
QoS-Aware Virtualization-Enabled Routing in
Software-Defined Networks

Alba Xifra Porxas∗, Shih-Chun Lin†, and Min Luo‡
∗†Broadband Wireless Networking Lab, School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332, USA
‡Shannon Lab, Huawei Technologies Co., Ltd., Santa Clara, USA

Email: ∗alba.xifra@ece.gatech.edu, †slin88@ece.gatech.edu, ‡min.ch.luo@huawei.com

Abstract—Software-Defined Networking (SDN) has been rec-
ognized as the next-generation networking paradigm. It is a fast-
evolving technology that decouples the network control plane
from the data forwarding plane. A logically centralized controller
is responsible for all the control decisions and communica-
tion among the forwarding elements. However, current traffic
engineering techniques and state-of-the-art routing algorithms
do not effectively use the merits of SDNs, such as global
centralized visibility, control and data plane decoupling, network
management simplification and portability. In this paper, a
multi-tenancy management framework is proposed to fulfill the
quality-of-services (QoSs) requirements through tenant isolation,
prioritization and flow allocation. First, a network virtualization
algorithm is provided to isolate and prioritize tenants from
different clients. Second, a novel routing scheme, called QoS-
aware Virtualization-enabled Routing (QVR), is presented. It
combines the proposed virtualization technique and a QoS-aware
framework to enable flow allocation with respect to different
tenant applications. Simulation results confirm that the proposed
QVR algorithm surpasses the conventional algorithms with less
traffic congestion and packet delay. This facilitates reliable and
efficient data transportation in generalized SDNs. Therefore,
it yields to service performance improvement for numerous
applications and enhancement of client isolation.

I. INTRODUCTION

During the past decade, due to the increment and com-
plexity of client demands and requirements, networks required
the enhancement of routing strategies to be taken into con-
sideration. Nowadays, network demands from clients are still
increasing and becoming more challenging. Network operators
in commercial clouds and data centers have been trying
to improve network performance while fulfilling application
requirements. However, this objective keeps increasing in
difficulty. Software-Defined Network (SDN) decouples control
and data planes, simplifying network management and con-
trol by providing global visibility and direct control of the
underlying forwarding elements through a central controller.
This new network technology permits to separate routing from
forwarding elements, so that routing decisions can be taken
in the centralized controller. To be more specific, instead
of letting forwarding elements manage the traffic, software
from outside the devices directs networking traffic. Open-Flow
forwarding elements [1] just look-up routes in a table and
forward packets without being concerned about path selection,
thus, contributing to faster functionality. This centralized archi-
tecture provides a global real-time network state view, which
allows the implementation of improved routing techniques
since the controller is aware of the overall network status.

The routing framework needs to be reevaluated from a
fully distributed path-selection computation towards a central
administration of the path calculation in the controller. The
improvement of network performance, e.g. delay, capacity
and reliability, is still unexplored in SDN routing schemes.
Networks and their capabilities need to be designed to serve
adequately the requests demanded. These service demands
can be associated with specific quantitative characteristics of
flows, e.g. delay bounds, throughput restrictions, or priorities
between different classes or entities. Taking into consideration
these requirements presents new routing challenges in the
SDN scenario. Cloud computing and data centers widely
use a multi-tenant and resource sharing architecture. This
architecture is used due to its infrastructure and maintenance
cost-effectiveness, simplification, lower system requirements
and flexibility. In single-tenant architectures, clients have their
own dedicated resources. For nearly all clients 80% of these
resources will be idle most of the time, based on the Pareto
principle. In multi-tenancy applications, resources are shared
between clients, which means usage of fewer resources and
capability to increase the utilization of resources. However,
multi-tenancy may generate conflicts when resources become
overloaded. Since applications and resources are shared, tenant
workloads may interfere with each other, as high demand
tenants can monopolize the shared resources and performance
goals, as stated in [2], [3]. SDN global view of the network
allows to monitor tenant resource consumption, hence detect-
ing aggressive tenants occupying all resources. Nevertheless,
it is still required to isolate tenants from each other to allow
customization performance and enforce security.

