physarum-inspired algorithm for the shortest-path problem [7].
The algorithm fails very often in finding the minimum-length
Steiner tree. Differently, in our paper, we propose a BioNetwork
constituted by Physarum cells, and we analytically prove that
a Physarum BioNetwork can solve the Steiner tree problem
in graphs constituted by Physarum cycles with an exponential
convergence rate toward the optimal solution. In addition,
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Fig. 2. BioNetwork example: Each bionode hosts two biological organisms
belonging to different species, which interact through biological links. Artifi-
cial links provide connections among biological organisms hosted in different
bionodes.

our analysis is carried out by developing a new mathematical
model for the Physarum physiology in presence of multiple
food sources.

III. BIONETWORK PARADIGM

Here, we first present the BioNetwork paradigm in
Section III-A. Then, in Section III-B, we discuss the challenges
for designing a network architecture based on the BioNetwork
paradigm.

A. BioNetwork Paradigm

Definition 1: A BioNetwork is a communication network in
which the network nodes, referred to as bionodes, host one or
more biological organisms, and the network operates according
to the interactions among them.
Hence, a BioNetwork is a community of living organisms that

interact with each other through biological or artificial connec-
tions4 for providing communication services, as shown in Fig. 2.
BioNetworks can rely on one or more biological species, re-

sulting in different levels of complexity, which could range from
a network constituted by a single species of unicellular organ-
isms to an ecosystem of several biological species that interact
with each other. The simplest bionode architecture includes the
following components, as shown in Fig. 2.
— Processing unit: The processing unit is the biological or-

ganism or, more generally, one of its biological processes.
The status of the biological process represents the state
register of the processing unit, and its evolution over time
represents the transition function of the processing unit.

— Bio-interface unit: The bio-interface unit detects and
induces changes in the biological process. It represents
an input/output device for the biological organism, thus
implementing a feedback system between the biological
process and the other elements of the BioNetwork.

— Power unit: The power unit is the energy source of the bio-
logical organism, and it can vary from a simple light emis-
sion for photo-autotrophic organisms to a more complex
organic molecule dispenser for heterotrophic organisms.

4The internode communications can rely on artificial connections, such as op-
tical or electromagnetic links, since they provide high-rate long-range commu-
nications. Differently, intranode communications can rely on either biological
or artificial connections.

Fig. 3. Physarum polycephalum slime mold: The vein network connecting the
nuclei is induced by a protoplasmic flow caused by the hydrostatic pressure
generated by the rhythmic contractions of actin-myosin fibers.

B. Challenges

The design challenges of a BioNetwork are completely dif-
ferent from those of a traditional communication network. In
fact, in a traditional network, the key issue for a protocol de-
signer is to explicitly take into account all the possible scenarios
to make the protocol adaptive. Differently, the key issue for a
BioNetwork designer is to select, among the biological organ-
isms available in nature, the most efficient and reliable in pro-
viding the desired network functionality for a specific operative
environment.
More specifically, a candidate biological organism to be used

in a BioNetwork should exhibit the following three properties.
• Effectiveness: The network functionality has to be directly
mapped on a biological process underlying the physiology
of the selected organism.5

• Controllability: To realize a feedback system between the
biological organism and the other elements of the BioNet-
work, artificial or biological stimuli able to detect and to in-
duce changes on the biological process must be available.

• Survivability: The biological organism must survive in the
operative network conditions, and its lifetime has to match
with the network functionality timescale.

A very attractive candidate for the BioNetwork paradigm is
the Physarum polycephalum slime mold [3]. In fact, it exhibits
all the aforementioned properties. More specifically:
• Physarum effectiveness: Physarum polycephalum is an
ameboid unicellular organism, whose body, during the
plasmodium vegetative phase, contains a networks of
protoplasmic veins that efficiently transport nutrients
and chemical signals among different nuclei, as shown
in Fig. 3. Very recently, the researchers discovered that
the geometry of the vein network meets remarkable
characteristics in presence of multiple food sources,
such as short network length, adaptability toward en-
vironmental changes, and reliability toward accidental
disconnections [6]. Moreover, the researchers found out
that Physarum can solve the shortest-path problem when
the two food sources are provided [8]. Thus, it is possible

5Clearly, biological processes needed by the organism to survive are the best
candidates in terms of efficiency.
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to directly map network-layer functionalities to the bi-
ological process underlying the Physarum vein network
shaping.

