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Abstract Wireless sensor networks (WSNs) can help the

realization of low-cost power grid automation systems

where multi-functional sensor nodes can be used to mon-

itor the critical parameters of smart grid components. The

WSN-based smart grid applications include but not limited

to load control, power system monitoring and control, fault

diagnostics, power fraud detection, demand response, and

distribution automation. However, the design and imple-

mentation of WSNs are constrained by energy resources.

Sensor nodes have limited battery energy supply and

accordingly, power aware communication protocols have

been developed in order to address the energy consumption

and prolong their lifetime. In this paper, the lifetime of

wireless sensor nodes has been analyzed under different

smart grid radio propagation environments, such as 500 kV

substation, main power control room, and underground

network transformer vaults. In particular, the effects of

smart grid channel characteristics and radio parameters,

such as path loss, shadowing, frame length and distance, on

a wireless sensor node lifetime have been evaluated.

Overall, the main objective of this paper is to help network

designers quantifying the impact of the smart grid

propagation environment and sensor radio characteristics

on node lifetime in harsh smart grid environments.

Keywords Smart grid � Wireless sensor networks �
Lifetime analysis

1 Introduction

Efficient transmission and distribution of electricity are

fundamental requirements to provide services to societies

and economies in the world. The need to renew power grids,

meet growing demands for sustainable and clean electric

energy presents major challenges. However, the increasing

electricity demands all around the world, together with the

complex nature of the power grid, cause congestion in the

power grid, where the entire network capacity is limited by a

few highly loaded power lines, while the rest of the network

remains under-utilized [1–4]. Furthermore, the existing

power grid suffers from the lack of efficient two-way com-

munications, which also leads to blackouts due to the cas-

cading effect initiated by a single fault [2, 5].
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To address all these challenges, a new concept of next

generation electric power system, a smart grid, has been

proposed [2]. The smart grid is a modern power grid

infrastructure for enhanced reliability, productivity, and

safety through automated controls and modern communi-

cation technologies. Considering the large scale of the

electric power grid, low-cost monitoring and control

enabled by real-time sensing technologies have become

essential to maintain the efficiency of the smart grid.

With the recent advances in wireless sensor networks

(WSNs), the realization of low-cost embedded power grid

automation systems have become feasible. In these sys-

tems, wireless multi-functional sensor nodes have been

used to monitor the critical parameters of smart grid

components [6–9]. The WSN-based smart grid applications

include power system monitoring and control, power fraud

detection, demand response, load control, fault diagnostics

and distribution automation [2, 10–13]. However, the

design and implementation of WSNs are constrained by

energy resources [14, 15]. In general, sensor nodes have

limited battery energy supply and thus, communication

protocols for WSNs are mainly tailored to provide high

energy efficiency.

In this paper, the lifetime of wireless sensor nodes has

been analyzed under different smart grid radio propagation

environments, such as 500 kV substation, main power

control room, and underground network transformer vaults.

Although there exists sensor node lifetime analysis for

different sensor hardware architectures, none of them

addresses how different smart grid radio propagation

environments affect the network lifetime of the corre-

sponding smart grid application. Analyzing the lifetime of

sensor nodes in terms of different radio and network

parameters and smart grid spectrum characteristics gives a

new impulse to ongoing research topics. Overall, the main

objective of this paper is to help network designers quan-

tifying the impact of the smart grid propagation environ-

ment and sensor radio characteristics on node lifetime in

harsh smart grid environments. The main contributions of

our study can be itemized as follows:

• The effects of smart grid channel characteristics and

radio parameters, such as path loss, shadowing devia-

tion, frame length and distance, on a wireless sensor

node lifetime have been evaluated.

• The challenges on deploying schedule-driven wireless

sensor networks in smart power grid environments have

been explained to estimate the node lifetime.

• In addition to smart grid environment characteristics,

the impact of different operation modes of sensor nodes

on network lifetime has been discussed.

The remainder of this paper is organized as follows. In

Sect. 2, we present an overview of the related work on

wireless sensor node lifetime. In Sect. 3 we introduce the

new method and protocol. In Sect. 4, we present the

mathematical model and evaluate the performance of our

solutions. Finally, we conclude the paper in Sect. 5.

2 Related work on lifetime estimation in wireless sensor

networks

One of the major research activities within the area of

wireless sensor networks was based on lifetime analysis in

the last decade. In [16], a two sensor node network is

modeled and trigger-driven and schedule-driven nodes, are

analyzed for power consumption and the solutions are

validated by using the simulation tool, MATSNL. Based on

the work of [16], the lifetime is also taken into consider-

ation within the context of availability and security in [17].

