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Abstract— Antibody-based drug delivery systems (ADDS) are
established as the most promising therapeutic methods for
the treatment of human cancers and other diseases. ADDS
are composed of small molecules (antibodies) that selectively
bind to receptors (antigens) expressed by the diseased cells.
In this paper, the Molecular Communication (MC) paradigm,
where the delivery of molecules is abstracted as the delivery
of information, is extended to be applied to the design and
engineering of ADDS. The authors have previously developed
a straightforward framework for the modeling of Particulate
Drug Delivery Systems (PDDS) using nano-sized molecules.
Here, the specificities of antibody molecules are taken into
account to provide an analytical model of ADDS transport. The
inputs of the MC model of PDDS are the geometric properties of
the antibodies and the topology of the blood vessels where they
are propagated. Numerical results show that the analytical MC
model is in good agreement with finite-element simulations, and
that the anisotropy is an important factor influencing ADDS.

I. INTRODUCTION

Antibody-based Drug Delivery Systems (ADDS) are at the
forefront of targeted drug delivery research [1]. ADDS are
therapeutic methods that use artificial molecules to mimic
the functioning of naturally produced antibody molecules.
ADDS constitute biologically available materials to build
and engineer therapeutic methods. They are inspired by the
naturally occurring autoimmune mechanisms that enable the
human body to diagnose itself and destroy the exact source of
the disease, in an adaptive and constructive fashion. ADDS
are engineered and inspired by this same advanced immune
system mechanism. The versatility in engineering ADDS
and their attested clinical success open up the possibility
to develop sophisticated therapeutic strategies to effectively
target diseases [2].

We propose to use the MC paradigm to model ADDS
while taking into account the unique features of antibodies
and the new possibilities that are offered through them. The
Molecular Communication (MC) paradigm [3], where the
information is conveyed through molecules, has been previ-
ously used to model and optimize Particulate Drug Delivery
Systems (PDDS) [4]. ADDS propagate in the body by advec-
tion and diffusion in the network of blood vessels and tissues.
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Fig. 1. Elements of an ADDS.

As shown in Fig. 1, the drug injection of antibody molecules
propagates in the network of blood vessels. The antibodies
are transported to the drug delivery site by blood transport
and tissue transport processes. The antibodies specifically
bind to the diseased cells because they express antigens that
match to the antibody and do not appear in the healthy
cells. They trigger their therapeutic effect to cells through
a special case of the ligand-binding mechanism, called the
antibody-antigen mechanism. Therefore, some aspects of the
MC modeling previously developed for PDDS are readily
applicable to ADDS. However, the transport and mechanism
of action of ADDS is more complex and advanced than
PDDS. The scope of our MC modeling of ADDS in this
paper is on the extracellular-cellular transport of ADDS, by
modifying the MC PDDS framework to take into account
the arbitrary shape of antibody molecules. The MC ADDS
modeling will provide a clearer understanding of the mode
of operation of antibodies, and enable the development of
innovative methods to guide the engineering of verifiable and
safe antibody-based therapies.

The methods proposed in related works [5] are unable to
differentiate drugs reaching the target site from the other
drugs. The path takes by drugs remains unknown in existing
models. The system parameters are statistical estimated,
and, generally, the most complex compartmental models
consist of two of three compartments assuming constant
blood flow perfusion. The MC-ADDS model solves this
problem by providing mechanistic models, based on law
of biophysics instead of empirical observations, without the
need of parameters estimation, and by giving higher spatial
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and temporal resolution tracking of the drug propagation in
the micro-scale and millisecond scale, and being scalable
to lower and higher resolutions with small changes to the
system model.

The remainder of the paper is organized as follows: in
Sec. II, the analytical MC model of ADDS and the method
to obtain the diffusion parameters of antibody molecules
from their 3D geometry are presented. Second, in Sec. III,
finite-element simulations results and numerical evaluations
of the analytical model are shown to validate the MC model
of ADDS. Finally, Sec. IV concludes the paper with the
outcomes of this work.

II. MC ADDS MODEL

In this section, we derive an analytical model of ADDS
extracellular transport using the MC paradigm. As illustrated
in Fig. 2, the drug injection is regarded as an MC Transmitter,
the body is regarded as an MC Channel, and the drug delivery
is regarded as an MC Receiver. The signals of the MC
system are the concentrations of the antibody molecules.
The antibody molecule is characterized by two diffusion
parameters, namely: the translational diffusion coefficient
Dt, and the radial diffusion coefficient Dr. The MC model
provides a time-varying impulse response h(t, τ) which
relates the transmitted signal x(t), which is the drug injection
concentration, to the received signal y(t), which is the drug
delivery concentration at the diseased cell. The MC model
consists of two parts. First, the transport model is presented
in Sec. II-A. Second, the calculation of the diffusion param-
eters on which the MC ADDS transport model depends in
presented in Sec. II-B.