In addition, best-effort and real-time traffic need to be
supported at the same time. Networks need to cope with
multimedia traffic, like video and voice, which has different
characteristics than data applications. Real-time traffic does not
have the elasticity to adapt the packet transmission rate depend-
ing on the network congestion as elastic traffic, which tolerates
delay lithely. The presence of different traffic concurrently in
the network brings the following situation: real-time traffic
will eventually interfere with non-real-time traffic, due to its
quality of service demands. In congestion scenarios, elastic
traffic could achieve starvation situations, as real-time flows
would not hold back and share resources fairly [6], [7]. Hence,
as considered in [8], [9], routing design needs to fulfill service
demands regarding response delivery and QoS provision. Flow
allocation applying traffic engineering techniques in SDN is
discussed in [4], [5]. However, multi-tenancy architecture and
QoS requirements guarantees are not considered.

IEEE ICC 2015 - Next Generation Networking Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 5771

Leveraging SDN new architecture, it is possible to de-
velop a routing framework for multi-tenancy environments
with QoS-aware flow allocation and prioritization. Therefore,
service quality and client demands will be enhanced. This
is of remarkable significance in cloud computing and in
enterprise data centers [10]. Demand flow allocation in this
environment should involve resource isolation of multiple
tenants, established client priorities and guarantee client QoS
requirements. For each new flow entering in the network,
the most appropriate path needs to be found according to
these requirements. As a first step, a network virtualization is
proposed to slice the physical layer into separate subnetworks
topologies. As it is known, graph partitioning is a NP-complete
problem [11], hence our problem will be at least NP-hard as
a result of its analogy. Therefore, an algorithm is proposed
to simplify the exploration of the network slicing. It will
procure isolation between tenants and introduce priorities in
the model. In conjunction, a QoS-aware Virtualization-enabled
Routing (QVR) algorithm is developed to conjointly isolate
clients in a multi-tenancy architecture and prioritize them, as
well as guaranteeing QoS-requirements whilst computing the
flow allocation. This represents an advancement for network
operators to manage easily the network, providing a portable
and customized solution, enhancing service performance and
improving client satisfaction.

The rest of this paper is organized as follows. Section II
provides the system model. Section III introduces the network
virtualization algorithm to accomplish multi-tenant priorities
and isolation. Section IV presents the optimization problem
formulation and our QVR solution. Section V provides the
performance evaluation of our routing design. Section VI
discusses conclusion and future work.

II. SYSTEM DESCRIPTION

The objective of our work is to develop a routing algorithm
that maximizes the isolation between tenants, in such a way to
conjointly fulfill the QoS requirements. It consists two stages.
The first stage consists of a network virtualization, dividing
the network in layers in order to separate flows from different
tenants. In the second stage a routing algorithm is developed
to control the allocation of new flows arriving in the network
according to client priorities and requisites. The first stage
will be done offline. It will not change as new flows enter
in the network, i.e, layers computed will be static. Moreover,
the second stage is done online, adjusting paths routes of new
flows arriving in the SDN controller. If online stage is fail to
provide the required performance, the Management Tool (MT)
will feedback to offline stage to enable a better network slicing.
The system architecture is shown in Fig. 1. MT running above
the SDN controller is responsible for virtualizing the network
into layers and storing the physical network’s subnets. In SDN,
when a new flow arrives into the network, it is forwarded to the
controller which requests the MT to route this new flow. MT
determines the most suitable path for this new flow and decide
the best resource allocation according to the current status of
the network. Subsequently, the SDN controller translates the
corresponding routes into understandable routing entries for
the involved forwarding elements [1].

