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Abstract—The sampling of the bacterial signal transduction is
investigated for molecular communication (MC). It is assumed
that the finite-duration amplitude modulated, i.e., pulse-amplitude
modulated (PAM), concentration of a certain type of molecule
is used for information transmission. The bacterial signaling
pathway is modified to transduce the input molecules to the
output signal, i.e., produce green fluorescent protein (GFP). The
bacterial signal transduction is composed of a set of biochemical
reactions which impose randomness on the response. Therefore,
the input-output relation, the timing issues, and the noise effects
for the bacteria response are characterized based on both ana-
lytical and experimental observations. Sampling schemes for the
raw bacteria response are proposed based on the total response
duration, the peak value, the ramp-up slope, and the ramp-down
slope. Each sampling scheme is shown to be providing a one-to-one
and monotonic function of the input. The sampling based on
the ramp-up slope is shown to be statistically favorable for the
detection of PAMmolecular signals. Accordingly, the time interval
selection and non-coherent sampling are studied for the efficient
calculation of the ramp-up slope from the raw bacteria response.
This work provides a basis for the sampling of the raw bacteria
response and enables accurate detection of PAMmolecular signals
via bacterial response for MC and sensing applications.
Index Terms—Bacterial signal transduction, detection, microflu-

idics, molecular communication, systems biology.

I. INTRODUCTION

T HE envisioned applications of molecular communication
(MC) have originated research on the utilization of the

available signaling mechanisms in the cells for information
transmission. MC is ubiquitous in biological systems including
populations of microorganisms and organs [1], [2]. For ex-
ample, bacteria form biofilms and exchange signals to initiate
gene expression based on the population density, i.e., quorum
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sensing. Molecular signals are also present in multicellular
organisms, e.g., hormones and neurotransmitters are used to
regulate physiological activities. Genetic engineering of cells,
specifically bacteria, has been prompted to develop molecular
oscillators and transceivers for the information transmission
using molecular signals [3]–[6]. The study of bacteria and its re-
sponse to the external environment is critical for understanding
cellular response due to the relative ease of engineering and
testing, which already gained a wide attention in the literature
for sensing and monitoring [7]–[11]. The goal of this paper is to
determine how the synthetic bacteria respond to external vari-
ation in a molecular signal, e.g., in concentration of a certain
type of molecule, by signal transduction and how this variation
can be detected based on the bacteria response, e.g., green
fluorescent protein (GFP) illumination. We, first, examine the
raw bacteria response both theoretically and experimentally for
the one-to-one input-output relation, the noise, and the timing
of the bacterial signal transduction. We, second, investigate sta-
tistically the sampling of the bacteria response as the received
signal and the detection of the molecular signals. We consider
one molecular source releasing finite duration concentration
signals with a specific type of molecule, i.e., pulse-amplitude
modulation (PAM), and a single bacterial receiver. The infor-
mation is modulated onto the amount of the specific molecule
in the concentration, which the bacteria cannot synthesize.
The molecular propagation have been extensively studied

and can be found in many works [12]–[15]. The informa-
tion-theoretic fundamental limits related to MC are analyzed
in [16]–[18]. A commonly taken approach is to consider
nanomachines equipped with nanoscale molecular sensors
that are capable of measuring received concentration [19],
[20]. The undergoing biochemical processes for transmission
and reception of molecular signals in the synthetic biological
transceivers and their signal transduction pathways prove much
more difficult to model and circumscribe [21]–[24]. The chal-
lenge on which we concentrate in this paper is the effect of the
signal transduction on the sampling of the continuous output
signal in MC systems with bacterial receivers. Of particular
interest is the issue of the effect of the noise and the timing on
the detection of the PAM molecular signal. The issues of the
signal transduction in cells have been broadly reviewed and can
be found in many books ([25], Chapter 2), ([26], Chapter 24),
([27], Chapter 5), ([28], Chapter 2). The biochemical modeling
of the signal transduction has been often studied in the context
of reaction-rate equations (RRE). Different cases have been
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Fig. 1. The block diagram representation of the bacteria-based PAMmolecular
signal detection system.