• Physarum controllability: The physiological mechanism
underlying the Physarum vein network shaping can be con-
trolled through external stimuli, both positive (glucose,
warm) and negative (blue light, salt, cold). Very recently,
some of these artificial stimuli are exploited to design and
implement a chip based on a Physarum cell and interfaced
with a hexapod robot [11]. The Physarum chip receives ex-
ternal inputs through light stimuli, and the protoplasmic
flow oscillations, detected through a CCD camera, drive
the robot movement.

• Physarum survivability: Physarum is able to survive in a
wide range of environmental conditions, including the ad-
verse ones through its sclerotium vegetative phase. More-
over, the researchers already successfully implemented the
Physarum-based chips.

Stemming from these considerations, in Section IV, we de-
sign a BioNetwork constituted by the Physarum cells, and in
Section V, we prove that it can solve the Steiner tree problem
in a graph constituted by Physarum cycles with an exponential
convergence rate toward the optimal solution.

IV. PHYSARUM BIONETWORK: PRELIMINARIES AND
DEFINITIONS

After a brief introduction of the Steiner tree problem in
Section IV-A, we describe the proposed Physarum BioNet-
work for the Steiner tree problem in Section IV-B. Then,
in Section IV-C, we derive the mathematical model for the
evolution of the Physarum BioNetwork, and we justify its
formulation in terms of Physarum polycephalum physiology.

A. Steiner Tree Problem
We model a communication network with a connected

undirected graph , where a vertex
denotes a node, and an edge

denotes the presence of a link6 between the vertices and
. A graph is defined as subgraph of if

. We denote with a function that assigns
a length (cost) to each edge (link), and since is undirected,
it follows . Accordingly, the
length of a subgraph is defined as

.
Definition 2 (Simple Path): Given a graph and two arbi-

trary vertices , a simple path is
a subgraph of with

(1)

where , , , and .
Definition 3 (Cycle): Given a graph , a cycle

is a subgraph of with

(2)

where . A simple cycle is a cycle where
.

6Without loss of generality, we assume throughout the paper that at most one
link exists between each pair of nodes since our results can be easily extended
to the case of multiple links by simply introducing fictitious nodes.

Fig. 4. Physarum BioNetwork: Each node hosts a Physarum cell enclosed in a
chip, and the interactions among different cells are provided through bio-inter-
faces able to map network packets to actin-myosin fibers contractions.

Definition 4 (Tree): Given a graph , a tree in is a con-
nected subgraph of with no simple cycles.
Definition 5 (Steiner Tree): Given a graph and an arbitrary

set of vertices referred to as Steiner vertices, a Steiner
tree is a tree in that spans all the vertices
in .
Definition 6 (Direct Path): Given a graph and two arbitrary

Steiner vertices , a direct path
is a simple path in where .
Similarly, an indirect path is a simple path

where .
Definition 7 (Minimum-Length Steiner Tree): Given a graph
, a set of Steiner vertices, and a length function

, the minimum-length Steiner tree
is the Steiner tree such that
Definition 8 (Steiner Tree Problem in Graphs): Given a graph
, a set of Steiner vertices, and a length function

, the problem is to find minimum-length Steiner tree
.

As generally known, the Steiner tree problem in graphs is a
classical NP-hard problem [12] since the corresponding deci-
sion problem—i.e., determining whether a Steiner tree of total
length at most exists for a given graph—was one of Karp's 21
NP-complete problems [13]. Steiner trees have been applied in
many different areas, such as communication networks, circuit
design, and computing, where many papers are published in the
last decade.

B. Physarum BioNetwork: Overview
As mentioned in Section III-B, Physarum is an ameboid uni-

cellular organism, whose body, during the plasmodium vegeta-
tive phase, contains a network of protoplasmic veins that effi-
ciently transport nutrients and chemical signals among different
nuclei, as shown in Fig. 3.
The Physarum vein network is induced by a protoplasmic

flow caused by the hydrostatic pressure generated by rhythmic
contractions of actin-myosin fibers. When a nutrient source is
available, the actin-myosin fibers closer to the nutrient sources
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Fig. 5. Four-node Physarum BioNetwork evolution in presence of three Steiner nodes. (a) Time . (b) Time .