First, we introduce some notations and definitions for our
system model. We define the physical topology of the network

Fig. 1. System architecture

as an undirected graph G = (V,E), where V refers to the set
of vertices of the network and E to the set of edges connecting
them. An edge from node u to node v is defined as u → v.
An undirected graph G is a graph in which edges have no
orientation. Thus, the edge u → v is the same as the edge
v → u. A directed acyclic graph G is defined as a graph
formed by a group of vertices and directed edges such that, it
is not possible to start at some node u and follow a sequence
of edges that loops back to u. A graph S = (V ′, E′) is a
subgraph of G, S ⊆ G, if V ′ ⊆ V and E′ ⊆ E. A complete
graph G is defined as an undirected graph in which each pair
of vertices has a unique edge connecting them. A connected
graph G is a non-empty graph in which any two of its vertices
are connected by at least one path in G. The complement of a
graph G is the graph Ḡ = (V, Ē), which has the same vertex
set, but whose edge set consists of the edges not present in G.
A minimum spanning tree of a connected undirected graph G
is a tree that includes every vertex using the minimal set of
edges according to its weights.

III. NETWORK VIRTUALIZATION

A SDN is modeled as a graph G = (V,E). Nodes forward
traffic from hosts and applications, whereas edges are the links
that allow communication between vertices possible. When a
flow needs to be sent from any source to any destination, it is
very unlikely that there is a direct physical link between them.
Thus, we assume there will be more than one viable route
between source-destination pair. Our approach is to virtualize
the physical network in distinct separate subnets in order to
isolate multiple tenants in the current physical network. To
achieve tenant isolation, a network virtualization algorithm is
examined in the following.

Assume there are N tenants within a network graph
G. Several subgraphs G1, ..., GN are define for each corre-
sponding tenant. These subnets need to fulfill the following
requisites: all vertices in G need to be included in subgraphs
Gn,where n = {1, ..., N}, because traffic can be generated
from and destined to all vertices in the network, thus Gn =
(Vn, En),where Vn ⊆ V and En ⊆ E. Note that Vn can be

IEEE ICC 2015 - Next Generation Networking Symposium

5772

a virtual node that aggregates multiple physical nodes. Hence,
subgraphs Gn need to be connected graphs because any node
must be able to reach any other node in the network. Ideally
subgraphs Gi and Gj , where i 6= j, should be edge-disjoint,
i.e., they should not have any edge in common: Ei ∩Ej = 0.
One subgraph should be the complement graph of the other
N-1 subgraphs: Gn = C̄, where C = ∪Nk=1,k 6=nGk. While
it might happen that shared edges appear among tenants for
dependent resource utilization, in Section IV, a flow allocation
algorithm is proposed to ensure each tenant’s requirements
are fulfilled. Furthermore, as stated previously, the centralized
controller of SDN allows tenant-aware traffic monitoring, so
that the capacities and shared links between tenants can be
adaptively rearranged. Our second goal is to provide different
priorities among tenants. We assume Tenant n demands are
less imperative as n grows, thus Tenant 1 demands the highest
priority and Tenant N the lowest. Next we define wmax

1,...,N as
the maximum path weight a tenant requests, i.e., either path
delay or packet losses, which are used to examine whether
the subgraph fulfills the tenant’s requirements or not. Towards
this, the overall framework can be formulated as:

min
{Gn}

Ei ∩ Ej

min
{Gn}

∑
1≤n≤N

I{W (Gn)>wmaxn}

where I{·} is the indicator function and W (·) is the function
to characterize the weight provided by the subnet.

While the proposed framework of network virtualization
is a multi-objective optimization problem, the computation
complexity is considerable, and normally it does not have a
single optimal solution. Instead, we propose a fast algorithm
that aims to attain Ei∩Ej → 0, i.e., minimal number of edges
shared between tenants. This will provide the isolation needed
in the multi-tenancy architecture, thus minimizing interference
among tenants. Fist of all, a minimum spanning tree is searched
within the graph G using Kruskal’s algorithm [13]. The edges
are added to the highest priority subgraph G1. Next, it is
verified that all source-destination pairs have at least one path
with path weight less than wmax

1 . In particular, the path weight
from source u to destination v is determined through a shortest
path algorithm, e.g. Dijkstra’s algorithm [14], as follows. Pairs
(u, v) that do not fulfill the wmax