considered, among them: the bacterial signal transduction is
modeled using a set of RRE to predict the bacteria response
in a microfluidic platform [11], or simplification of an RRE
model of signal transduction is utilized under quasi-equilibrium
condition to design biological circuits with both analog and
digital signaling functionalities [29]. Close to our work, [6]
investigates performance of pulse-based on-off keying (OOK)
modulation, i.e., single bit transmission per pulse, for bacterial
receivers, where the binary one is represented by the input
signal, and the binary zero is represented by the removal of the
input from the channel. Therefore, detection of the multi-level
input signals by bacterial signal transduction has been an open
problem to date and has not been addressed yet to the best of
our knowledge.
The detection block diagram for the considered detection

problem is given in Fig. 1. Molecular source releases PAM
molecular signals with level . The bacteria transduce the
molecular signal to GFP, recorded illumination of which de-
noted as received signal . The continuous-time received
signal is sampled based on either the peak value, the total
response duration, the ramp-up slope, or ramp-down slope,
and the discrete-time is obtained. Finally, thresholding is
applied based on the predefined decision rules. Accordingly,
the input molecular signal is decided.
In this paper, we consider the issues of the one-to-one

input-ouput relation, noise, and timing in the context of de-
tection via sampling the bacterial signal transduction at the
receiver. The transient variations in the noise and timing is-
sues are tightly linked with the sampling of the raw bacteria
response. The random jitter in the beginning, peak, and the
ending of the bacteria response entails that the sampling of
the bacteria response at a fixed instant will be exposed to
additional distortion apart from the noise. The noise and the
timing together are responsible for the distortion observed on
the bacteria response. The following questions are sought to be
investigated throughout the course of this work.
• When is the input-output relation one-to-one?
• How does the noise in the bacteria response vary with the
time?

• What are the randomness effects on the timing of the
response beginning, the peak instant, and the response
ending?

• How should the raw bacteria response be sampled to mini-
mize noise and timing effects for the detection of the input
molecular signal?

The question regarding the sampling of the bacteria response
for the detection of the input signal is principally significant,
since the noise and the timing issues of the biological receivers
have not been studied empirically for M-ary PAM molecular
signals based on the experimental data. Theoretical analysis
of biological transceivers has been performed based on RRE

models in [29], where the biological noise and the timing issues
are neglected. The robust design of biochemical signaling
pathways with kinetic parameter uncertainties and external
disturbances is studied based on control theory in [30]–[32].
However, the inference of information from the biochemical
signal transduction has been an open debate. The provided per-
formance analysis of the on-off keying modulation for bacterial
receivers in [6] is only valid for binary PAM with transmission
of a fixed level for 1 and transmission of no signal for 0. The
sampling of the received signal from raw bacteria response is
a subject yet to be studied for M-ary detection in the course of
this work.
The remainder of this paper is organized as follows. In Sec-

tion II, the bacterial signal transduction is theoretically studied.
In Section III, the timing and noise issues in the bacteria re-
sponse is investigated empirically based on experiments from
a microfluidic platform. In Section IV, the sampling of the raw
bacteria response is discussed, and the statistical characteriza-
tion is performed. The detection of molecular signals via sam-
pling the ramp-up slope is elaborated in Section V. The final
conclusions are provided in Section VI.

II. BACTERIAL SIGNAL TRANSDUCTION

The bacteria can generate a controlled response to an external
molecular stimuli by signal transduction. For example, the gene
sequence of bacteria can be modified such that output protein
production can be controlled in response to an input molecular
signal ([25], Chapter 2). Here, we provide an overview of the
biochemical phenomena of the bacterial response to external
stimuli and how it makes the detection of the input signal pos-
sible.
To guide the detection of molecular signals, the basics of the

input-output relation, e.g., input controlled synthesis of GFP,
by bacteria must be first understood. Therefore, the bacterial
signal transduction is analytically investigated focusing on the
gene expression. In the following subsections, first, the specific
model of the bacteria signal transduction is overviewed, and
then, the input-output relation of the bacteria response is dis-
cussed along with the error analysis.

A. Model

The gene expression is regulated, e.g., activated, by the con-
trol of inducer molecules, which are supposed to be externally
provided. To analytically study the bacteria response, we focus
on the protein production as the output signal. The output signal
is analyzed with respect to the externally provided inducer
molecules, which is the input signal. Specifically, simplification
of the RREs for the gene expression under the quasi steady-state
and equilibrium approximations is considered for modeling
([28], Chapter 2), ([25], Chapter 2). The detailed explanation
for the modeling of gene expression and the simplifications of
the RREs can be found in ([28], Chapter 2), ([25], Chapter 2).
Accordingly, the output signal is related to the input signal via
the RRE given by

(1)
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Fig. 2. The input-output relation of the bacteria response based on (4). The
activation coefficient is taken as 10, 15, and 20 M, , and the input
amount varied from 0 to 50 M. The output signal is normalized by .

