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a b s t r a c t

Recent advances in synthetic biology, in particular towards the engineering of DNA-
based circuits, are providing tools to program man-designed functions within biological
cells, thus paving the way for the realization of biological nanoscale devices, known as
nanomachines. By stemming from the way biological cells communicate in the nature,
Molecular Communication (MC), i.e., the exchange of information through the emission,
propagation, and reception of molecules, has been identified as the key paradigm to
interconnect these biological nanomachines into nanoscale networks, or nanonetwork. The
design of MC nanonetworks built upon biological circuits is particularly interesting since
cells possess many of the elements required to realize this type of communication, thus
enabling the design of cooperative functions in the biological environment. In this paper, a
systems-theoretic modeling is realized by analyzing a minimal subset of biological circuit
elements necessary to be included in an MC nanonetwork design where the message-
bearing molecules are propagated via free diffusion between two cells. The obtained
system-theoretic models stem from the biochemical processes underlying cell-to-cell
MC, and are analytically characterized by their transfer functions, attenuation and delay
experienced by an information signal exchanged by the communicating cells. Numerical
results are presented to evaluate the obtained analytical expressions as functions of
realistic biological parameters.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

One of the goals of synthetic biology is the develop-
ment of tools to reliably design and implement artificial
functions within biological cells, thus enabling the realiza-
tion of programmable biological nanoscale devices, known
as biological nanomachines [2], based on living organisms,
such as bacteria [21]. In particular, a synthetic biologi-
cal circuit [19], or simply biological circuit, allows to pro-
gram logical functions from simple controlled production
of specific types of protein molecules, to complete engi-
neered cell-to-cell interactions [18], in a similar way as
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it is done with electrical circuits. Molecular Communica-
tion (MC), defined as the exchange of information through
the emission, propagation, and reception of molecules,
has been identified as the key paradigm to interconnect
these biological nanomachines into nanoscale networks, or
nanonetwork. The design of MC nanonetworks built upon
biological circuits is particularly interesting since cells pos-
sess many of the elements required to realize this type of
communication, thus enabling the design of cooperative
functions in the biological environment. The potential ap-
plications of this type of networks range from the biomed-
ical [12], to the industrial and surveillance fields [23]. The
focus of this paper is on the study from the communication
engineering point of view of a molecular communication
system based on biological circuits where the message-
bearing molecules are propagated via free diffusion
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between two genetically-engineered cells, a transmitter
and a receiver.

A biological circuit is normally defined as a genetic reg-
ulatory network [19] embedded in a biological cell, where
DNAgenes are linked together by activation and repression
mechanisms that regulate their expression into proteins,
which are biological macromolecules. Each DNA gene con-
tains coding sequences, which are chemical information
for building proteins, and regulatory sequences, which are
sites were proteins can bind and control the rate of the
gene expression, either by increasing (activation) or de-
creasing (repression) the protein building rate. In biolog-
ical circuits, genes are interconnected such as the proteins
produced by one or more genes regulate the expression
of one or more genes. In recent years, a great effort is be-
ing devoted to the standardization and the establishment
of catalogs of biological circuit parts [7]. By following the
BioBrickTM standard [5], the units to measure the input
and the output of a biological circuit are defined as Poly-
merases Per Second (PoPS), which correspond to the rates
of the transcription process of the first and last biological
circuit genes, respectively, proportional to their rate of ex-
pression. A biological circuit can process a PoPS signal as a
function of the time in input by returning in output another
PoPS signal as a function of the time through the aforemen-
tioned interconnection of gene regulations.

Some recent literature can be found on the analyti-
cal modeling of biological circuits, but with no specific
mention to diffusion-based cell-to-cell communication
throughmolecule exchange, forwhich only a biological de-
scription is provided in some specific works. Notable ex-
amples from this literature are given as follows. In [19]
the genetic circuit design is introduced as an engineer-
ing discipline and the main mathematical framework for
the modeling of biological circuit functions is introduced.
The models of some important biological circuit patterns,
called network motifs, are presented in a very complete
theoretical framework in [3]. The standardization efforts of
biological circuit parts are reviewed in [5], while the mod-
eling techniques for biological circuits are discussed in [4].
The frequency domain analysis of biological circuits is pre-
sented in [8] both from a deterministic and a stochastic
point of view, while the noise in biological circuit is dis-
cussed in [22]. In [16], the specific noise sources affecting
cellular signaling pathways are described. Finally, thework
in [21] treats engineering techniques to implement signals
and sensors in bacteria through biological circuits.

In this paper, a systems-theoretic communication engi-
neering model is presented for a biological circuit where
a signal is transmitted from a PoPS input in a biological
cell (transmitter cell) to a PoPS output in another biolog-
ical cell (receiver cell), located at a predefined distance
from the transmitter cell. This biological circuit, inspired
by the cell-to-cell communication circuit sketched in [19],
realizes a diffusion-based molecular communication sys-
tem by encoding the signal to be transmitted into signaling
molecules, which propagate between the transmitter cell
and the receiver cell through their diffusion in the inter-
cellular space. In addition, the biological circuit detailed in
this paper is composed by the minimal subset of elements
necessary to realize diffusion-based molecular communi-
cation between biological cells, and the resulting models
are expected to have a general validity over other more
complex implementations.