1 constraint are first found.
For each discovered pair (u, v), Dijkstra’s algorithm is run
over G1, and new edges are added to G1 to guarantee the
corresponding route has a weight less than wmax

1 . The iteration
continues until wmax

1 is fulfilled in all source-destination pairs
inside subgraph G1. Furthermore, the algorithm works on
finding the edges belonging to the lowest priority subgraph
GN . In particular, Kruskal’s algorithm is applied over the
graph −G for a maximum spanning tree. The edges are
added to the lowest priority subgraph GN . Then, the paths
between source-destination pairs are found and compared with
wmax

N to add more edges if it applies. Finally, subgraphs Gt

where t = 2, ..., N − 1 will be constructed, running Kruskal’s
algorithm over the graph G − GN −

∑t−1
k=1Gk. Then, there

is a searching for isolated nodes, and the edges from these
isolated nodes to subgraph Gt are further added into Gt. If
more than one possible edge for an isolated node is found,
the algorithm will choose the edge with less weight. Note that
there might be some edges that are already included in the

previous subgraphs, and thus will become shared edges among
subnets. Last, all source-destination pairs (u, v) need to be
verified that each pair has at least one path, whose weight is
less than wmax

t . A pseudo-code for the proposed fast algorithm
of network virtualization is given as follows:

Network virtualization algorithm

Input: Network topology (G), Edge weights wmax
1,...,N

Output: Network subnets G1, ..., GN

Subnetwork Tenant 1
- Run Kruskal’s alg. over graph G % To obtain

minimum spanning tree of graph G;
- Add the found edges to G1;
- Find source-destination pairs (u, v) with path weight

larger than wmax
1 ;

for each discovered pair (u, v)
while path weight between (u, v) > wmax

1
Run Dijkstra alg. over G1 for pair (u, v);
Add new found edges to G1;

end
end
Subnetwork Tenant N
- Run Kruskal’s alg. over graph −G % To obtain

maximum spanning tree of graph G;
- Add the found edges to GN ;
- Find source-destination pairs (u, v) with path weight

larger than wmax
N ;

for each discovered pair (u, v)
while path weight between (u, v) > wmax

N
Run Dijkstra alg. over GN for pair (u, v);
Add new found edges to GN ;

end
end
Subnetworks Tenants 2,...,N-1
for each tenant t ∈ {2, ..., N − 1}

Run Kruskal’s alg. over the graph:
Gt = G−GN −

∑t−1
k=1Gk

Find the isolated nodes;
Add the edges from the found nodes to Gt % To
transform Gt into a connected graph;

Find source-destination pairs (u, v) with path weight
larger than wmax

N ;
for each discovered pair (u, v)

while path weight between (u, v) > wmax
t

Run Dijkstra alg. over Gt for pair (u, v);
Add edges to Gt;

end
end

end

IV. QOS-AWARE VIRTUALIZATION-ENABLED ROUTING
(QVR) ALGORITHM DESIGN

QoS-aware Virtualization-enabled Routing (QVR) algo-
rithm is proposed that combines the network virtualization
algorithm in Section III with the proposed QoS-aware flow
allocation in this section. Our final objective is to route flows
through paths that fulfill the corresponding QoS requirements.
The details of the QVR algorithm are explained as follows.

IEEE ICC 2015 - Next Generation Networking Symposium

5773

Let k = {s, d} determine the {source, destination} pair
and ci,j represent the maximum capacity of link (i, j). Thus,
cni,j determines the bandwidth allocation in link (i, j) for
Tenant n. We use ank to represent flow arrival from Tenant
n for source-destination pair k, and Y n

i,j→d to represent flows
routed on link (i, j) for destination d from Tenant n. Let An