contract, thus generating the protoplasmic flow. It has been ob-
served that the evolution of the vein network follows simple
rules: 1) veins not connected to food sources tend to disappear;
and 2) when multiple veins connect two food sources, the longer
veins tend to disappear. We refer the reader to [8] for further
details about the Physarum physiology underlying the vein net-
work shaping.
According to Definition 1, a Physarum BioNetwork is a

network constituted by Physarum cell connected to each other
through network links, as shown in Fig. 4. The reception of
a network packet through a link enables the bio-interface to
artificially induce, inhibit, or modify the rhythmic contractions
of actin-myosin fibers, e.g., through the release of calcium
ions [14]. Similarly, specific patterns of actin-myosin rhythmic
contractions are detected through the bio-interface and mapped
in a network packet sent through the network link. In other
words, all the Physarum cells (actually, all the nuclei contained
in each Physarum cell) are connected through virtual proto-
plasmic veins, i.e., a pair of bio-interfaces and a network link.
Each cell propagates the incoming virtual protoplasmic flow
according to its internal vein network, and, in turn, its internal
vein network evolves according to the incoming protoplasmic
flow.
Hence, in our Physarum BioNetwork, the artificial stimuli

drive the Physarum physiology to build an adaptive net-
work in which the Steiner nodes are connected through the
minimum-length Steiner tree. This mechanism is shown in
Fig. 5 with a simple example: a four-node network with three
Steiner nodes. The Steiner nodes are artificially stimulated
with positive feedbacks to induce rhythmic contractions in
the actin-myosin fibers [Fig. 5(a)]. The induced contractions
generate a protoplasmic flow that is propagated, through the
virtual veins, to every Physarum cell.
Consequently, at each cell, the biological process underlying

the Physarum vein network shaping evolves according to the
incoming protoplasmic flow. Eventually, the virtual veins that
survive, i.e., the network links propagating virtual protoplasmic
flow through network packets, form the minimum-length
Steiner tree [Fig. 5(b)], as analytically proven in Section V.

C. Physarum BioNetwork: Mathematical Model
Stemming from the notation introduced in Section IV-A, in

the following, a vertex denotes a Physarum cell, and

the set of Steiner vertices denotes the Physarum cells
stimulated to induce rhythmic contractions in the actin-myosin
fibers, as described in Section IV-B. Moreover, an edge
denotes the virtual protoplasmic vein connecting two Physarum
cells and , and denotes the length of .
Definition 9 (Flux Rule): Given a virtual protoplasmic vein
connecting two Physarum cells , the protoplasmic

flux7 induced by the stimulated Physarum cell
through at time is defined as follows:

(3)

where is the protoplasmic pressure of vertex induced
by at time , is the conductivity of link
at time , and is the length of vein .
Remark: The Flux Rule agrees with the Physarum physi-

ology [8]: The flux of a protoplasmic soil can be approximated
as a Poiseuille flow. Consequently, the protoplasmic flux can be
expressed as , where and are
the length and the radius of the tubular structure, respectively,
is the dynamic viscosity coefficient of the protoplasmic soil, and

and are the pressures at time of the protoplasmic
soil at the edges of the tube, induced by the rhythmic contrac-
tions of the Physarum cell .
Definition 10 (Vertex Rule): Given a Physarum cell , the

algebraic sum of the protoplasmic fluxes induced by the
stimulated Physarum cell at time is

if
if
if

(4)

where denotes the logical operator and denotes the
complement of in , denotes the flux constant, and

denotes the cardinality of set .
Remark: The Vertex Rule agrees with the Physarum phys-

iology. In fact, in a Physarum cell, the protoplasmic flow is

7If , the flux through is oriented from to at time .
Otherwise, the flux is oriented from to .
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caused by the hydrostatic pressure induced by the rhythmic con-
tractions of actin-myosin fibers. When different nutrient sources
are available, the actin-myosin fibers closer to the different nu-
trient sources contract with a different phase and/or amplitude,
thus generating a protoplasmic flow through the organism.
Remark: According to the Vertex Rule, the cell in-

duces the protoplasmic flow , and the remaining cells
in act as sinks for the flow. In fact, if , then no flux is
originated at , i.e., the flux entering the vertex is equal to the
flux leaving the vertex. Differently, if and , then a
constant positive flux is originated at , whereas if
and , then acts as sink, and hence a negative flux is
originated at .
Definition 11 (Conductivity Rule): Given a virtual proto-

plasmic vein connecting two Physarum cells , the
conductivity value of evolves over time according to
the following rule8:

(5)

with denoting the arithmetic av-
erage of the absolute value of the protoplasmic flux in-
duced by at time , denoting the average of the ab-
solute values of the protoplasmic fluxes flowing through
link at time , and denoting the cardinality of set .
Remark: The Conductivity Rule agrees with the Physarum

polycephalum physiology [8]: Physarum tubular structures with
larger fluxes become thicker, while those with smaller fluxes be-
come thinner and eventually disappear when there is no proto-
plasmic flux through the tube. This effect is caused by the stretch
activation induced by the protoplasmic flow over actin-myosin
fibers. Consequently, we model the evolution of the conduc-
tivity as a function of the overall induced protoplasmic flux, i.e.,
as a function of the average absolute values of .
Remark: We note that, differently from the Physarum

models available in literature such as [8], our model allows us
to model the presence of rhythmic contractions in more than
two Physarum cells: 1) by defining a protoplasmic flow for
each contracting Physarum cell; 2) by combining the different
protoplasmic flows at each link through the term .
Definition 12 (Physarum BioNetwork for the Steiner Tree

Problem): Given an undirected graph , a length function
and a set of Steiner vertices, the Physarum

BioNetwork for the Steiner Tree Problem is the system

(6)

which evolves according to (3)–(5), starting from the initial con-
ditions .
Remark: models a Physarum BioNetwork in which

some Physarum cells, i.e., the cells hosted in the Steiner ver-
tices, are stimulated with positive feedbacks to induce rhythmic
contractions in the actin-myosin fibers [Fig. 5(a)].
Definition 13 (Physarum Steiner Tree Graph): Given

a Physarum BioNetwork modeled by (6), the Physarum
Steiner Tree Graph is the temporal undirected graph

, where ,

8We note that, for the sake of simplicity, we omit in (5) a dimensional factor
for converting a flux quantity in a conductivity value .

with , defined in (5), denoting the average of the absolute
values of the protoplasmic fluxes flowing through link

at time .
Remark: The Physarum Steiner Tree Graph repre-

sents, at time , the subset of the virtual protoplasmic veins
of the Physarum BioNetwork characterized by a protoplasmic
flux different from zero. In Section V, we prove that the
Physarum Steiner Tree Graph constituted by Physarum
cycles evolves with an exponential convergence rate toward
the minimum-length Steiner tree. In other words, we prove
that a Physarum BioNetwork, in which the Steiner cells are
stimulated to induce rhythmic contractions in the actin-myosin
fibers, solves the Steiner tree problem.

V. PHYSARUM BIONETWORK NETWORK: STEINER TREE
ANALYSIS

In this section, we analytically prove that the Physarum
Steiner Tree Graph evolves toward the minimum-length
Steiner tree with an exponential convergence rate. More in
detail, we discuss in Section V-A the Physarum BioNetwork
behavior in an arbitrary time instant. Then, in Section V-B,
we discuss the Physarum BioNetwork Equilibrium and give
the definition of Physarum cycle, whereas in Section V-C, we
prove the main result (Theorem 2). In Section V-D we discuss
the exponential convergence rate in terms of computation
complexity. Finally, in Section V-E, we validate the proposed
Physarum BioNetwork through a case study.

A. Physarum BioNetwork Solutions

Here, we prove with Theorem 1 that system (4) admits a
unique solution if and only if the Physarum Steiner Tree Graph

spans all the vertices in . Since the proof of Theorem 1
requires Lemmas 1–4, we first give these preliminary results.
To this aim, let us consider the Physarum BioNetwork

in an arbitrary time instant . Moreover, let us suppose, without
loss of generality, that , and let us
adopt the following simplified notation: , ,

, and when , when
.

Lemma 1: System (4) is an undetermined system.
Proof: See Appendix-A.

Since (4) is undetermined, for any Steiner vertex we
can omit the th row and rewrite (4) as

if
if

(7)

By setting9 for any , and by de-
noting with and10

, we can

9This assumption is not restrictive since each flux depends on the difference
between two pressure values.

10Although does not depend on , we adopt a -dependent notation for
consistency.
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rewrite (7) as

(8)

where is a square matrix with
and for .

Lemma 2: For any and , it results .
Moreover, for any and , it results .

Proof: See Appendix-B.
Lemma 3: For any and , there exists at

least a such that .
Proof: See Appendix-C.

Corollary 1: For any , there exists at least a
such that for any .

Proof: It follows directly from Lemma 3.
Lemma 4: For any and , we have
.
Proof: See Appendix-D.

Theorem 1: System (7) admits a unique solution
if and only if the vertices in are con-

nected each other in the Physarum Steiner Tree Graph .
Proof: See Appendix-E.