Alhtough the existing lifetime models are applicable in

networks to meet certain specified conditions, they do not

deal with how environmental spectrum characteristics

affect the network lifetime and average power consumption

per node. Wireless channel propagation characteristics are

as much important as hardware specifications as stated in

[18]. In order to conduct an accurate analysis, the power

dissipation of a node should be analyzed by considering the

wireless channel parameters.

Specifically, different deployment environments and

indicative parameters are essential to analyze power con-

sumption of a node. The main indicative parameters that

affect sensor networks include network coverage, event

detection ratio, quality of services parameters (QoS), con-

nectivity (availability, latency, loss), requirements for

continuous service (service disruptions up to a length) and

the observation accuracy (measurement errors). Additional

parameters, such as link asymmetry and channel charac-

teristics, have been considered in our work to calculate

more accurate power consumption of sensor nodes.

In recent years, existing platforms improved new tech-

niques for reducing power leakage on sleep mode and dual

pre-processor/radio architecture to analyze power efficient

and high-power components as XYZ in [19], LEAP in [20],

iMote2 in [21]. Moreover, an energy management and

accounting preprocessor (EMAP) module enables to con-

struct different power modes on sensors. In addition, the

detailed simulation tool PowerTOSSIM computes the

power consumption with a low error margin. In [22, 12],

the schedule-based energy consumption is shown for target

tracking application [23].

In [24], a demonstrator of a wireless sensor network for

smart grid applications is introduced. It explains the

hardware of the sensor nodes and demonstrates the results

of the performance activity with the assurance of the fea-

sibility of the recommended solutions. In [25] a system
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analysis is provided with a solution to the problem of

controlling the sleep-awake period of nodes optimally. The

proposed solution aims to extend the node life time as well

as the network lifetime based on the constraint of the end-

to-end packet delivery delay.

Although there exists sensor node lifetime analysis for

different sensor hardware architectures, none of them

addresses how different smart grid radio propagation

environments affect the network lifetime of the corre-

sponding smart grid application. Analyzing the lifetime of

sensor nodes in terms of different radio and network

parameters and smart grid spectrum characteristics gives a

new impulse to ongoing research topics.

3 Evaluated methods and protocols

In the literature, different lifetime models, such as event-

driven and schedule driven models, are used to evaluate the

lifetimes of WSNs. In particular, a set of sensor hardware

parameters, such as power consumption per task, state

transition overhead and communication cost, are used to

compute the average lifetime of a node for a given event

arrival rate. In general, five different power states are

commonly used for each lifetime model. In event-driven

model, the pre-processor is always on and the node is in a

deep sleep mode. The node is in the awake state if and only

if an event is detected. In the schedule driven node, the

duty cycle is described as awake time/duty period. The

node is sleeping most of the time of operation and sleeps

until the node wake-up timer expires. In our model, the

power state transitions are described as a Semi-Markov

chain and the following assumptions are made:

• The first-order statistical characteristic (mean value) of

all random quantities (events, processing time, etc.) is

known by observation and experiment.

• The processing and communication time is short

compared to inter-arrival time of events. Processing

and radio-transmission times are independent and

identically distributed.

• The event duration is zero for an impulse event. We assume

all events in the schedule-driven mode as an impulse event.

• The zero event durations make the duty cycle equal to

the detection probability. The modulation scheme is

orthogonal quadrature phase shift keying (O-QPSK). It

is used in Telos with direct sequence spread spectrum

(DSSS), which provides much more sophisticated

mechanism for sensor networks [26, 12].

• CSMA MAC protocol is used to calculate the average

power consumption of an individual packet transmis-

sion. During each communication period, the sensor

resides in a limited number of low power states.

To model wireless channel in smart grid environments, we

also used the wireless channel model and parameters

determined in our previous study via field-test experiments

[2]. In this model, signal to noise ratio cðdÞ at a distance

d from the transmitter is given by the equation [27]:

cðdÞdB ¼ Pt � PLðd0Þ � 10g log10

d

d0

� Xr � Pg ð1Þ

where Pt is the transmit power, PLðd0Þ is the path loss at a

reference distance d0, g is the path-loss exponent, Xr is a

zero mean Gaussian random variable with standard devi-

ation r and Pg is the noise power (noise floor), in which all

powers are in dBm.