k
represent the current amount of injected traffic in the network.
Let Â

n

k represent possible future injected traffic arrivals for
{source, destination} pair k, predicted using traffic matrix
estimators as in [15]. Hence, we considers new flows between
all {s, d} pairs, and Ŷij→d represents possible future traffic
routed on link (i, j) for destination d. Let λk represent the
scale indicator of the amount of future injected traffic the
network can handle and deliver appropriately. If the optimal
value λk is less than 1, it indicates that future flows won’t
fit in the network unless some current flows end. We want to
maximize the future resource availability, i.e., minimize the
current maximum link utilization, which is a usually used
performance metric [5], [16], [17]. Therefore, our objective
is to maximize the minimum residue bandwidth among links
as shown in (1). Assume the QoS requirements for flow ank
are given as: the maximum acceptable end-to-end delay αn

and packet loss βn, the required throughput γn, and the
maximum allowable jitter ψn. Let pn(v) represent the packet
loss probability in node v, L{ank} represents the packet length
of traffic ank , TEE{ank} indicate end-to-end delay from s to d
for ank , and Tw(v) denote the queuing time in node v. Given the
variables are Y n

i,j→d to determine the best flow route, the flow
allocation problem of QVR algorithm is finally formulated as:

max
{Y n

ij→d}
min

k
λk (1)

subject to

Y n
ij→d ≥ 0 (2)

∑
n∈{1,...,N}

∑
d∈N

Y n
ij→d ≤ cij (3)

∑
p:(p,i)∈Gn

Y n
pi→d −

∑
p:(i,p)∈Gn

Y n
ip→d ≥

∑

s∈N,s6=i

An
si if i = d

An
id otherwise

(4)∑
p:(p,i)∈Gn

(Y n
pi→d + Ŷ

n

pi→d)−
∑

p:(i,p)∈Gn

(Y n
ip→d + Ŷ

n

ip→d) ≥

∑

s∈N,s6=i

(An
si + λnsiÂ

n

si) if i = d

−An
id − λnidÂ

n

id otherwise

(5)

TEE{ank} =
∑

(i,j)∈Path

L{an,QoS
k }
Y n
ij

+
∑

n∈Path

Tn
w(n) < αn

(6)∏
n∈Path

pn(n) < βn (7)

Y n
ij→d ≥ γn ∀(i,j) ∈ Path (8)

var(TEE{k}|Path) < ψn (9)

The set of inequalities in (2) ensures that flows on any
path are always positive. The set of inequalities in (3) ensures
that resources allocated for different tenants do not exceed link
capacity, either the link is shared or not. The set of inequalities
in (4) ensures that the current traffic arrivals flow conservation,
i.e., ensures that the matrix traffic is routed through the
network, and in (5) residue bandwidth is ensured for possible
future injected traffic flow. Last constraints (6), (7), (8) and
(9) guarantee the QoS requirements for each flow from the
corresponding tenant. Not each one of these constraints will be
applied to allocate all new arrivals. Sensitive QoS constraints
will be recognized depending on traffic characteristics and
flow patterns, and applied accordingly [21]. For example, in
interactive applications the overall one-way delay needs to be
short in order to give the user an impression of real time
responses. Thus, delay and jitter constraints will be more
stringent than the loss constraint. Further, for web browsing
or email the jitter constraint it is not applicable because it has
little impact on its performance, whereas throughput and loss
constraints are of considerable significance. Hence, αn, βn, γn
and ψn indicate the actual value required for each parameter,
which will be different depending on each application. A
pseudo-code for the proposed QVR algorithm is as follows:

QVR Algorithm

OFFLINE - Network Virtualization
Input: Network topology (G), Edge weights, wmax

1,...,N

Output: Network subnets G1, ..., GN

ONLINE - Flow Allocation
Input: Network subnets G1, ..., GN , Current

flow allocation matrix Y , Link aapacities C, Traffic
arrivals matrix A, Requirements new flow ank

Output: λ, Updated flow allocation matrix Y

Paths = find feasible paths from s to d in Gn;
for each path ∈ Paths

if ∃ path ∈ Paths s.t. TEE > αn

Do not consider this path
end
if ∃ path ∈ Paths s.t. PL > βn

Do not consider this path
end
if ∃ link (i, j) ∈ Paths s.t. ci,j available > γn

Do not consider this path
end
if ∃ path ∈ Paths s.t. Jitter > ψn

Do not consider this path
end

end
for each path ∈ Paths remaining

Calculate possible future injected traffic
end
Determine mininum λk
Choose the path maximizing λk
Update flow allocation matrix Y