B. Physarum BioNetwork Equilibrium
Stemming from Theorem 1, in this section we discuss the

equilibrium of the Physarum BioNetwork . To this aim, we
first restrict with Lemmas 5–7 the set of admissible values for
the link conductivities of the Physarum
BioNetwork .
Lemma 5: If there exists such that , then

for any .
Proof: See Appendix-F.

Remark: Lemma 5 states that if there exists a time instant
so that a link does not belong to the Physarum Steiner Tree
Graph , then the link does not belong to for any

.
Lemma 6: The hypercube

is an attracting and
invariant space for the link conductivities of the Physarum
BioNetwork given in (6).

Proof: Since

from (5) and Lemma 4, the thesis follows.
Remark: Lemma 6 states that for any initial conditions

, for any , and for any , we have
.

Lemma 7: The lower bound of
is an invariant space for

the link conductivities of the Physarum BioNetwork
given in (6).
Proof: It follows directly from Lemma (5).

Remark: Stemming from Lemmas 6 and 7, in
the following we assume without loss of gener-
ality that are feasible initial conditions, i.e.,

.
We now discuss the equilibrium of the PhysarumBioNetwork

starting from feasible initial conditions , both when
is a tree (Lemma 8) and when is not a tree (Lemma 9).

Remark: At the equilibrium, from (5) it follows that, when
the conductivity of an arbitrary link is different from
zero, the length of such a link is equal to the average of the
absolute values of the protoplasmic fluxes

(9)

Lemma 8: Let denote an arbitrary tree
spanning all the vertices in , and let be the
link conductivities with

if

otherwise.
(10)

Then, we have the following.
I) is an equilibrium point for the PhysarumBioNetwork

.
II) For any , the protoplasmic flux induced by

the Steiner vertex through is given by

if

otherwise.
(11)

III) For any , the link conductivity is given by

(12)

IV) For any , the protoplasmic pressure at
vertex induced by the Steiner vertex is given
by

if

otherwise.
(13)

V) For any so that , the
average differential pressure between and is
given by (14), shown at the bottom of the page,

(14)
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with

and

where denotes the set11 of Steiner vertices in
connected with in the subgraph ,

is the simple path connecting and with
, and is the vertex closest to

.
Proof: See Appendix-G.

Remark: We note that, if , i.e., if and are
connected in with a direct path, then (14) reduces to

(15)

Definition 14 (Physarum Cycle): Given a Physarum Steiner
Tree Graph and the corresponding minimum-length
Steiner tree , a cycle
between two Steiner vertices is a Physarum cycle if
we have the following.
Case 1) , it results

(16)

where denotes the set of Steiner vertices in
belonging to , and

and denote the two direct paths12
between and in , respectively.

Case 2)

(17)

(18)

where denotes the set of Steiner vertices in
belonging to , and
denote the direct and the indirect paths13

11If , then .
12If more than two direct paths exist, i.e., the Physarum cycle is not a simple

cycle, then it must exist a unique shortest direct path.
13If more than two indirect paths exist, i.e., the Physarum cycle is not a simple

cycle, then (18) must hold for any indirect path.

between and in , respectively, denotes
the set14 of Steiner vertices in connected with in
the subgraph , and, finally,

is the closest vertex to .
Remark: The first condition (16) assures the existence of a

unique shortest direct path between a pair of Steiner vertices.
This condition is necessary since, if multiple shortest direct
paths exist, then the number of equilibrium points for the
Physarum BioNetwork could be uncountably infinite.
In fact, denoted with the protoplasmic flux between the
Steiner vertices and when only one shortest direct path is
available, then the set of equilibrium points is as follows:

(19)

The second condition (17), (18) assures the existence of a pair
of Steiner vertices whose direct path is longer than the average
differential pressure between those vertices in the minimum-
length Steiner tree . This condition is needed by Lemma 9
to assure that the interior of does not contain any equilibrium
point for the Physarum BioNetwork .
Lemma 9: Let denote a graph spanning all the vertices

in where any cycle is a Physarum cycle. Then, if is not
a tree, the interior of does not contain any equilibrium point
for the Physarum BioNetwork .

Proof: See Appendix-H.

C. Physarum BioNetwork Convergence

Finally, we can prove in Theorem 2 that the Physarum Steiner
Tree Graph constituted by Physarum cycles evolves to-
ward the minimum-length Steiner tree with an exponential con-
vergence rate. Since the proof of Theorem 2 requires Lemma 10,
we first give this preliminary result.
Lemma 10: Let denote a graph spanning all the vertices

in where any cycle is a Physarum Cycle. If is not a tree,
there exists at least an edge so that
exponentially converges to zero.