where is the output signal, is the input signal level, is the
activation coefficient. For example, when the expression is sig-
nificantly activated when determines steepness of the
bacteria signal transduction, is the empirical rate parameter
defining the maximum expression level when , and is
the degradation rate of the output signal . Although this model
is a simplified version of the bacterial signal transduction, it cap-
tures the input-output behavior of the bacteria response based on
the gene expression.
To solve (1) for the step response with the zero initial con-

ditions, i.e., the input is changed from zero to its desired level,
Laplace transform of , i.e., , is used, and after
partial fraction decomposition is found as

(2)

Finally, by taking the inverse Laplace transform of , i.e.,
, y is found as

(3)

B. Input-Output Relation and Error Analysis

To study the input-output relation, the normalized steady-
state response of the bacteria is obtained using (3) as

(4)

In Fig. 2, it is observed that the bacteria response is a one-to-one
function of the input within an acceptable range. For example,
when input is in the range from 15 to 25 M for M
in Fig. 2, the output can even be approximated as a linear func-
tion of the input. As the input signal level kept increasing, the

bacteria response is observed to be saturating in Fig. 2. After
saturation, the further increasing the input signal makes no dif-
ference on the output signal, i.e., input signal is indistinguish-
able based on the output signal. On the other hand, the output
signal stays approximately zero for small input values, e.g., a
few M in Fig. 2. However, when the input signal range is kept
both sufficiently large and below saturation level, a one-to-one
input-output relation can be achieved.
We also analytically study the transient response of the bac-

teria to point out the impact of error in the maximum expression
level . To this end, the linear approximation of the in (3)
for is used. First order Taylor series expansion of the ex-
ponential term, i.e., for , gives

(5)

where the term is constant with respect to time.
We define as the erroneous version of the maximum
production level , and incorporates the arbitrary error factor.
Accordingly, the erroneous output can be rewritten by plug-
ging into (5) as

(6)

The absolute error in the output, i.e., , is

(7)

Note that the error term evolves with time. Accordingly, the
error on the output is expected to increase during the ramp-up
behavior of the bacteria response, i.e., the impact of erroneous
protein production rate on the output is more severe as time
elapses. In the next section, we will investigate the bacteria
signal transduction experimentally for PAM molecular signals.

III. EXPERIMENTAL ANALYSIS OF BACTERIA RESPONSE
We perform tests with Escherichia coli (E. coli) bacteria

strains on a microfluidic platform [6], [11]. The microfluidic
platform provides control over the input molecular signal, i.e.,
the concentration pulse level and duration. Furthermore, the
microfluidic platform hosts bacteria strains in chambers, where
a microfluidic channel with flow carries the media composed
of both the required nutrients and the input signal (Fig. 3).
The E. coli bacteria are genetically engineered to express

genes from the autoinducer system of Vibrio fischeri (V. fis-
cheri) bacteria and produce a variant of the green flouresence
protein (GFP) under the presence of the autoinducer N-Acyl
homoserine lactone (AHL) molecules. The produced GFP rep-
resents the bacteria response, i.e., output signal, and measured
using the fluorescence microscopy. The autoinducer AHL
molecules represent the input signal. Since the E. coli bacteria
cannot encode the genes to produce AHL, the output signal can
be utilized to detect the amplitude of the externally provided
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Fig. 3. The chamber that is connected to the microfluidic channel and hosts the
genetically-engineered bacteria.

PAM molecular signal, i.e., the level of a finite duration AHL
concentration pulse.
The specifics of the experimental system composed of the ge-

netically engineered E. coli bacteria and the microfluidic plat-
form were previously presented in [6], [11]. In the preceding
discussions, we start with the study of themolecular signal prop-
agation through the microfluidic channel. The negligible prop-
agation delay, and invariance of the pulse amplitude and dura-
tion are pointed out for the multiple chambers hosting the bac-
teria. Then, the timing and the noise issues of the bacteria signal
transduction are investigated based on measurements from the
experimental platform. We provide a comprehensive look at the
raw bacteria response for molecular signal detection and set the
stage for statistical comparison of the different strategies for
sampling of the raw bacteria response.

A. Pulse Prolongation Between Multiple Chambers
Having bacteria response from the different chambers at-

tached to the same microfludic channel is useful to obtain
multiple measurements and alleviate noise effects on the output
signal for detection purposes. The microfluidic channel has a
cross-section of 250 m 10 m, and flow rate is 360 l/hr.
The chambers are placed on the microfluidic channel with a
constant separation distance, e.g., 0.5 mm.
To obtain the prolongation of the concentration pulse until

it reaches to the chamber , we first calculate the molecular
propagation delay until the chamber as [14]

(8)

where is the distance of the closest chamber to the source,
is the separation distance between chambers, and is the

area averaged flow velocity. The dispersion length until
the chamber is obtained using the diffusion equation as