A. MC ADDS Transport Model

We develop here the MC ADDS transport model that
enables the prediction of the propagation of antibodies in
the blood vessels and tissue segments. The impulse response
h(t, τ) is obtained by cascading the impulse responses of
each segment between the drug injection site and the drug
delivery site, which can be expressed as follows:

h(t, τ) = hi1(t, τ) ⊗ . . . hin(t, τ) · · · ⊗ hiL(t, τ) , (1)

where ⊗ denotes the cascading operation of two linear peri-
odically time-varying systems as presented in [4], hin(t, τ)
is the impulse response of the k-th blood vessel or segment.
, k is the index of the blood vessel or tissue segment, and L
is the number of blood vessels and/or tissue segments from
the drug injection to the drug delivery.

The transport process in the tissue compartment is
diffusion-dominated since the hydrodynamic dispersion is
so small that it can be neglected. Based on that, we de-
rive the impulse response hin(t, τ) for each segment from
the generalized anisotropic Taylor dispersion equation with
absorption [6] as follows:

hin(t, τ) =
1√

2πσ2
in

(t, τ)
exp

(
− (l −min(t, τ) )

2

2σ2
in

(t, τ)

)
,

(2)

where:
• The mean antibody velocity is time-varying and ex-

pressed as:

min(t, τ) =

∫ t

τ

ueffin
(r, t) dt′ , (3)

• The variance of the antibody is time-varying and is
equal to:

σ2
in(t, τ) = 2

∫ t

τ

Deff
in

(t′) dt′ , (4)

where t and t′ are time parameters, The effective diffusion
coefficient of antibodies Deff

in
(t) is expressed as follows [6]

:

Deff
in

(t) = DtPfin +Dwin
Pwin

+ ∆Deff
in

(t) , (5)

where Dt is the translational diffusion coefficient of the
ADDS in the blood expressed in (8), Dwin

is the diffusion
coefficient in the vessel or cell walls in i, and ∆Deff

in
is the diffusion coefficient increment of antibodies due to
anisotropy, the effective blood velocity ueffin

(t) is expressed
as follows:

ueffin
(t) = Pfinuin(t) , (6)

where Pfin = 1
1+Kin

and Pfin =
Kin

1+Kin
are kinetic ratios,

Kin = k+

k− is the equilibrium constant, uin(t) is the real
blood velocity, k+in and k−in are, respectively, the association
and disassociation kinetic coefficients of antibodies with the
walls of the vessel in. The diffusion coefficient increment of
antibodies due to anisotropy, ∆Deff

in
, is expressed as follows:

∆Deff
in

(t) = P
3
fin

((vfin (t) − vwin
)
Kin

k−in
2 (7)

+
Kin

k−in

r2in
48Dr

(1 + 6Kin + 11K2
in)v2fin

− 4Kin(Kin + 1)vfin (t)vwin
+ 6K2

in + v2win
) ,

where Dr is the radial diffusion coefficient of the ADDS in
the blood expressed in (8) rin is the radius of the vessel in,
vwin

is the blood velocity on the wall.
Finally, from (1) and (2), we obtain the MC end-to-end

impulse response of the ADDS.

B. MC ADDS Diffusion Parameters

This section presents a method to obtain the ADDS
diffusion parameters that are used by the MC ADDS trans-
port model presented in Sec. II-A, namely the translational
diffusion coefficient Dt and the radial diffusion coefficient
Dr.
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Fig. 2. MC Abstraction of an ADDS

As illustrated in Fig. 3, the antibody-antigen has a unique
shape. In fact, antibodies are generally Y -shaped molecules
that consist of different heterogeneous regions (light chain
and heavy chain). Antibodies come in different arbitrary
shapes and structures as can be seen in X-Ray structure
analysis of this type of molecules [7]. The geometry of
the antibody necessarily affects its motion. The irregular
shape can create arbitrary motions and fluctuations that
are different from the case of spherical nanoparticles that
were considered in PDDS. In the literature, all MC and
pharmacokinetic models have supposed spherical or, at best,
ellipsoid particles, for the modeling of antibody propagation.
Therefore, there is a need for a model that takes into account
the antibody shape and structure to predict the diffusion
parameters of this small molecule without any empirical
choices.