Proof: See Appendix-I.
Remark: Lemma 10 proves that any link not belonging to the

minimum-length Steiner tree disappears from , and the rate
of such a convergence is exponential.
Theorem 2: Let denote a graph spanning all the vertices

in where any cycle is a Physarum Cycle. Then, the equilib-
rium point associated with the minimum-length Steiner
tree is globally asymptotically stable for the Physarum
BioNetwork .

Proof: It follows by iteratively applying Lemmas 9 and 10
to .
Remark: Clearly, the exponential convergence rate is a very

attractive feature of the Physarum BioNetwork since it al-
lows to efficiently compute the minimum-length Steiner
tree, as discussed in Section V-D.
Remark: We argue that there exists a relationship between

the Physarum cycle condition and the choice of the artificially
stimulated Physarum cells. However, further research is neces-
sary to establish if this correlation exists.

14If , then .
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D. Computational Complexity

In the following, we first discuss the computational power
of the Physarum BioNetwork. Then, we discuss the worst-case
complexity of the Physarum BioNetwork in solving the Steiner
tree problem.
Definition 15 (BioNetwork Computation Model): A com-

puting device is defined as a device mapping an input to an
output [15]. Consequently, the BioNetwork can be considered
a computing device mapping the input, i.e., the initial condition

defined in (6), to the output, i.e., the
equilibrium point .
Definition 16 (BioNetwork Complete Computation): The

BioNetwork computation is complete when an -vicinity of
the equilibrium point is approached and the BioNetwork is
confined there.
Remark: The above definition allows a fair comparison to

traditional computation theory [15]. Specifically, it allows a fair
comparison to a traditional computer architecture with bits of
precision and a machine epsilon equal to .
Proposition 1 (BioNetwork Computation Power): Let

denote a graph spanning all the vertices in where any cycle is
a Physarum Cycle. If is not a tree, then there exists at least
an edge so that the Physarum BioNetwork

computes in time units.
Proof: From (47) in Appendix-I, the rate of convergence

toward the attractor for satisfies the
following condition:

(20)

where the exponential factor is function of
, i.e., it is function of the difference between the length

of the path containing and the length
of the corresponding path (see Appendix-I for
further details). Thus, every time units, a new bit of
the attractor is computed [15], [16]. Consequently, according to
Definition 16, the computation of is completed in
time units.
Proposition 2 (BioNetwork Time Complexity): Let de-

note a graph spanning all the vertices in where any cycle
is a Physarum Cycle, let denote the cardinality of set ,
and let us refer to as the characteristic time
of the problem. The Physarum BioNetwork computes the
minimum-length Steiner tree with a worst-case time com-
plexity upper-bounded by .

Proof: The proof follows directly from Proposition 1 by
accounting for Definition 16.
Remark: Further work is required to analyze the impact of

the Physarum cycle condition on the proposed solution. Specif-
ically, further research is needed to analyze the convergence and
the complexity of the proposed solution in graphs where not all
the cycles are Physarum cycles.

E. Case Study

Here, we validate the proposed Physarum BioNetwork
through simulations. More specifically, we simulate a dis-
crete-time BioNetwork constituted by Physarum cells, as
described in Section IV. The cells are connected to each other

Fig. 6. Physarum Steiner Tree Graph at time . The gray circles
denote the Steiner vertices, and the edge labels denote the edge lengths.

Fig. 7. Physarum Steiner Tree Graph at time .

Fig. 8. Link conductivity as function of time for the topology in Fig. 6.

through bio-interfaces and network links,15 and the proto-
plasmic flow generated at each cell is virtually propagated
along the entire network according to the network topology.
In the first experiment, we consider a network topology

(Fig. 6) used in a widely cited work [17]. We simulate the
evolution of the Physarum BioNetwork as a function of the
discrete time. As shown in Fig. 7, the Physarum Steiner Tree
Graph evolves toward the minimum-length Steiner tree.
Fig. 8 presents the link conductivity values as a function of the

15We assume that the delays generated by the system cascade bio-inter-
face–network link–bio-interface are negligible compared to the actin-myosin
fiber contraction time periods. This assumption is not restrictive since re-
searchers have estimated the duration of actin-myosin fiber contraction periods
in 2 min.
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Fig. 9. Link conductivity as function of time for the topology in Fig. 6 when
.