(9)

where is the Taylor dispersion adjusted diffusion constant.
Finally, the pulse prolongation duration is obtained as

(10)

The molecular propagation delay and the pulse prolongation
durations are tabulated in Table I, which are in the range of

TABLE I
CONCENTRATION PULSE PROLONGATION THROUGH THE MICROFLUIDIC

CHANNEL

a few 10 ms. The calculated delay and prolongation dura-
tions are much less compared to the required pulse duration
to get a response from the bacteria, which is in the order of
10 min [6], [11].
The separation distance between the source and the cham-

bers is in the range of a few mm, and the considered pulse dura-
tions are in the range of a few 10 min to get response from the
bacteria in the experimental microfluidic platform. Accordingly,
the input molecular signal can be taken invariant with respect to
the propagation through themicrofluidic channel. Therefore, the
bacteria in different chambers are exposed to the same concen-
tration pulse duration. Furthermore, the delay due to molecular
propagation is also negligible since the bacteria response is in
the hours scale [11], [29], which will be investigated in the fol-
lowing subsections.

B. Timing Analysis
The timing of the bacterial response behavior has importance

to be able to efficiently sample and process the output signal
for detection of the amplitude of the PAM molecular signal.
The bacterial signal transduction involves ordered set of bio-
chemical reactions. A set of biochemical reactions produces
fluctuating number of intermediate molecules in short bursts at
random time intervals, which need to reach an effective level to
activate the next step in the signal transduction pathway. There-
fore, there can be large differences in the time delay required
for signal transduction, especially across the bacteria population
[21]. Here, we investigate the timing specifically with respect
to the response beginning, i.e., the instant that bacteria starts to
produce the output signal, and the peak instant, i.e., the moment
when the bacteria response reaches its peak, and the total re-
sponse duration, i.e., the time elapses from the beginning of the
bacteria response to the end.
The transient bacteria response behavior for PAM molecular

signals of 15, 20, 22.5 M is shown in Fig. 4, which are av-
eraged over 4, 7, and 5 experiments, respectively. The reason
for the different number of measurements for the different con-
centration inputs is as follows. Once loaded, a few bacteria will
settle in the trapping chambers. Not all chambers will have bac-
teria in them, which means the number of measurements can
change from experiment to experiment. The molecular signals
have a finite duration of 50 min.
The output signal is the relative fluorescence illumination.

Fluorescent images were captured once every 10 min and post-
processed using MATLAB. The intensity of the pixels within
the bacteria chamber was averaged and the background fluores-
cence was subtracted, yielding the relative fluorescence (arbi-
trary units, or a.u.). Each run represents a single chamber that
was imaged over time. Each data point for that run is calculated
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Fig. 4. The transient response of the bacteria for different PAM molecular signal amplitudes.

using the image processing mentioned above. The average for a
concentration represents the averaging of all runs for that con-
centration. Therefore the standard deviations are the deviations
between the individual chambers.
1) Bacteria Response Beginning: The difference of the re-

sponse beginning and input molecular signal start times
in Fig. 4 gives the bacteria response beginning delay. The re-
sponse beginning delay is shown to be depending on the input
molecular signal amplitude in Fig. 4. For 22.5 M and 20 M,
the mean response beginning delay is shown to be converging
and less than the one for 15 M. The input dependent begin-
ning time of the bacteria response makes the sampling of the
output signal at that particular instant challenging. Furthermore,
since the response beginning delay is not always providing a
one-to-one input-output relation as the input signal amplitude is
further increased, it is not an efficient option for the detection
of PAM molecular signals. For example, consider 2 a.u. is se-
lected as the reference to decide on the beginning of the bacteria
response, the response reaches the output level of 2 a.u. at the
same instant for both input levels of 20 M to 22.5 M.
2) Peak Instant: The peak time of the bacteria response be-

havior is shown to be varying based on the amplitude of the
input molecular signal in Fig. 4. Furthermore, the input depen-
dance of the peak time is observed to be non-monotonic. There-
fore, determination of a fixed time instant for sampling of the
peak of the bacteria response is not trivial. For example, the peak
instant for the input level 20 M is later than both 22.5 M and
15 M input levels. The experimental data in Fig. 4 suggest that
the tight timing requirements on the sampling of the bacteria re-
sponse is not favorable, since the bacteria response behavior is
not synchronized to the input signal source.
3) Total Response Duration: Lastly, the total response du-

ration, i.e., the time elapses form the beginning of the response
to the ending, is observed in Fig. 4. The total response dura-
tion increases monotonically with input molecular signal am-
plitude. Furthermore, the total response duration is shown to be
providing a one-to-one relation between the input and output in
in Fig. 4. The use of the total response duration for sampling of

Fig. 5. The standard deviation of the bacteria response with respect to time for
different PAM molecular signal amplitudes.

the received signal and the detection of the input PAM molec-
ular signal is further discussed in Section IV.