According to Brenner’s general theory of diffusion [8],
the transport of irregularly shaped molecules leads to the
anisotropic coupling of radial and translational diffusion
parameters of the molecules [9]. In classical MC, such
motion is governed through Fick’s law, with one parameter
D, called the diffusion coefficient, but in the case of ADDS,
we will consider two parameters, namely the translational
diffusion coefficient Dt, and the radial diffusion coefficient
Dr.

As illustrated in Fig. 3, we approximate the antibody
molecule as a set of N beads Bn. A bead Bn is characterized
by a radius ρn, and is located at the Cartesian coordinates
(xn, yn, zn) from an arbitrary origin O. Two beads Bm and
Bn are located at the distance Rm,n from each other. Rm,n

denotes the distance vector between the beads Bm and Bn.
The translational diffusion coefficient Dt is calculated as

follows [10]:

Dt =
kBT

µ

1

3
tr(At) , (8)

where kB is Boltzmann coefficient, T is the temperature of
the blood, supposed constant, and At is the top-left com-
ponent of the mobility tensor [9] of the antibody molecule.
The radial diffusion coefficient Dr is expressed by a similar
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Fig. 3. Bead model of an antibody.

expression as follows [10]:

Dr =
kBT

µ

1

3
tr(Ar) , (9)

where Ar is the top-left component of the mobility tensor [9]
of the antibody molecule.

The top-left component of the mobility tensor At of the
antibody molecule is expressed as follows:

At =

N∑
m=1

N∑
n=1

[
δm,nI

6πηRm,n
+ (1 − δm,n)Tm,n

]−1
, (10)

Similarly, the bottom-right component of the mobility tensor
Ar of the antibody molecule is expressed as:

Ar = −
N∑
m=1

N∑
n=1

Um

[
δm,nI

6πηRm,n
+ (1 − δm,n)Tm,n

]−1
Un

+ 6η

(
4π

3

N∑
n=1

ρ3n

)
I , (11)

where Tm,n is the hydrodynamic tensor of the antibody
calculated as follows from the geometric parameters of the
antibody molecule:

Tm,n =
1

8πηRm,n

[(
I +

Rm,nR
T
m,n

R2
m,n

)

+
ρ2m + ρ2n
R2
m,n

(
I

3
−

Rm,nR
T
m,n

R2
m,n

)]
, (12)

and Un is the skew matrix of the bead n, expressed as
follows:

Un =

 0 −zn yn
zn 0 −xn
−yn xn 0

 . (13)

Finally, from (8) and (9), we have the analytical expression
of the diffusion parameters of an antibody molecule based
solely on its geometric arrangement and diameters.

III. NUMERICAL RESULTS

In this section, we present numerical results to validate
the anisotropic transport with a realistic 3D model and to
show the significance of anisotropy. We used COMSOL R©to
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Fig. 4. Validation of the analytical impulse response with COMSOL sim-
ulation results.
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Fig. 5. Impulse responses for different values of the radial diffusion
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simulate antibody propagation based on the full advection-
diffusion equation in a 3D geometry, and we evaluated
the effect on anisotropy on the impulse response of the
system. Fig. 4 shows the comparison between the math-
ematical model stemming from the MC paradigm incor-
porating the anisotropy effect and the full 3D simulation
with COMSOL R©. We have used the translational and radial
diffusion coefficients calculated from the bead model in
both COMSOL R©and the MC models. The figure shows and
excellent agreement between the two results. Fig. 5 illustrates
how the impulse response varies highly depending on the
radial diffusion coefficient. Fig. 6 shows the dependence of
the anisotropic diffusion parameters on the angle between
the hands of the antibody.

IV. CONCLUSION

The Molecular Communication (MC) framework was used
as an abstraction of Antibody-based Drug Delivery Systems
(ADDS) which is at the forefront of drug delivery system
research. The proposed MC model is based on the bio-
physical laws of antibody transport in the human body. An
analytical expression of the impulse response characterizing
ADDS propagation was given, and the distribution of ADDS
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on the antibody angle.

molecules is predicted through the generalized Fick’s law
where the diffusion parameters of the ADDS are anisotropic
and expressed as a function the geometric structure of the
molecule. The results show good agreement with finite-
element simulations, and numerical evaluations show the
significant of anisotropy in ADDS systemic distribution.
The finite-element simulations requires hours to complete
while the MC model requires a few seconds to provide
the impulse response of the system. We propose to study
as future work non-specific binding of antibodies in the
blood serum and extra-cellular matrix, and the variability
of tortuosity of the paths separating cells. This work can
be used to create versatile, scalable, low-computational cost,
and precise pharmacokinetic and pharmacodynamic models
of antibody-based therapies.
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