IEEE ICC 2015 - Next Generation Networking Symposium

5774

Fig. 2. Network topology

(a) Subnet Tenant 1 (b) Subnet Tenant 2

(c) Subnet Tenant 3 (d) Shared and dedicated links

Fig. 3. Tenant’s subnets and shared links

V. PERFORMANCE EVALUATION

In order to evaluate the proposed QVR algorithm, a net-
work [19] with 25 nodes and 53 links is considered as shown in
Fig. 2. It is assumed there are three tenants that operate in this
network. In particular, Tenant 1 generates traffic from real-time
applications, which can be modeled as Pareto distribution due
to its burstiness. Furthermore, Tenant 2 and 3 generate traffic
from non-real-time applications, which can be modeled with
Poisson arrivals and exponential service times. The maximum
path weight allowed for each tenant will be 100 ms, 400 ms
and 250 ms respectively, with respect to the QoS requirements
of its applications [21].

Fig. 3 shows the tenant isolation by QVR algorithm. In Fig.
3a, 3b and 3c, the subnets for Tenant 1, 2 and 3 are shown,
respectively. Moreover, the superposition of these tenants is
provided in Fig. 3d, where the shared links are highlighted.
Thus, after running the virtualization algorithm we have the
physical network divided in three subgraphs. These layers have
been built to have the minimum superposition, nevertheless,
there will be some links where the traffic from different tenants
will combine together. Based on isolated network subgraphs
for different tenants, we compare the QVR algorithm with
OSPF [18] and random flow allocation routing algorithms.

(a) Evolution of the minimum link congestion

(b) Evolution of number of shared links

Fig. 4. Minimum link congestion and number of shared links

We ran a first experiment to measure the evolution of
link congestion in all three scenarios: OSPF, randomly flow
allocation and finally QVR. Fig. 4a shows the performance
results. It can be noted that QVR does significantly better than
a randomly flow allocation and OSPF. QVR has much less
congested links than the other two algorithms, because QVR
chooses routes to maximize the minimum residue bandwidth
for future accepted traffic flows. Furthermore, Fig. 4b shows
the number of shared links between tenants for different
routing algorithms. Whereas under OSPF routing and random
flow allocation, the number of links shared among tenants
reaches the maximum in an early stage, QVR maintains the
number of shared links as a constant, thus achieving better
isolation. It is shown that QVR accomplishes tenant isolation
while also improving the link congestion of the network,
hence, being able to accept more future flows from tenants.

Furthermore, the delay perceived by tenant arrivals when
they enter the network is examined and the results are shown
in Fig. 5. Tenant 1 considers real-time applications that provide
much less delay as compared to Tenant 2 and Tenant 3. Tenant
1 brings more bursty traffic than Tenant 2 and 3, that deal with
non-real-time traffic. Tenants maximum delays are 100 ms, 400
ms and 250 ms respectively. It is shown in Fig. 5 that random
flow allocation and OSPF do not fulfill this requirement for
Tenant 1, and are closer to the limit than QVR for Tenant 2
and 3. Hence, the end-to-end delay from QVR is much less
than the one from OSPF or random allocation. Thus, QVR
meets the need of a good traffic engineering tool, facilitating
reliable and efficient transmissions in SDNs.