C. Transient Noise Analysis
In Fig. 4, the bacteria response behavior is identified to be

composed of three regions, i.e., ramp-up region which takes
place from beginning of the response to the peak, peak region
where the response reaches its peak value, and the ramp-down
region which takes place from the peak to the end of response.
Here, the impact of noise on the bacteria response during
ramp-up, peak, and ramp-down regions is studied. To this
end, the standard deviation of the bacteria response behavior
with respect to time for PAM molecular signals of 15, 20, and
22.5 M is shown in Fig. 5.
The higher standard deviation implies higher noise effect on

the output signal. The standard deviation of the response is ob-
served to be increasing as it reaches its peak in the ramp-up re-
gion. Then, the standard deviation of the response decays until
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the response ends. For different input levels, i.e., 15, 20, and
22.5 M, the same trend in the bacteria response behavior is
observed in Fig. 5. Increasing noise from the response begin-
ning to the peak in the ramp-up region conforms with the the-
oretical insights provided in Section II.B. In (6), the absolute
error in the output signal, i.e., , due to the error
in the maximum protein production level is identified to be
increasing over time . In the line with our theoretical investiga-
tions, it is shown experimentally that the increase in the output
protein amount yields increased error contribution in the output,
i.e., the error in the output signal is amplified as it reaches to the
peak response value.
The study of the stochasticity in the gene expression has re-

cently been a research field of interest [22], [33]. The impact of
perturbation, i.e., stimulus, on the noise in the signal transduc-
tion is investigated in [33], and directly proportional scaling of
the noise variance with the protein abundance is reported, which
are normalized with respect to the pre-stimulus values. Simi-
larly, in Fig. 5, it is observed that the standard deviation of the
bacteria response increases proportional to the magnitude of the
response, i.e., standard deviation increases as the input level is
increased from 15 M to 22.5 M. Next, the different sampling
strategies of the received signal are investigated to facilitate ac-
curate and timely detection of the PAM molecular signals.

IV. SAMPLING OF THE RECEIVED SIGNAL BASED ON THE
BACTERIAL SIGNAL TRANSDUCTION

So far, both analytical and experimental characterizations of
the bacteria response are performed. However, the sampling of
the received signal, i.e., mapping of the recorded raw bacteria
response to the decision space, is missing such that the PAM
input signal can be detected accurately. The input signal can be
detected via applying thresholding on the received signal, i.e.,
comparing the received signal with the predefined thresholds for
different input signal amplitudes. In this section, we extend our
theoretical and experimental analyses in the former sections by
proposing and comparing four different sampling strategies for
the raw bacteria response, namely, the total response duration,
the peak level of the response, the ramp-up slope, and the ramp-
down slope.

A. Sampling Strategies for the Raw Bacteria Response

In the following, we study the sampling of the received
signal from the raw bacteria response based on the
total response duration , the peak value ,
ramp-up slope , and the ramp-down slope .
The sample sample index indicates the th transmission of the
PAMmolecular signal. It should be noted that while the received
signal from the bacteria response is a continuous function
of , the sampled responses
are discrete-time and a function with sample index . The
one-to-one input-output relation of the different sampling
strategies is specifically investigated for the detection purposes.
To sample the raw bacteria response for the total re-

sponse duration , the duration between the instant when
the response exceeds a predefined threshold and the in-

stant the response goes below the threshold is used, which
is given by

(11)

For evaluations, we set the threshold for output flouresence illu-
mination to a.u., i.e., the response beginning is taken
as the instant when the measured bacteria response exceeds

a.u. and the response ending is taken as the instant
when the measured bacteria response reduces below
a.u. The peak value is taken as the maximum of the raw bacteria
response as

(12)

Apart from the total response duration and the peak value, the
slope of the ramp-up and the ramp-down behavior in the bacteria
response can also be utilized to decide on the input signal level.
Accordingly, ramp-up slope can be calculated as

(13)

The ramp-up slope is calculated for the interval of and
mins. The ramp-down slope is calculated as

(14)

where we use the interval of and mins for
the evaluations.
The mean of the sampled received signal using total response

duration, the peak value, the ramp-up slope, and the ramp-down
slope are shown in Figs. 6, 7, 8, and Fig. 9, respectively, with
respect to different input signal levels. It should be noted that
the received signal is in different units for different sampling
strategies, i.e., minutes for the total response duration, a.u. for
the peak value, and a.u./mins for the slope of ramp-up and the
ramp-down. It is observed that there is a one-to-one relation be-
tween the received signal and the input signal for all four sam-
pling strategies of the received signal. Furthermore, the mean of
the received signal monotonically increases as the input level
increased for all four strategies of the received signal, which
enables non-overlapping mapping of the received signal to the
decision space. The input signal can be detected via compar-
ison of the received signal with the predetermined thresholds
based on the selected sampling strategy. However, each sam-
pling strategy yields different statistical properties for the sam-
pled received signal, i.e., mean and variance. Therefore, in the
next subsection, we study the distinguishability of the sampled
received signals to detect distinct input levels.