In this section, we investigate the lifetime of wireless

sensor nodes in smart grid with respect to different power

system environments. For the performance evaluation, we

modified the Matlab simulation environment MATSNL

[16, 28] to evaluate the effects of the propagation charac-

teristics on node lifetime in different smart grid environ-

ments. The node is determined to work as a schedule-

driven node in which its period of working is determined

by a timer which indicates the time period as if the node is

in the active mode Timerawake or in sleep mode Timersleep.

Schedule-driven node working mechanism consists of six

different modes as seen in Table 1. The smart grid channel

parameters we used in our performance analysis are listed

in Table 2 and the power consumption of each mode is

presented in Table 3.

Importantly, according to the mode definitions, there

should be more definitions stated in order to get an under-

standing of the whole picture of schedule-driven nodes.

There are transitions between different states with certain

probabilities. Demonstration of the power transition of a

schedule-driven node, which is formed as Semi-Markov

chain as shown in Fig. 1 helps to examine the power state

transitions [16]. Beginning with the assumption that the node

is awake, when if there is a b probability event present then it

would be stated that the event would be detected.

As the next step, the sensor transits to S4e, which is called

as the monitoring state. In this case, the preprocessor and the

sensor is working, CPU is idle and the radio component of the

node is not in process After monitoring state, the mechanism

would certainly transit to the processing state, S2, which

Table 1 Modes of a schedule-

driven node
Modes Sensor CPU Radio

S0 Off Off Off

S1 – – –

S2 On On Off

S3 On On Tx

S4 On Idle Off

S5 On On Rx
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forces the CPU to turn on. Following this state, the operating

mode of the sensor is S3 if the sensed event has data to be sent

to the base station (BS) which has the a probability and the

radio component turns on. On the other hand, if the proba-

bility 1-a happens to occur that the sensed event has no data

to be transferred to BS, then the sensor node transits to the

sleep state. Lastly, the data sent to BS is processed at the

communication state and transition to sleep state with

probability 1 which completes cycle of the Semi-Markov

chain. In addition to the assumption that the node is awake 1-

b is the probability when there is not any sensed event in the

medium. In this case, the node transits to S4i and in return, it

transits back to the sleep state as Timersleep takes over its

duty.

Importantly, to get a better understanding of the mech-

anism of the schedule-driven mode node, the average

consumed power should be examined. Since the consumed

power is highly related to the detection probability of the

events sensed in the medium, the mechanism is stated with

comparison to trigger-driven mode node in terms of

detection probability and average consumed power in [16].

As shown in Table 4, Tc indicates the duration of the duty

cycle d, Tw shows the awake period of the node, whereas Ts

shows the sleep period of the node and u is the detection

probability of an event. Lastly, as mentioned before, k
indicates the poisson arrival rate of the events to the

specified medium. The consumed power does not vary with

the varying detection probability for the case trigger-driven

mode nodes but on the contrary the power consumption of

schedule-driven nodes changes because its transition

mechanism is led by the timer. Overall, all the important

parameters affecting sensor node lifetime are summarized

in Table 4. In order to examine the average consumed

power in a more detailed way, the related definitions are

stated as follows:

• Me is the residual energy that can be specified as the

rest of the energy consumed in a cycle in which the

node is awake. It can be formulated as:

Me ¼ Pw � Tw � ðTw � ðPs2
þ Ps3

ÞÞ ð2Þ

where Pw is the consumed power when the node is in

the awake period, Ps2
is the power consumed in the

processing state and Ps3
is the power consumed in the

communication State.

• Mt is the residual time. In a cycle, the operation of a

node takes a determined time and the rest time of the

node is called as Mt, which is formulated as:

Mt ¼ Tw � ðTs2
þ Ts3

Þ=ðTs2
Þ ð3Þ

where Ts2
is the time spent in the processing state and

Ts3
is the time spent in the communication state.