This paper is organized as follows. In Section 2 a bi-
ological circuit for molecular communication is identi-
fied through a minimal subset of elements. In Section 3
a systems-theoretic model is detailed in terms of transfer
functions, from which analytical expressions are derived
for the attenuation and the delay experienced by an infor-
mation signal through the biological circuit. In Section 4
we present some numerical results obtained by applying
to the developed models some realistic biological param-
eters from the literature. Finally, in Section 5 we conclude
the paper.

2. A biological circuit for molecular communication

2.1. Functional blocks description

The main functional blocks of this biological circuit are
shown in Fig. 1, where a space is divided into the intra-
cellular environments of a transmitter cell and a receiver
cell, respectively, which are assumed chemically homoge-
neous, or well-stirred, and they are divided by an intercel-
lular environment. As a consequence, in the intracellular
environment the molecule concentrations are assumed
homogeneous in the space, while in the intercellular
environment there is in general a non-homogeneous con-
centration of signalingmolecules, which is subject to prop-
agation via diffusion. We assume that the intracellular
space of the transmitter cell is a volume with size ΩTx,
while the intracellular space of the receiver cell is a volume
with size ΩRx. The main functional blocks of this biological
circuit, shown in Fig. 1, are detailed as follows:

• The Signaling Enzyme Expression takes place inside the
transmitter cell, and it is initiated by a PoPS signal in
input, PoPS in, which promotes the transcription of an
enzyme coding sequence and the translation of the con-
tained information into a protein, denoted by E and
called enzyme because of its specific chemical function,
as explained in the following. The output of the signal-
ing enzyme expression is the concentration of the pro-
duced enzymes, denoted by [E].
• The Signaling Molecule Production is an enzymatic

chemical reaction that occurs inside the transmitter
cell, where the enzymes E catalyze the conversion
of molecules present in the intracellular environment,
called substrates, into other molecules, called products,
by forming enzyme–substrate complexes. Among these
products, the signaling molecules, denoted by S, are
small organic molecules whose size allows them to
cross the cell membrane and propagate through diffu-
sion in the intercellular environment. The other products
of the enzymatic reaction, denoted here as subproducts,
remain in the intracellular environment and do not take
part in the diffusion-based molecular communication.
As a consequence, the input of the signaling molecule
production is the concentration of enzymes [E], while
the output is the concentration of produced signaling
molecules at the transmitter, denoted by [S]Tx.
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Fig. 1. Main functional blocks of a biological circuit for diffusion-based molecular communication.
• TheDiffusion Process realizes the propagation of the sig-
naling molecules S in the intercellular environment,
and it is the macroscopic effect of the random Brow-
nian motion of the signaling molecules in the space.
The diffusion process has the effect to propagate differ-
ences in the signaling molecule concentration from the
transmitter cell to the receiver cell,where they cross the
membrane and have access to the receiver intracellular
environment. The input of the diffusion process is the
concentration [S]Tx of signaling molecules at the trans-
mitter cell, while the output is the concentration [S]Rx
of signaling molecules at the receiver cell.
• The Receptor Activator Expression takes place inside the

receiver cell, and it is initiated by an input PoPS aux-
iliary signal, PoPSaux, which promotes the transcription
of a receptor coding sequence and the translation of the
contained information into proteins, called receptors,
and denoted by R. The output of the receptor activator
expression is the concentration of the produced recep-
tors, denoted by [R].
• The Ligand–Receptor Binding is a reaction that occurs

inside the receiver cell, where the incoming signal-
ing molecules S bind to the receptors R and form ac-
tivator complexes, denoted by RS. The inputs of the
ligand–receptor binding are the concentration of pro-
duced receptors [R] and the concentration [S]Rx of sig-
naling molecules at the receiver cell, and the output is
the concentration [RS] of activator complexes.
• The Output Transcription Activation is initiated by the

activator complexes RS upon binding to the activator
site, where a PoPS output signal is produced according
to the binding of RNA polymerase proteins, denoted as
RNAP , to the promoter sequence. The inputs of the tran-
scription activation are the concentration [RS] of acti-
vator complexes, the concentration [PRx] of promoter
sequences, and the concentration [RNAP] of the RNA
polymerase protein, respectively,while the output PoPS
signal is denoted as PoPSout .

2.2. Reaction-based description

In the following, we provide a description of the biolog-
ical circuit in terms of the chemical reactions undergoing
in the aforementioned elements. This description serves
to define all the chemical parameters of the biological cir-
cuit under study, and it sets the basis to build the systems-
theoretic model detailed in Section 3.