IEEE ICC 2015 - Next Generation Networking Symposium

5775

(a) Tenant 1 arrivals

(b) Tenant 2 arrivals

(c) Tenant 3 arrivals

Fig. 5. Delay perceived for tenant arrivals

VI. CONCLUSION

In this paper we have shown that applying traffic engi-
neering in SDN can provide solutions to enhance network
management and service quality. This is of notable significance
in cloud computing and enterprise data center environments.
We have proposed QVR as a routing framework for multi-
tenancy management to fulfill QoS requirements through ten-
ant resource isolation, prioritization and flow allocation. It
enables efficient management and network control to network
operators, providing a portable, simplified and customizable
solution. It has been shown the enhancement of the network
performance accomplished in a centralized SDN scenario
regarding traffic congestion and packet delay. But with the
centralized scenario scalability issues may arise. In contrast, a
distributed scenario is more scalable, but there may be state
inconsistency and increase of shared information. In general,
a centralized approach is better for data centers or home
networks, whereas a distributed approach is better for large

scale networks, e.g. cloud environments. Future work will be
focused on a distributed controller scenario, as well as im-
proved techniques in flow control and admission management.

REFERENCES

[1] Openflow switch specification v1.0-v1.4 <https://www.opennetworking.
org/sdn-resources/onf-specifications>.

[2] D. Shue, M. J. Freedman, and A. Shaikh, “Performance Isolation and
Fairness for Multi-Tenant Cloud Storage”, 10th USENIX Symposium on
Operating Systems Design and Implementation, 2012.

[3] W.T. Tsai, Q. Shao, and J. Elston, “Prioritizing Service Requests
on Cloud with Multi-tenancy”, IEEE International Conference on E-
Business Engineering, 2010.

[4] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN-OpenFlow networks”, Computer Networks 71,
pp. 1-30, June 2014.

[5] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic Engineering in
Software Defined Networks”, IEEE INFOCOM’13, April 2013.

[6] S. Shenker, “Fundamental Design Issues for the Future Internet,” IEEE
Journal, Sep. 1995.

[7] S. Shenker, D. Clarck, and L. Zhang, “A scheduling service model and a
scheduling architecture for an integrated services packet network”, 1993.

[8] S. Chen and K. Nahrstedt, “An Overview of Quality-of-Service Routing
for the Next Generation High-Speed Networks: Problems and Solutions”
IEEE Network, Special Issue on Transmission and Distribution of Digital
Video, Nov./Dec. 1998.

[9] Z. Wang and J. Crowcroft, “Quality-of-Service Routing for Supporting
Multimedia Applications”, IEEE Journal on Selected Areas in Commu-
nication, Vol. 14, No. 7, Sep 1996.

[10] S. Jain, et at., “B4: experience with a globally-deployed software
defined wan”, Proceedings of the ACM SIGCOMM Conference, SIG-
COMM’13, pp. 3-14, Aug. 2013.

[11] M. Garey and D. Johnson, Computers and Intractability - A Guide to
the Theory of NP-completeness, Freeman, 1979.

[12] R. Sedgewick and K. D. Wayne, Algorithms (4th ed.), Addison-Wesley
Professional, ISBN 9780321573513.

[13] J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem”, Proceedings of the American Mathematical
Society, 1956.

[14] E. W. Dijkstra, “A note on two problems in connection with graphs”,
Numerische Mathematik, pp. 269-271, 1959.

[15] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “Opentm: traffic matrix
estimator for openflow networks”, Proceedings of the 11th International
Conference on Passive and Active Measurement, PAM’10, pp. 201-210,
Apr. 2010.

[16] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world”, Selected Areas in Communications, IEEE Journal on, vol. 20,
pp. 756-767, May 2002.

[17] C. Jian and L. Chin-Tau, “Optimal link weights for IP-Based networks
supporting Hose-Model VPNs”, IEEE/ACM Transactions on Networking,
vol. 17, pp. 778-788, June 2009.

[18] J. Moy, “Ospf version 2”, IETF RFC 2328, 1998.
[19] https://www.sprint.net/performance/
[20] R. Raghavendra and E. M. Belding, “Characterizing High-bandwidth

Real-time Video Traffic in Residential Broadband Networks”, Proc.
WiOpt, pp. 597-602, 2010.

[21] Y. Chen, T. Farley, and N. Ye, “QoS Requirements of Network Appli-
cations on the Internet”, IOS Press, 2004.

IEEE ICC 2015 - Next Generation Networking Symposium

5776