Fig. 10. Physarum Steiner Tree Graph at time . The gray circles
denote the Steiner vertices, and the edge labels denote the edge lengths.

discrete time, with a logarithmic scale on the -axis. More in
detail, we consider two links: 1) the link , belonging to the
minimum-length Steiner tree ; 2) the link , not belonging
to the minimum-length Steiner tree. First, we observe that the
numerical results agree with Theorem 2: The conductivities of
the links not belonging to the minimum-length Steiner tree go
exponentially to zero as time increases. Moreover, we observe
that Proposition 1 is confirmed by the numerical results: Every
constant time period, a new bit of the attractor is
computed.
In the second experiment, we still consider the network

topology shown in Fig. 6, but we change the length of the
link so that the cycle between the nodes , , and is
not a Physarum cycle. More in detail, we set equal to the
right side of (17), i.e., . Clearly, since the hypotheses
of Lemma 9 are not satisfied, there exists an equilibrium
point when is not a tree. Fig. 9 presents the values of
the link conductivity as a function of the discrete time, with
a logarithmic scale on the -axis, for the links and .
First, we observe that for low values of time, the numerical
results agree with Theorem 2: The conductivities of the links
evolve with an exponential rate. However, since there exists
a non-Physarum cycle, then there exists an equilibrium point
when is not a tree. More specifically, when
and , the Physarum BioNetwork is at the

Fig. 11. Link conductivity as function of time for the topology in Fig. 10.

equilibrium. Finally, in the third experiment, we consider a
larger network topology (Fig. 10) used in a previous work [18]
(b01 topology). The Physarum Steiner Tree Graph evolves
toward the minimum-length Steiner tree with length equal to
82. Fig. 11 presents the link conductivity values as a function of
the discrete time, with a logarithmic scale on the -axis. More
in detail, we consider two classes of links: 1) the class of links
belonging to the minimum-length Steiner tree , represented
by link ; 2) the links not belonging to the minimum-length
Steiner tree. Similarly to the first experiment, the numerical
results agree with Theorem 2 since the conductivities of the
links not belonging to go exponentially to zero as time in-
creases. Moreover, we observe that the numerical results agree
with Propositions 1 and 2. Specifically, for any : 1)
every constant time period a new bit of the attractor is
computed; 2) the time period necessary for computing a new
bit of the attractor depends on .

VI. CONCLUSION
In this paper, the BioNetwork paradigm, a novel commu-

nication network paradigm in which the traditional network
nodes are replaced by biological organisms, has been pro-
posed. The BioNetwork paradigm aims at exploiting the evo-
lutionary cleverness of nature through a community of living
organisms that interact with each other. The BioNetwork par-
adigm has a huge potential since it can be adopted in many
different applications. In the paper, this potential has been
disclosed by proving that a BioNetwork can solve one of
the most fundamental problems in networks, i.e., the Steiner
tree problem. To this aim, a BioNetwork constituted by a uni-
cellular organism, the Physarum polycephalum slime mold,
has been designed, and it has been analytically proved that
a Physarum BioNetwork can solve the Steiner tree problem
in graphs constituted by Physarum cycles with an exponential
convergence rate toward the optimal solution. The theoretical
analysis has been validated through simulations.

APPENDIX

A. Proof of Lemma 1
We prove the lemma by showing that, for an arbitrary ,

the th row of system (4) is a linear combination of the other
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rows, i.e.,

(21)
Since from (3), we can write the left side of (21)

as in (22), shown at the bottom of the page.

B. Proof of Lemma 2
Thesis 1 ( ): Since
, we prove the thesis with a reductio ad absurdum by sup-

posing that . Without loss
of generality, let us suppose that . It fol-
lows , and since

from (7), we obtain a reductio ad absurdum.
Thesis 2 ( ): Since

from Thesis 1, we prove the thesis with a reductio ad
absurdum by supposing that .
Again from Thesis 1, it follows , and since

from (7), we obtain a
reductio ad absurdum.

C. Proof of Lemma 3
We prove the lemma with a reductio ad absurdum by sup-

posing that .
Without loss of generality, let us assume that .
Thus, it follows

Since from (7), we obtain a
reductio ad absurdum.

D. Proof of Lemma 4

We prove the lemma by considering an arbitrary ,
and by introducing a sequence of distinct indices

such that and for any
.

We first consider the index and, according to (4), we
have that , and since for any

implies for any , we
have for any .
Let us now consider the index , , and let denote

the flux indicator variable, i.e., if ,
otherwise.