The Signaling Enzyme Expression is based on a transcrip-
tion and translation reaction, which models the production
of the npE enzymes stimulated by the input signal PoPS in
with a rate kE , expressed as follows:

PoPS in
kE
−→ npEE + PoPS in. (1)

The enzymes are also subject to degradation, with a degra-
dation rate kdE , expressed as:

E
kdE
−→(). (2)

The Signaling Molecule Production is based on an enzy-
matic reactionwhere the enzyme E and the substrates (one
or more), here denoted as S0, according to the rate kS1 form
a complexCs, which can then either dissociate back into the
enzyme E and the substrates S0, with a rate kS−1 , or evolve
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into the sum of the enzyme E and the signaling molecule
S according to a rate kS2 . This reaction is expressed as fol-
lows:

E + S0
kS1
←→
kS−1

CS
kS2
−→ E + S. (3)

TheDiffusion Process is based on the assumption to have
a 3-dimensional intercellular space, which contains a flu-
idic medium and has infinite extent in all the three di-
mensions. The diffusion process is based on the following
Diffusion Equation [20,9] in the variable [S](r, t), which is
the concentration [S] of signalingmolecules present at dis-
tance r from the transmitter and time instant t:
∂[S](r, t)

∂t
= D∇2

[S](r, t), (4)

where ∂(·)/∂t and ∇2(·) are the time first derivative and
the Laplacian operator, respectively. D is the diffusion co-
efficient and it is considered a constant parameter within
the scope of this paper. This is in agreement with the as-
sumption of having independent Brownian motion for ev-
ery molecule in the space.

The Receptor Activator Expression is based on the tran-
scription and translation reaction for the production of npR
receptors R stimulated by the signal PoPSaux with a rate kR,
expressed as follows:

PoPSaux
kR
−→ npRR+ PoPSaux. (5)

The degradation reaction of the receptors R is expressed as
follows according to a degradation rate kdR :

R
kdR
−→(). (6)

The Ligand–Receptor Binding is based on the binding
and release reactions between receptors R and signaling
molecules S. Upon binding, which occurs with a rate kRS ,
a receptor R and a signaling molecule S form an activator
complex RS, which will be the input of the next transcrip-
tion activation reaction. A complexRS unbinds and releases
a receptor R and a signaling molecule S according to a rate
k−RS . This is expressed as follows:

R+ S
kRS
←→
k−RS

RS. (7)

The Output Transcription Activation is based on an open
complex formation reaction, where an activator complex RS,
a promoter sequence PRx, and an RNA polymerase RNAP
trigger the open complex formation, quantified through
the output signal PoPSout , according to a rate kRx. The open
complex can dissociate back into an activator complex RS,
a promoter sequence PRx, and an RNA polymerase RNAP ac-
cording to a rate k−Rx. This has the following expression:

RS + PRx + RNAP
kRx
←→
k−Rx

PoPSout . (8)

In the following, with reference to the aforementioned
chemical reactions, we detail the systems-theoretic model
of this biological circuit, which allows to derive the transfer
function and, consequently, the attenuation and delay
parameters for each functional block and for their overall
end-to-end cascade.
3. Systems-theoretic model

The objective of the systems-theoretic model is to de-
rive the mathematical relation between the input signal
PoPS in(t) and the output signal PoPSout(t) of the afore-
mentioned biological circuit for diffusion-based molecu-
lar communication, where the input and output signals are
function of the time t . As detailed in the following, we ex-
press this mathematical relation in terms of transfer func-
tion H(ω), where ω corresponds to the frequency of the
Fourier transforms [10] of the signals, namely, PoPSin(ω)
and PoPSout(ω), expressed as follows:

H(ω) =
PoPSout(ω)

PoPSin(ω)
,

PoPSi(ω) =


PoPSi(t)e−jωtdt,

(9)

where i ∈ {in, out}, and H(ω) depends from all the chem-
ical parameters defined in Section 2, namely, the trans-
mitter cell volume ΩTx and the receiver cell volume ΩRx,
the reaction rates kE, kdE , kS1 , kS−1 , kS2 , kR, kdR , kRS , k−RS,
kRx, k−Rx and numbers of produced molecules npE and npR,
the diffusion coefficient D, the auxiliary signal PoPSaux, as-
sumed constant in time, the concentration of substrates
[S0] at the transmitter cell, and the concentrations of pro-
moter sequence [PRx] and RNA polymerase [RNAP] at the
receiver cell.

As explained in the following and graphically shown in
Fig. 2, the linearity property of the mathematical expres-
sions of the chemical reactions described in Section 2.2 al-
lows the decomposition of the transfer function H(ω) into
the cascade of the transfer functions of each functional
block, as shown in Fig. 1. This decomposition has the fol-
lowing expression:

H(ω) = HA(ω)HB(ω)HC (ω)HD(ω)HE(ω)HF (ω)[S0]
· PoPSaux[PRx][RNAP], (10)

where HX (ω), X ∈ {A, B, C,D, E, F}, are the transfer funct-
ions of each functional block, as function of the frequency
ω, detailed in the following. The parameters [S0], PoPSaux,
[PRx] and [RNAP] are the concentration of substrates at the
transmitter cell, and the auxiliary input signal, the con-
centration of promoter sequences and the concentration of
RNA polymerase at the receiver cell, respectively, assumed
constant in time for the scope of this paper.