B. Statistical Distinguishability
Here, the detection performance of the four sampling strate-

gies for the received signal are statistically compared.We utilize
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Fig. 6. Input-output relation for the sampling of the received signal using total
response duration.

Fig. 7. Input-output relation for the sampling of the received signal using the
peak value.

the -test with unequal variances ([34], Chapter 4), where ob-
tained samples from the raw bacteria response are assumed to
be normally distributed. The probability that the obtained two
samples are belonging to the same input level, i.e., -value, is
specifically studied. The smaller the -value, the more unlikely
the compared samples are belonging to the same input signal
level. In the following, the obtained -values are examined for
the decision between the different input level pairs.
The -values are tabulated in Table II. For decision between

15 M and 20 M, the lowest -values are provided by peak
value and the ramp-up slope, i.e., and ,
respectively, where the later one is 6 times larger than the
former. For the decision between 15 M and 22.5 M, the
lowest -value is provided by the ramp-up and the ramp-down
slope, i.e., where the -value by sampling the peak
is about 20 times larger than them. For the decision between
20 M and 22.5 M, the lowest -value, i.e., , is
provided by the ramp-up slope, where the other interpretations

Fig. 8. Input-output relation for the sampling of the received signal using the
ramp-up slope.

Fig. 9. Input-output relation for the sampling of the received signal using ramp-
down slope.

TABLE II
-VALUES FOR THE SAMPLING STRATEGIES OF THE RECEIVED SIGNAL

of the bacteria response have an approximately 100 times larger
-value. On the other hand, the total response duration provides
the worst performance for detection purposes as a sampling
strategy of the received signal based on the -value results.
While the ramp-up slope and the peak value provides a close
-value for the decision between 15 M and 20 M, the -value
of the input pulse pairs is further amplified as the input levels
are increased, i.e., the peak value has the third smallest -value
for the other input combinations. Meanwhile, the ramp-up slope
performs either the lowest or the second lowest -value.
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TABLE III
MEAN OF THE SAMPLED BACTERIA RESPONSE

TABLE IV
VARIANCE OF THE SAMPLED BACTERIA RESPONSE

Based on the statistical analysis of the received signal inter-
pretations in Table II and the experimental transient analysis of
standard deviation in Fig. 5, as well as theoretical insights pro-
vided in (6), the ramp-up slope is selected to be further inves-
tigated for the sampling of the received signal among others in
Section V.

C. Probability of Error for Detection of Binary and 3-Ary PAM
The probability of error for the PAM molecular signals is

studied with respect to the four sampling schemes. Each dif-
ferent input pulse level has a specified different mean sam-
pled received signal level . We assume the sampled received
signal for each different is corrupted by Gaussian noise, i.e.,

(15)

where index is dropped from the sampled bacteria response
for the ease of notation, and is the variance of the sampled re-
sponse. The obtained and values from experimental mea-
surements are given in Tables III and IV, respectively, for the
four sampling schemes.
In the following, we, first, give the formulation of the proba-

bility of error for the detection of the binary and the 3-ary PAM
molecular signals ([35], Chapter 2). Then, we investigate the
detection performance of the four sampling strategies based on
the data obtained from experimental measurements for the bac-
terial signal transduction.
1) Binary Transmission: For the binary transmission case,

only two different signal levels, i.e., and , are considered
to be transmitted. During the formulation, the corresponding
signal level to is taken to be lower than the one for . In
the line with signal levels, the bacteria response corresponding
to is lower than , e.g., consider the bacteria response for
15 M and 20 M in Fig. 4. In Fig. 10(a), the signal points for
the binary PAM signals is shown.
We should note again that is a scalar value and corresponds

to obtained received signal via sampling the bacteria response
using one of the four sampling strategies. The probability dis-
tribution of the received signal for is as

(16)

Fig. 10. The signal points for binary and 3-ary PAM signals in (a) and (b),
respectively.

and for the transmission signal level corresponding to , the
distribution of the received signal is given as

(17)