Note that the major parameter that changes the node

lifetime is the transmission power of the node, since the

Table 2 Path loss exponent and shadowing deviation in smart grid

environments

Propagation environment Path

loss (g)

Shadowing

deviation (r)

Noise

floor (Pn)

500 kV substation (LOS) 2.42 3.12 -93

500 kV substation

(NLOS)

3.51 2.95 -93

Underground transformer

vault (LOS)

1.45 2.45 -92

Underground transformer

vault (NLOS)

3.15 3.19 -92

Main power room (LOS) 1.64 3.29 -88

Main power room (NLOS) 2.38 2.25 -88

Table 3 Schedule driven sensor node power specifications

Sensor Mica2 Telos Imote2 XYZ

Microcontroller ATMega128 TIMSP430 PXA271 ML67 ARM/THUMB

CPU ON (mW) 24 2.7 193 41

CPU IDLE (mW) 9.6 0.09 88 34

CPU OFF (mW) 0.3 0.0018 1.8 0.0063

CPU wake up time (ls ) 180 6 860.11 252

Radio CC1000 CC2420 CC2420 CC2420

Tx 25.5 35 70 57

Rx 21 38 80 65

Idle 0.7 0.7 0.7 0.7

Wake up time(ls) 180,000 580 860 860

Data rate 38.4 250 250 250

Modulation FSK O-QPSK O-QPSK O-QPSK

Processing time 0.2 0.2 0.2 0.6
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power consumption during communication mode is very

high compared to other operation modes. Moreover, when

the channel conditions are bad and packet losses occur, the

node retransmits the data packet to reliably transmit the

message. All these retransmissions cause further power

consumption for the sensor node. Therefore, to estimate the

lifetime of a node accurately, the impact of radio propa-

gation and environmental characteristics on packet recep-

tion rate should be considered. Here, the packet reception

rate (PRR) represents the ratio of the number of successful

packets to the total number of packets transmitted over a

certain number of transmissions. Note that combining bit

error rates together with the corresponding encoding

schemes ; the packet reception rate (PRR) for different

sensor motes can be calculated. It is also important to note

that different from earlier platforms, the modulation

scheme of the recent sensor node platforms is based on

IEEE 802.15.4 standard, which uses orthogonal quadrature

phase shift keying (O-QPSK) with direct sequence spread

spectrum (DSSS), providing much more sophisticated

mechanism for the sensor networks. For example, the

modulation scheme used in Telos nodes is offset O-QPSK

with DSSS. O-QPSK with DSSS modulation scheme in

[29], where K is the number of users who are transmitting

simultaneously and N is the number of chips per bit.

POQPSK
b ¼ Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððEb=NoÞDSÞ
q

Þ ð4Þ

where

ðEb=NoÞDS ¼
ð2N � Eb=NoÞ

ðN þ 4Eb=NoðK � 1Þ=3Þ ð5Þ

Combining the bit error rates together with the corre-

sponding encoding scheme NRZ; the packet reception rate

(PRR) for different sensor nodes can be calculated as

shown in [27]:

PRR ¼ ð1� PbÞ8lð1� PbÞ8ðf�lÞ ð6Þ

In the following section, considering all above-men-

tioned assumptions , we analyze the lifetime of wireless

sensor nodes in smart grid environments based on smart

grid channel characteristics (such as path loss, shadowing

deviation, etc.), sensor operation states and modes, as well

as network parameters (duty cycle, event arrival rate,

packet reception rate, frame length and distance, etc.).

Although there exists sensor node lifetime analysis for

different sensor hardware architectures, none of them

addresses how different smart grid radio propagation

environments affect the network lifetime of the corre-

sponding smart grid application. When considering the

propagation characteristics, we believe that the researchers

can achieve more accurate lifetime estimations. Thus,

analyzing the lifetime of sensor nodes in terms of different

radio and network parameters and smart grid spectrum

characteristics will give a new impulse to ongoing research

topics.

Fig. 1 Semi-Markov chain

power state transition model of

a schedule driven node

Table 4 List of simulation parameters

Parameter Definition

b Probability of an event present in the cell

d Duty cycle

Me Residual energy

Mt Residual time

Pw Consumed power when the node is awake

Pe Average power consumption when there is no events are

detected

Ps2
Consumed power in the processing state

Ps3
Consumed power in the communication state

Tc Duration of duty cycle

Ts Sleep period of node

Tw Awake period of node

Ts2
Time spent in the processing state

Ts3
Time spent in the communication state

Ntx Number of retransmissions

TL Expected life time

u Detection probability

Wireless Netw (2014) 20:2053–2062 2057
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4 Performance evaluations

Our performance evaluation is based on experimentally

determined lognormal channel parameters from our previ-

ous work [2], where the wireless channel in different smart

grid environments was modeled through real-world field

tests by using the IEEE 802.15.4 compliant wireless sensor

nodes in different electric power system environments such

as such as 500 kV substation, main power control room,

and underground network transformer vaults.