In the following, we analytically derive the transfer
function of each functional block shown in Fig. 2 from the
reaction-based description provided in Section 2.2. Subse-
quently, we provide an approximation Ĥ(ω) of the transfer
function of the biological circuit through considerations on
the differences in the time scales of the chemical reactions
of different functional blocks. Finally, starting from the ex-
pression of the approximated transfer function Ĥ(ω) of the
biological circuit, we provide analytical expressions for the
attenuation and delay experienced by an information sig-
nal through the biological circuit.
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Fig. 2. Decomposition of the transfer function of a biological circuit for diffusion-based molecular communication into the transfer functions of each
functional block.
3.1. Functional block transfer functions

The transfer function of each functional block, with
reference to Fig. 2, is analytically derived by applying
the Classical Chemical Kinetic (CCK) modeling [6] to the
reaction-based description provided for each block in
Section 2.2.

The CCK model of the Signaling Enzyme Expression is
expressed through the following Reaction-Rate Equation
(RRE), which analytically models the chemical reactions in
(1) and (2):

d[E](t)
dt

= npEkEPoPS in(t)− kdE [E](t), (11)

where [E](t) and PoPS in(t) are the concentration of
produced enzymes inside the transmitter cell and the input
signal, respectively, as functions of the time t . By applying
the Fourier transform [10] to (11), we obtain the following:

jω[E](ω) = npEkEPoPSin(ω)+ kdE [E](ω). (12)

As a consequence, the transfer function HA(ω) of the
signaling enzyme expression functional block is derived by
solving (12) with respect to the concentration of produced
enzymes [E](ω) as function of the PoPSin(ω), expressed as

HA(ω) =
npEkE

jω + kdE
, (13)

where npE, kE , and kdE are the number of enzymes pro-
duced per reaction, the enzyme expression rate, and the
enzyme degradation rate, respectively.

The Signaling Molecule Production is expressed through
the following two RREs, which analytically model the
chemical reactions in (3):
d[CS](t)

dt
= kS1 [E](t)[S0] − kS−1 [CS](t)− kS2 [CS](t)

d[S]Tx(t)
dt

= kS2 [CS](t), (14)

where [CS](t), [E](t), and [S]Tx(t) are the concentration of
formed complexes, produced enzymes and produced sig-
naling molecules inside the transmitter cell, respectively,
as functions of the time t , and [S0] is the concentration of
the substrates, assumed constant in time. By applying the
Fourier transform [10] to (14) and by substituting the first
expression in the second expression, we obtain

jω[S]Tx(ω) =
kS1

kS−1 + kS2 + jω
[S0][E](ω). (15)
Starting from (15), by expressing the concentration of pro-
duced signaling molecules [S]Tx(ω) as function of the pro-
duced enzymes [E](ω) and the frequency ω, we derive the
expression of the transfer function HB(ω) of the signaling
molecule production functional block as follows:

HB(ω) =
kS1

ω{j(kS−1 + kS2)− ω}
, (16)

where kS1 , kS−1 , and kS2 are the complex formation rate, the
complex dissociation rate, and the signaling molecule pro-
duction rate, respectively.

The Diffusion Process functional block is expressed
through the Inhomogeneous Diffusion Equation, which is
based on the diffusion equation expression in (4), as fol-
lows:

∂[S](r, t)
∂t

= D∇2
[S](r, t)+

d[S]Tx(t)
dt

δ(r), (17)

where [S](r, t) and d[S]Tx(t)
dt are the concentration of signal-

ing molecules present at distance r from the transmitter
and the first time derivative of the concentration of signal-
ing molecules at the transmitter, respectively, as function
of the time t . δ(r) is a Dirac delta centered at the transmit-
ter location and D is the diffusion coefficient. The solution
of (17) in terms of Fourier transform [10] of the concentra-
tion of signalingmolecules [S]Rx(ω) at the receiver, located
at a distance rRx from the transmitter, as function of the
produced signaling molecules [S]Tx(ω), is as follows [17]:

[S]Rx(ω) =
e−(1+j)

√
ω
2D rRx

πDrRx
jω[S]Tx(ω). (18)

As a consequence, the expression of the transfer function
HC (ω) of the diffusion process functional block is as fol-
lows:

HC (ω) = jω
e−(1+j)

√
ω
2D rRx

πDrRx
, (19)

where D and rRx are the diffusion coefficient and the dis-
tance of the receiver from the transmitter, respectively.

The CCK model of the Receptor Activator Expression is
expressed through the following RRE, which analytically
models the chemical reactions in (5) and (2):

d[R](t)
dt

= npRkRPoPSaux − kdR [R](t), (20)
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where [R](t) and PoPSaux are the concentration of recep-
tors inside the receiver cell as functions of the time t and
the PoPS signal that controls the receptor expression, re-
spectively. Since we assume that the auxiliary input signal
PoPSaux is constant in time, the resulting concentration of
receptors inside the receiver cell is also constant in time. By
solving (20), the expression of the transfer function HD(ω)
of the diffusion process functional block is as follows:

HD(ω) =
npRkR
kdR

, (21)

where npR, kR, and kdR are the number of receptors pro-
duced per reaction, the receptor expression rate, and the
receptor degradation rate, respectively.