The probability of error for , i.e., the received signal is greater
than the detection threshold , is given by

(18)

and similarly the probability of error for is given by

(19)

The transmission of both signal levels are taken to be equally
likely, and hence, the probability of error for binary PAM is
obtained using (18) and (19) by

(20)

2) 3-Ary Transmission: In 3-ary PAM, the transmission of 3
different pulse amplitudes, i.e., , and , are considered.
We assume corresponding bacteria responses to , and
are sorted in the ascending order. In Fig. 10(b), signal points
for the 3-ary PAM is shown. For the 3-ary transmission case,
i.e., three transmission levels, the formulation of the
and follows (16) and (17) in the binary case. For

is as

(21)

The probability of error for , i.e., is

(22)
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Fig. 11. Comparison of the sampling schemes with respect to probability of error for binary PAM. Input pairs of 15–20 M (a), 20–22.5 M (b), and 20–22.5 M
(c) with 50 mins pulse width are considered. Threshold is varied. To present results for different sampling schemes in the same plot, the threshold is normalized
using .

The probability of error for , i.e., is
given as

(23)

Lastly, the probability of error for , i.e., , is as

(24)

With equal transmission probability for all three levels, proba-
bility of error for 3-ary PAM is obtained using (22), (23) and
(24) as

(25)

In the following, we present results on probability of error for
both binary and 3-ary PAM cases.
3) Discussion: In Fig. 11, the probability of error is eval-

uated for the binary PAM. The threshold to decide between
different input levels and is varied between the corre-
sponding specified mean sampled response levels and .
Since the threshold has a different unit and scale for each sam-
pling scheme, it is normalized to the interval .
For the input level pairs of 15–20 M, 15–22.5 M, and

20–22.5 M, the sampling based on the peak value and the
ramp-up slope is shown to be achieving lower error probability
than the sampling based on the ramp-down slope and the
total response duration in Fig. 11(a), (b), and (c), respectively.
The minimum probability of error achieved by each sampling
scheme for the binary PAM is given in Table V. For the input
level pair of 15–20 M, sampling based on the peak value
achieves the lowest probability of error, i.e., 0.002, whereas
the probability of error for sampling based on ramp-up slope is
0.0095. For the input pairs of 15–22.5 M and 20–22.5 M, the
minimum probability of error is achieved by sampling based
on ramp-up slope, which outperforms peak value sampling by

TABLE V
MINIMUM PROBABILITY OF ERROR FOR BINARY PAM

100x and 10x in terms of probability of error, respectively.
Additionally, the selection of proper threshold is essential to
minimize the probability of error as observed in Fig. 11.
For 3-ary PAM, all experimentally tested input levels, i.e.,

15 M, 20 M, and 22.5 M are allowed to be transmitted. The
results on error probability for the four sampling schemes are
presented with respect to the normalized threshold , which
is to decide between and , and normalized threshold ,
which is to decide between and , in Fig. 12(a), and (b),
respectively. The sampling based on the ramp-up slope is shown
to be achieving the lowest error probability compared to the
other sampling schemes for the all evaluated choices for the
detection thresholds and in Fig. 12(a) and (b), respectively.
The minimum probability of error achieved by each sampling
scheme for the 3-ary PAM is given in Table VI. The sampling
via ramp-up slope achieves more than 5x and 10x improvement
in the probability of error over the sampling based on peak value
for both studies with respect to the detection thresholds and
, respectively. The proper selection of the detection thresholds
and is essential to optimize the detection performance.

D. Response Observation Duration
The required observation duration on the bacteria response is

discussed in the descending order for the four sampling strate-
gies of the received signal. To determine the total response dura-
tion, bacteria response needs to end, thus, it has the longest ob-
servation duration with respect to the other interpretations of the
received signal. The ramp-down slope requires the bacteria re-
sponse to be in the decay behavior, hence, it requires less obser-
vation duration than the total response. However, the required
observation duration is still longer than the one for peak value.
To sample the peak value, the bacteria response needs to reach
its maximum value which happens before the decay behavior
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Fig. 12. Comparison of the sampling schemes with respect to probability of
error for 3-ary PAM with 50 mins pulse width. Thresholds and are varied.
To present results for different sampling schemes in the same plot, the thresholds

and are normalized using and
, respectively.

TABLE VI
MINIMUM PROBABILITY OF ERROR FOR 3-ARY PAM

but later than the ramp-up behavior. The ramp-up slope provides
the earliest opportunity for instantaneous detection purposes,
since the bacteria response enters first to this behavior after it
starts. The required observation durations for the different sam-
pling strategies of the received signal are summarized as

(26)

where , and repre-
sent the required observation duration for the received signal
sampling based on the total response duration, the ramp-down
slope, the peak value, and the ramp-up slope, respectively. Next,
we further investigate the detection of molecular signals using
the ramp-up slope.