We compared lifetime of a schedule-driven Telos under

six different smart grid environments. In Fig. 2(a), (b), we
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observe that the increasing distance at a fixed value of a

duty period, decreases the lifetime. In these figures, we see

that increasing the arrival rate and duty cycle decreases the

lifetime of different nodes, since the event detection

probability increases during the awake period at each node.

We also observed that the maximum lifetime is obtained

from Telos node due to its low energy consumption in both

processing and idle stages compared to other sensor nodes.

Note that Mica2, XYZ and Imote2 consume much more

power in processing and idle stages. The lifetime duration

of Mica2 suffers from the wake up time, which is too high

compared to other nodes.

In the following, we continue our lifetime evaluations

with Telos nodes, since it has longer lifetime compared to

other nodes. As shown in Fig. 3(a)–(f), increasing duty

cycle decreases lifetime exponentially, since the node is

continuously sampling during the awake period. Increasing

duty period in WSNs exponentially decreases the network

lifetime. Additionally, we show the network lifetime with

varying communication distance and duty cycle for dif-

ferent smart grid environments. In these figures, we see that

the maximum lifetime of a node is around 835 days. In

addition, increasing inter arrival rate with a duty cycle

(increasing the awake time during duty period) decreases

the lifetime of the node, since the detection probability of

the awake node becomes higher. The high detection

probabilities consume more power as compared to lower

duty cycles.

In addition, we observe that as the length of the frame

increases, the lifetime of the node exponentially decreases

in a fixed inter-arrival time in Fig. 4(a)–(f). At a fixed inter-

arrival time, we see that the average power dissipation is

increasing with retransmissions due to the radio environ-

ment. In order to evaluate the effects of the frame length on

the lifetime, we used SNR values that affect the packet

reception rate and life time eventually. In general
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increasing the SNR value, small size of frame length

increases packet reception rate compared to large size of

frame lengths.

In summary, our performance evaluation demonstrates

that the smart grid channel parameters, such as path loss

exponent and shadowing, directly affect the lifetime of a

schedule-driven node in smart grid environments. We

compared the lifetime of a schedule-driven Telos in six

different smart grid environments. The overall lifetime of the

network is vulnerable for the propagation characteristics of

the smart grid environment. As shown in the above men-

tioned figures, increasing the duty cycle decreases the life-

time exponentially, since the node is continuously sampling

during the awake period in terms of detection probability of

an event. Without considering the channel conditions, the

lifetime is only related to duty cycle, duty period and arrival

time of events. While considering the propagation charac-

teristics, we believe that the researchers can achieve more

accurate lifetime estimations. We calculate the lifetime by

considering the packet reception rates, which affect the total

number of transmitted packets per sensed event. Increasing

the distance among nodes decreases the received power of

the signal, which decreases exponentially with increasing

path loss exponent. We also observe that the lifetime chan-

ges due to channel conditions in different environments.

Furthermore, the high path loss environments have a nega-

tive impact on the network lifetime.

5 Conclusions

With the recent advances in wireless sensor networks

(WSNs), the realization of low-cost embedded power grid

automation systems have become feasible. In these sys-

tems, wireless multi-functional sensor nodes have been

used to monitor the critical parameters of smart grid

components. The WSN-based smart grid applications

include power fraud detection, demand response, power

system monitoring and control, load control, fault diag-

nostics and distribution automation. However, the design

and implementation of WSNs are constrained by energy

resources. In general, sensor nodes have limited battery

energy supply and thus, communication protocols for

WSNs are mainly tailored to provide high energy effi-

ciency. In this paper, the lifetime of wireless sensor nodes

has been analyzed under different smart grid radio propa-

gation environments, such as 500 kV substation, main

power control room, and underground network transformer

vaults. Specifically, sensor node lifetime is analyzed in

terms of smart grid channel characteristics (such as path

loss, shadowing deviation, etc.), sensor operation states and

modes, as well as network parameters (duty cycle, event

arrival rate, packet reception rate, frame length and

distance, etc.). Although there exists sensor node lifetime

analysis for different sensor hardware architectures, none

of them addresses how different smart grid radio propa-

gation environments affect the network lifetime of the

corresponding smart grid application. Overall, the main

objective of this paper is to help network designers quan-

tifying the impact of the smart grid propagation environ-

ment and sensor radio characteristics on node lifetime in

harsh smart grid environments.
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