The Ligand–Receptor Binding has a RRE CCK model
which derives from the chemical reaction expression in (7),
and it is as follows:

d[RS](t)
dt

= kRS[R](t)[S]Rx(t)− k−RS[RS](t), (22)

where [RS](t), [R](t) and [S]Rx(t) are the concentration
of activator complexes, receptors and signaling molecules
inside the receiver cell, respectively, as functions of the
time t . By applying the Fourier transform [10] to (22), we
express the concentration of activator complexes [RS](ω)
as function of [R](ω), [S](ω), and the frequency ω as
follows:

jω[RS](ω) = ([R](ω) ∗ [S](ω)) kRS − k−RS[RS](ω), (23)

where . ∗ . is the convolution operator [10]. As explained
above, we assume a constant auxiliary input signal PoPSaux
is constant in time, which results in a constant concentra-
tion of receptors inside the receiver cell. As a consequence,
the expression of the transfer function HE(ω) of the lig-
and–receptor binding functional block is as follows:

HE(ω) =
kRS

jω + k−RS
, (24)

where kRS and k−RS are the ligand–receptor binding and re-
lease rates, respectively.

The CCK model of the Output Transcription Activation
functional block is expressed through the RRE, which is
derived from the description of the chemical reaction in
(8). This RRE has the following expression:

dPoPSout(t)
dt

= kRx[PRx][RNAP][RS](t)− k−Rx[RS](t), (25)

where PoPSout(t) and [RS](t) are the biological circuit out-
put PoPS signal and the concentration of activator com-
plexes inside the receiver cell, respectively, as functions of
the time t , and [PRx] and [RNAP] are the concentrations of
promoter sequences and RNA polymerase at the receiver
cell, respectively, assumed constant in time. The expres-
sion in (22) is solved in the same way as done for the sig-
naling enzyme expression functional block in (12). Finally,
the expression of the transfer function HF (ω) of the output
transcription activation functional block is as follows:

HF (ω) =
kRx

jω + k−Rx
, (26)
where kRx, and k−Rx are the open complex formation and
dissociation rates, respectively.

Since the RRE expression of the functional blocks in
(11), (14), (17), (20), and (22) are Ordinary Differential
Equations (ODE), they represent Linear Time-Invariant sys-
tems, whose transfer function solutions can be combined
through the formula in (10) to derive the transfer function
H(ω) of a biological circuit for diffusion-based molecular
communication, expressed as

H(ω) =
npEkE

jω + kdE

kS1 [S0]
ω{j(kS−1 + kS2)− ω}

× jω
e−(1+j)

√
ω
2D rRx

πDrRx

·
npRkR
kdR

PoPSaux
kRS

jω + k−RS

·
kRx

jω + k−Rx
[PRx][RNAP], (27)

where npE, kE , and kdE are the number of enzymes pro-
duced per reaction, the enzyme expression rate, and the
enzyme degradation rate, respectively, kS1 , kS−1 , and kS2
are the complex formation rate, the complex dissociation
rate, and the signaling molecule production rate, respec-
tively, D and rRx are the diffusion coefficient and the dis-
tance of the receiver from the transmitter, respectively,
npR, kR, and kdR are the number of receptors produced per
reaction, the receptor expression rate, and the receptor
degradation rate, respectively, PoPSaux is the auxiliary in-
put signal, assumed constant in time, kRS and k−RS are
the ligand–receptor binding and release rates, respectively,
and kRx, and k−Rx are the open complex formation and dis-
sociation rates, respectively. [S0], [PRx] and [RNAP] are the
concentrations of substrates at the transmitter cell, pro-
moter sequences and RNA polymerase at the receiver cell,
respectively, assumed constant in time.

3.2. Time scale approximation

According to [3], the chemical reactions involved in bio-
logical circuits have different time scales. In particular, the
chemical reactions described in Section 2.2, and modeled
through the transfer function expressions in Section 3.1,
occur at significantly different speeds. As experimentally
demonstrated in [3], the chemical reactions where a pro-
tein is expressed from the DNA coding sequence and ac-
cumulates/propagates in the space, such as the signaling
enzyme expression, the receptor activator expression, and
the diffusion process, are significantly slower than the re-
actions between two or more molecules for the formation
of complexes, such as in the signaling molecule produc-
tion, the ligand–receptor binding and the output transcrip-
tion activation. Therefore, the former reactions dominate
the dynamic behavior of the circuit, and the transfer func-
tions of the latter reactions can be approximatedwith their
steady state versions, as shown in Fig. 3 and analytically
derived in the following.
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Fig. 3. Approximation of the decomposition of the transfer function of a biological circuit for diffusion-based molecular communication.
As a result, we define Ĥ(ω) as the approximate transfer
function of the biological circuit, derived through consid-
erations on the chemical reaction time scales. The transfer
function Ĥ(ω) is expressed as follows:

Ĥ(ω) = HA(ω)KB(ω)[S0]HC (ω)HD(ω)

· PoPSauxKEKF [PRx][RNAP], (28)

where HA(ω),HC (ω), and HD(ω) are the transfer func-
tions of the signaling enzyme expression, the receptor ac-
tivator expression, and the diffusion process, respectively,
[S0], PoPSaux, [PRx] and [RNAP] are the concentrations of
substrates at the transmitter cell, the auxiliary input, the
concentration promoter sequences and the concentration
RNA polymerase at the receiver cell, respectively, assumed
constant in time, KB(ω) is the steady state transfer func-
tion of the signaling molecule production, KE , and KF are
the steady state approximations to constant values of the
transfer functions of the ligand–receptor binding and the
output transcription activation, respectively.