V. DETECTION OF MOLECULAR SIGNALS VIA RAMP-UP SLOPE
OF THE BACTERIAL SIGNAL TRANSDUCTION

During the course of this work, we have found the following
answers to the questions listed in the introduction section
through both analytical and experimental investigation:
• The input-output relation of the signal transduction is one-
to-one for sufficiently small input ranges. (Section II.B).

• The noise in the bacteria response scales directly propor-
tional to the time elapses until the response reaches peak.
Then, the noise reduces as the bacteria response decays
(Section II.B and Section III.C).

• The time delay for the response beginning, the peak instant,
and the response ending are shown to be randomly varying
(Section III.B).

• The sampling based on the ramp-up slope is shown to
be favorable according to the comparisons based on the
-values and the probability of error for the detection of bi-
nary and 3-ary PAM molecular signals (Section IV.B and
Section IV.C).

Motivated by the results of comparisons based on -test and
probability of error, we further study the detection of molecular
signals by sampling the raw bacteria response via the ramp-up
slope.

A. Decision
We consider the use of -test for the decision on whether

a specific input level is transmitted. corresponds to the
mean of the sampled received signal for each input pulse level

. Considering multiple repeated experiments, the -statistic
is given by

(27)

where is the number of samples, is the sample mean given
by

(28)

and is the sample standard deviation given by

(29)

The signal level corresponding to the providing the min-
imum -statistic is decided as the input molecular signal.

B. Time Interval Selection for Ramp-Up Slope
The selection of time interval in bacteria response for the cal-

culation of the mean ramp-up slope is of critical importance.
In Fig. 4, it is observed that the instants when bacteria response
enters and leaves ramp-up region vary based on input level. Fur-
thermore, based on the results presented in Fig. 5, standard devi-
ation of the bacteria response increases with the evolving time
during the ramp-up behavior. Moreover, in Section II.B, it is
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Fig. 13. Standard deviation of ramp-up slope with respect to input level for
different time interval selections.

Fig. 14. The sampling of the raw bacteria response for the ramp-up slope
(the raw bacteria response curve is taken from an individual experiment

for 20 M input).

shown analytically that the error is amplified with the evolving
time during the ramp-up behavior. This suggests the earlier cal-
culation of the ramp-up slope during the ramp-up behavior.
For different intervals, the standard deviation of the ramp-up

slope is studied in Fig. 13. is taken as 10 min, and the
ramp-up slope is calculated for 60–70 min, and 70–80 min. It is
shown that the standard deviation of the ramp-up slope is less for
earlier intervals of bacteria response, e.g., 60–70 min interval
has a lower standard deviation compared to the 70–80 min in-
terval.

C. Non-Coherent Sampling for the Ramp-Up Slope

While earliest calculation of the ramp-up slope provides
better prediction of the input level, the randomness in entering
the ramp-up behavior yield strict timing requirements for
detection impractical. Therefore, a non-coherent scheme for
detection of molecular signals via bacteria response is needed
to mitigate delay uncertainty and eliminate timing requirements
at the receiver. To remove timing requirement for sampling,
a differential detection scheme can be utilized, which is illus-
trated in Fig. 14. A sufficiently large threshold level , for

Fig. 15. Non-coherent calculation of the ramp-up slope .

which all different input levels enter to the ramp-up region,
can be determined, and the instant bacteria response reaches

level can be recorded. After waiting for the
interval duration , another sample can be taken from the
response . Accordingly, the ramp-up slope can be
calculated, and -test can be applied to detect the transmitted
signal level. The proposed algorithm is summarized in Fig. 15.

VI. CONCLUSION
We have investigated the utilization of the bacterial signal

transduction for the detection of pulse-amplitude modulated
(PAM) molecular signals. The one-to-one input-output relation,
the noise, and the timing issues on the bacteria response are ex-
amined based on both the measurements from the experiments
and the analytical evaluations of a biochemical model of bac-
teria signal transduction. To sample the raw bacteria response,
four different strategies, i.e., the total response duration, the
peak value, the ramp-up slope, and the ramp-down slope, are
statistically compared. Based on the statistical comparisons,
the sampling of the bacteria response via the ramp-up slope is
selected for further investigation. The time-interval selection
and non-coherent sampling for ramp-up slope calculation from
the raw bacteria response are studied to address noise and
timing issues, respectively. The provided analyses and results
in this work provide a basis for efficient detection of the PAM
molecular signals in molecular communication and sensing
applications.
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