According to (4), we obtain (23), shown at the bottom of the
page.
Since we have

(24)
by substituting (24) in (23), it follows:

(25)
Iteratively, we obtain

(26)

(22)

(23)
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which implies . By
exploiting the properties and , the
thesis follows.

E. Proof of Theorem 1
Case 1 ( ): Weprove the sufficient conditionwith a reductio

ad absurdum by supposing that such
that is not connected with in .
Let us denote with the set of vertices connected

with in , and with . Since
, it follows:

(27)

and, since from (7),
it follows . Thus, we have a reductio ad
absurdum since for reductio's hypothesis.
Case 2 ( ): System (8) admits a unique solution for any

if and only if is nonsingular [19]. Since is nonsingular
if it is positive definite [19], we prove the necessary condition
with a reductio ad absurdum by supposing that is connected
in the Physarum Steiner Tree Graph and is not positive
definite, i.e., a such that
exists. Clearly, this implies that there exists at least a

and, since and , (28),
shown at the bottom of the page, follows.
Let us denote with and with

the set of vertices connected with . Since
from Lemma 2, we have that implies

(29)

where denotes the logical operator or. Thus, we have a
reductio ad absurdum since for reductio's hypothesis.

F. Proof of Lemma 5
Since from (5) we have that implies

(30)

it follows:

(31)

G. Proof of Lemma 8
I) It follows directly from (9).
II) It follows directly from (5). In fact, since each Steiner

vertex acts as a sink for the protoplasmic
flow induced by the Steiner vertex , and since there
exists a unique path between and in , then the
protoplasmic flux flowing through is proportional
to the number of Steiner vertices connected with in the
the subgraph .

III) From (11), if , we have

(32)
IV) It follows directly from (3), (11), and (12).
V) From (11), we have

(33)
We must consider now two cases: i) ;
ii) .

(28)
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Case i): Since from (4) either
or , we

have

(34)

Case ii): Since from (4) it results
and

, we have

(35)

By substituting (34) and (35) in (33), we obtain the thesis
(36), shown at the bottom of the page.

H. Proof of Lemma 9
We prove the lemma with a reductio ad absurdum by sup-

posing that there exists an equilibrium point when is not a
tree and any cycle in is a Physarum Cycle.
Since is not a tree by hypothesis, we have that there exist

cycles16 in .Without loss of generality,17 let us assume there
exists a unique simple cycle in .
We must consider two cases: i) ; ii) .
Case i): At the equilibrium, from (15), we have

(37)

(38)

16A tree is a connected graph with no cycles. Since, from Theorem 1,
is connected, then we have cycles in

17If the assumption does not hold, the lemma can be easily proved by adopting
the same reasoning.

Clearly, (37) and (38) constitute a reductio ad absurdum
since for reductio's hypothesis.
Case ii): At the equilibrium, by considering the direct path

, from (15), we have

(39)

Moreover, by considering the indirect path , from (14),
we have (40), shown at the bottom of the page.
Clearly, (39) and (40) constitute a reductio ad absurdum
for the reductio's hypothesis.

I. Proof of Lemma 10
Since is not a tree by hypothesis, we have that there

exist cycles in . Without loss of generality,18 let us assume
there exists a unique simple cycle in . Consequently, from
Theorem 1, we have that there exist two Steiner trees in .
Let denote the path belonging to the min-

imum-length Steiner tree , with .
Similarly, let denote the path in ,
with . Since is a cycle, we have
and .
We define the function as

(41)
Since

(42)

we have (43), shown at the top of the next page.

18If the assumption does not hold, the lemma can be easily proved by adopting
the same reasoning.

(36)

(40)
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(43)

(44)

(45)

(46)

We must consider two cases: i) ; ii) .
i) From (4), for any , it results either

or . Thus,
we have (44), shown at the top of the page.

ii) From (4), for any , we have either
or

. Thus, following the same reasoning of (44),
we have (45) shown at the top of the page.
Finally, by noting that and as in (17)
and (18), we obtain (46), shown at the top of the page,
where the inequality holds since is a Physarum cycle
by hypothesis.

Let us now discuss function defined in (41). We
first observe that

(47)
where the last implication follows from (4). Moreover, by ac-
counting for (44) and (44), we have

(48)

and

(49)

Consequently, since is positive in and it expo-
nentially tends to zero as increases, and by accounting for
Lemma 9, we have that there exists
so that exponentially tends to zero as increases.
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