The steady state approximation KB(ω) of the Signaling
Molecule Production functional block is computed by set-
ting in (14) the first time derivative d[CS](t)/dt in the con-
centration of formed complexes to 0. The solution to (14)
becomes as follows:

d[CS](t)
dt

= 0→ [S]Tx(ω)

=
kS1

jω(kS−1 + kS2)
[S0][E](ω). (29)

The steady state transfer function KB(ω) of the signaling
molecule production is therefore given by

KB(ω) =
kS1

jω(kS−1 + kS2)
, (30)

where kS1 , kS−1 , and kS2 are the complex formation rate, the
complex dissociation rate, and the signaling molecule pro-
duction rate, respectively.

The steady state approximations of the Ligand–Receptor
Binding and the Output Transcription Activation functional
blocks to the constant values KE and KF result from com-
puting the transfer functions HE(ω) and HF (ω) for a value
of the frequency ω = 0, expressed as

KE =
kRS
k−RS

, KF =
kRX
k−RX

, (31)
which correspond to the solution of (22) and (25) whenwe
set to 0 the time first derivative d[RS](t)/dt in the concen-
tration of activator complexes and the time first derivative
dPoPSout(t)/dt in the biological circuit output PoPS signal.

The approximate transfer function Ĥ(ω) of the biolog-
ical circuit, derived through the steady state approxima-
tions, has the following expression:

Ĥ(ω) = KĤ
e−(1+j)

√
ω
2D rRx

jω(jω + kdE )
, (32)

where the constant KĤ is as follows:

KĤ =
npEkEkS1 [S0]npRkRPoPSauxkRSkRx[PRx][RNAP]

(kS−1 + kS2)πDrRxkdRk−RSk−Rx
, (33)

where all the parameters are the same as in (27).

3.3. Attenuation and delay expressions

The attenuation and delay experienced by a signal
through the biological circuit are analytically derived from
the approximate transfer function Ĥ(ω) expressed in (32),

The attenuation α(ω), as function of the frequency ω, is
computed through the reciprocal of the absolute value of
the approximate transfer function Ĥ(ω) in (32), which has
the following expression:

α(ω) =
1

|Ĥ(ω)|
=

ω


ω2 + k2dE

KĤe
−

√
ω
2D rRx

, (34)

where kdE is the enzyme degradation rate,D is the diffusion
coefficient, rRx is the distance of the receiver from the
transmitter, and KĤ is given in (33).

The delay ∆(ω), as function of the frequency ω, is com-
puted as the frequency first derivative of the phase φĤ(ω)

of the approximate transfer function Ĥ(ω) in (32). The
phase φĤ(ω) has the following expression

φĤ(ω) = arctan

kdE
ω


−


ω

2D
rRx. (35)

As a consequence, the delay ∆(ω) is expressed as

∆(ω) = −
dφĤ(ω)

dω

=
rRxω2

+ 2kdE
√
2Dω + rRxk2dE

2
√
2Dω


ω2 + k2dE

 , (36)
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Fig. 4. Attenuation of the biological circuit for diffusion-based MC as function of the receiver distance from the transmitter rRx and the frequency ω.
where rRx, kdE , and D are the distance of the receiver from
the transmitter, the enzyme degradation rate, and the dif-
fusion coefficient, respectively.

4. Numerical results

In this section, we present some preliminary numerical
results obtained through the evaluation of the expressions
of the systems-theoretic model of the biological circuit for
diffusion-based MC analyzed in this paper.

In the synthetic biology and biological circuit engineer-
ing literature, there are currently very fewworks that focus
on the joint experimental determination of the biochemi-
cal parameters of a complete biological circuit implemen-
tation, such as theparameterswe introduced in Section 2.2.
Most of the results presented in the literature focus on
the study of one specific element or biochemical reaction
rather than a complete architecture. As a consequence, the
values of the biochemical parameters used for our numer-
ical results are taken from a diverse pool of papers and, al-
though they satisfy the goal of having a realistic order of
magnitude, they do not necessarily capture the values that
they would have in a real implementation of the biological
circuit we analyze here.

For the numerical results obtained from the system-
theoretic model, presented in the following, we applied
the following parameter values from the LuxR–LuxI quo-
rum sensing system [13] in E. coli bacteria, which has been
already used for the engineering of a biological circuit for
diffusion-based molecular communication, as in [1]. The
rates of signaling enzyme and receptor activator transla-
tion equal to the rate of Lux protein translation from [15],
namely, kE = kR = 9.6 × 10−1 min−1, the rate of signal-
ing enzyme degradation equal to the degradation rate of
LuxI protein in [15], namely, kdE = 1.67×10−2 min−1, the
rate of receptor degradation equal to the degradation rate
of LuxR protein in [15], namely, kdR = 2.31× 10−2 min−1,
the complex formation rate from the binding of the sig-
naling enzymes and the substrates equal to the forward
LuxI–substrates reaction for autoinducermolecule produc-
tion in [14], namely, kS1 = 0.6 molecules−1 min−1, the
binding and unbinding rates between receptors and sig-
naling molecules equal to the values in [15], namely, kRS =
6× 10−4 molecules−1 min−1 and k−RS = 2× 10−2 min−1,
respectively, and the rate of open complex formation
upon output transcription activation and open complex
dissociation at the receiver as in [15], namely, kRx =
10−2 molecules−1 min−1 and k−Rx = 4× 10−2 min−1. The
diffusion coefficient D ∼ 60 × 10−9 m2 min−1 is set to
the diffusion coefficient of molecules diffusing in a biologi-
cal environment (cellular cytoplasm, [11]). We set the vol-
ume of the transmitter and receiver volume ΩTx = ΩRx
to 1 µm2, the number of substrates at the transmitter cell
S0 = 100, the auxiliary input signal PoPSaux = 1, the num-
ber of promoter sequences and RNA polymerases at the re-
ceiver cell PRx = 1 and RNAP = 100, respectively.

In Figs. 4 and 5we show the numerical results for the at-
tenuation α and delay ∆ experienced by a signal through
the biological circuit, computed by using the expressions
in (34) and (36), respectively. The value of the receiver dis-
tance from the transmitter rRx ranges from 5 to 500 µm,
while the range of observed frequencyω values is between
0 and 1 Hz. The values for the attenuation α of the bio-
logical circuit, shown in dB, range from a minimum of 0
at theminimum distance rRx and frequencyω equal to 0, to
amaximum of 117.8 dB for a distance rRx of 50µmand fre-
quency ω equal to 1 Hz with a monotonic increasing trend
bothwhen increasing the distance rRx and the frequencyω.
The values for the delay ∆ range from aminimum of 0min
at the minimum distance rRx and maximum frequency ω
equal to 1 Hz, to a maximum of 1.4 min at a distance rRx of
50 µm and for a frequency ω equal to 0. The curves of the
delay ∆ always show a monotonically decreasing trend as
function of the frequency ω, more pronounced for higher
values of the distance rRx.
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5. Conclusion

In this paper, a systems-theoretic model is derived
for a diffusion-based molecular communication system
design based on biological circuits. Biological circuits are
defined as genetic regulatory networks embedded in a
biological cell, and they are envisioned to allow the
future engineering of complete biological nanomachines.
Some recent literature can be found on the analytical
modeling of biological circuits, but with no specific
mention to diffusion-based cell-to-cell communication
through molecule exchange, for which only a biological
description is provided in some specific works.

In our work, first, a biological circuit for diffusion-based
molecular communication is described through a minimal
subset of elements. Then, amathematicalmodel is detailed
in terms of transfer functions, from which analytical ex-
pressions are derived for the attenuation and the delay
experienced by an information signal through the biologi-
cal circuits. Finally, we present some numerical results ob-
tained by applying to the developed models some realistic
biological parameters from the literature.

The work presented in this paper is a preliminary
analysis of the application of communication engineering
to the design of communication systems throughbiological
circuits and their biochemical reactionswithin genetically-
engineered cells. We believe this is the first step towards a
potentially transformative interdisciplinary research area
that could change the way we design devices and interact
with the nature.

Acknowledgments

This material is based upon work in part supported
by the US National Science Foundation under Grant
no. CNS-1110947, and in part supported by the Jane
Robertson Layman Fund under project no. WBS #26-0511-
9001-015.

References

[1] I.F. Akyildiz, F. Fekri, R. Sivakumar, C.R. Forest, B.K. Hammer,
Monaco: fundamentals of molecular nano-communication net-
works, IEEE Wirel. Commun. Mag. 19 (5) (2012) 12–18.

[2] I.F. Akyildiz, J.M. Jornet, M. Pierobon, Nanonetworks: a new
frontier in communications, Commun. ACM 54 (11) (2011)
84–89.

[3] U. Alon, An Introduction to Systems Biology—Design Principles of
Biological Circuits, Chapman & Hall/CRC, 2006.

[4] S.S. Andrews, T. Dinh, A.P. Arkin, in: Robert Meyers (Ed.), Stochastic
Models of Biological Processes, Vol. 9, Springer, NY, 2009.

[5] D. Baker, G. Church, J. Collins, D. Endy, J. Jacobson, J. Keasling,
P. Modrich, C. Smolke, R. Weiss, Engineering life: building a fab for
biology, Sci. Am. 294 (6) (2006) 44–51.

[6] C. Bustamante, Y. Chelma, N. Forde, D. Izhaky, Mechanical processes
in biochemistry, Annu. Rev. Biochem. 73 (2004) 705–748.

[7] B. Canton, A. Labno, D. Endy, Refinement and standardization of
synthetic biological parts and devices, Nature Biotechnol. 26 (7)
(2008) 787–793.

[8] C.D. Cox, J.M. McCollum, D.W. Austin, M.S. Allen, R.D. Dar, M.L.
Simpson, Frequency domain analysis of noise in simple gene circuits,
Chaos 16 (2) (2006) 026102.

[9] E.L. Cussler, Diffusion. Mass Transfer in Fluid Systems, second ed.,
Cambridge University Press, 1997.

[10] B. Davies, Integral Transforms and their Applications, Springer, New
York, 2002.

[11] B.S. Donahue, R.F. Abercrombie, Free diffusion coefficient of ionic
calcium in cytoplasm, Cell Calcium 8 (6) (1987) 437–448.

[12] R.A. Freitas, Nanomedicine, Volume I: Basic Capabilities, Landes
Bioscience, Georgetown, TX, 1999.

[13] W.C. Fuqua, S.C.Winans, E.P. Greenberg, Quorumsensing in bacteria:
the luxr-luxi family of cell density-responsive transcriptional
regulators, J. Bacteriol. 176 (2) (1994) 269–275.

[14] J. Garcia-Ojalvo, M.B. Elowitz, S.H. Strogatz, Modeling a synthetic
multicellular clock: repressilators coupled by quorum sensing, Proc.
Natl. Acad. Sci. USA 101 (30) (2004) 10955–10960.

http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref1
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref2
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref3
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref4
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref5
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref6
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref7
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref8
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref9
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref10
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref11
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref12
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref13
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref14


34 M. Pierobon / Nano Communication Networks 5 (2014) 25–34
[15] A.B. Goryachev, D.J. Toh, T. Lee, Systems analysis of a quorum
sensing network: design constraints imposed by the functional
requirements, network topology and kinetic constants, Biosystems
83 (2–3) (2006) 178–187.

[16] J.E. Ladbury, S.T. Arold, Noise in cellular signaling path-
ways: causes and effects, Trends Biochem. Sci. 37 (5) (2012)
173–178.

[17] A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and
Green Functions, Springer-Verlag, 2001.

[18] S. Mukherji, A. van Oudenaarden, Synthetic biology: understanding
biological design from synthetic circuits, Nature Rev. Genet. 10
(2009) 859–871.

[19] C.J. Myers, Engineering Genetic Circuits, in: Mathematical and
Computational Biology Series, Chapman & Hall/CRC, 2009.

[20] J. Philibert, One and a half century of diffusion: Fick, Einstein, before
and beyond, Diffus. Fundam. 4 (2006) 6.1–6.19.

[21] H. Salis, A. Tamsir, C. Voigt, Engineering bacterial signals and sensors,
Contrib. Microbiol. 16 (2009) 194–225.

[22] M.L. Simpson, C.D. Cox, M.S. Allen, J.M. McCollum, R.D. Dar,
D.K. Karig, J.F. Cooke, Noise in biological circuits, Wiley Interdiscip.
Rev. Nanomed. Nanobiotechnol. 1 (2) (2009) 214–225.

[23] C.R. Yonzon, D.A. Stuart, X. Zhang, A.D. McFarland, C.L. Haynes, R.P.V.
Duyne, Towards advanced chemical and biological nanosensors—an
overview, Talanta 67 (3) (2005) 438–448.
Massimiliano Pierobon received the Master of
Science (B.S.+M.S.) degree in Telecommunica-
tion Engineering from the Politecnico di Mi-
lano, Milan, Italy, in 2005. He receiver the Ph.D.
degree in Electrical and Computer Engineering
from the Georgia Institute of Technology, At-
lanta, GA, in August 2013. He is currently an
Assistant Professor with the Department of
Computer Science & Engineering at the Univer-
sity of Nebraska-Lincoln. During 2006, Massim-
iliano Pierobon worked as a researcher in the

R&D department of Siemens Carrier Networks, Milan, where he coau-
thored two filed patents on jitter buffer management. From January 2007
to July 2009 he was a graduate research assistant at the Politecnico di Mi-
lano in the fields of signal processing and pattern recognition. In Novem-
ber 2008 Massimiliano Pierobon joined the BWN lab, first as a visiting
researcher and, from August 2009, as a Ph.D. student. He received the
BWN Lab Researcher of the Year Award at the Georgia Institute of Tech-
nology for his outstanding research achievements in 2011. Massimiliano
Pierobon is an editor of IEEE Transactions in Communications, and he
was named IEEE Communications Letters 2013 Exemplary Reviewer in
appreciation for his service as a referee. He is a member of IEEE, ACM,
and ACS. His current research interests are in molecular communication
theory for nanonetworks, communication engineering applied to intelli-
gent drug delivery systems and biological circuit network engineering for
microbial communication networks.

http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref15
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref16
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref17
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref18
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref19
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref20
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref21
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref22
http://refhub.elsevier.com/S1878-7789(14)00004-0/sbref23

	A systems-theoretic model of a biological circuit for molecular communication in nanonetworks
	Introduction
	A biological circuit for molecular communication
	Functional blocks description
	Reaction-based description

	Systems-theoretic model
	Functional block transfer functions
	Time scale approximation
	Attenuation and delay expressions

	Numerical results
	Conclusion
	Acknowledgments
	References


