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Abstract Spectrum sensing is a fundamental function in

cognitive radio networks for detecting the presence of

primary users in licensed bands. The detection performance

may be considerably compromised due to multipath fading

and shadowing. To resolve this issue, cooperative sensing

is an effective approach to combat channel impairments by

cooperation of secondary users. This approach, however,

incurs overhead such as delay for reporting local decisions

and the increase of control traffic. In this paper, a rein-

forcement learning-based cooperative sensing (RLCS)

method is proposed to address the cooperation overhead

problem and improve cooperative gain in cognitive radio

ad hoc networks. The proposed algorithm is proven to

converge and capable of (1) finding the optimal set of

cooperating neighbors with minimum control traffic, (2)

minimizings the overall cooperative sensing delay, (3)

selecting independent users for cooperation under corre-

lated shadowing, and (4) excluding unreliable users and

data from cooperation. Simulation results show that the

RLCS method reduces the overhead of cooperative sensing

while effectively improving the detection performance to

combat correlated shadowing. Moreover, it adapts to

environmental change and maintains comparable perfor-

mance under the impact of primary user activity, user

movement, user reliability, and control channel fading.

Keywords Ad hoc networks � Cognitive radio �
Control channel � Cooperative spectrum sensing �
Cooperative gain � Reinforcement learning

1 Introduction

The primary goal of spectrum sensing in cognitive radio

(CR) networks [2, 3] is to identify available licensed

spectrum for secondary user (SU) transmission while

reducing the interference with primary users (PUs) to a

tolerable level to improve spectrum utilization. However,

the spectrum sensing results obtained by an individual SU

is more susceptible to detection errors due to shadowing

effects and multipath fading in wireless channels. Imper-

fect sensing results in either wasting spectrum opportunity,

known as false alarm when a PU is mistakenly considered

present in an available spectrum, or interfering with PUs,

known as miss detection when a present PU in the licensed

band is wrongfully considered absent. Since SUs are

located in different places and the probability of all SUs in

deep fading or shadowing is small, combining local sensing

results by an SU, known as fusion center (FC), to make

cooperative detection decisions for all participating SUs

reduces the possibility of making incorrect decisions at

each individual user. The process of spectrum sensing with

cooperation among SUs is called cooperative sensing [4].

Previous studies [5, 6] have demonstrated that cooperative

sensing can effectively combat multipath and shadow

A preliminary version of this work was presented at IEEE

International Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC), Istanbul, Turkey, September 2010 [1].

B. F. Lo (&) � I. F. Akyildiz

Broadband Wireless Networking Laboratory, School

of Electrical and Computer Engineering, Georgia Institute

of Technology, Atlanta, GA 30332, USA

e-mail: blo3@gatech.edu

I. F. Akyildiz

e-mail: ian@ece.gatech.edu

I. F. Akyildiz

Faculty of Computing and Information Technology,

King Abdul-Aziz University, P.O. Box 80221, Jeddah 21589,

Saudi Arabia

123

Wireless Netw (2013) 19:1237–1250

DOI 10.1007/s11276-012-0530-4



fading to reduce the miss detection and false alarm prob-

abilities by utilizing spatial diversity of cooperating SUs.

Regardless of the benefits of cooperative sensing, cooper-

ation incurs overhead that limits the cooperative gain [4].

Figure 1 illustrates an example of cooperative sensing and

possibly incurred cooperative overhead in a CR ad hoc

network (CRAHN).

The major types of cooperation overhead under con-

sideration are (1) shadowing correlation, (2) control mes-

sage overhead, (3) synchronization and reporting delay,

and (4) user and data reliability. First, it is known that

shadowing correlation degrades the performance of coop-

erative sensing [6]. This is because SUs, spatially located

in proximity and blocked by the same obstacle, may

experience correlated shadowing and have poor observa-

tions of PU signals. As a result, cooperative gain is limited

by shadowing correlation. Second, cooperation requires

extra control message exchange among SUs for reporting

sensing data on a common control channel (CCC) [7, 8].

Such control transmission is also limited by the available

CCC bandwidth. Third, synchronizing SUs in CRAHNs for

sensing cooperation is not a trivial task. Since SUs have

different transmission and sensing schedules, the local

sensing results from cooperating SUs may not simulta-

neously arrive at the FC. Moreover, control packet colli-

sion and re-transmission in control channel result in extra

reporting delay. Thus, asynchronous reporting and delay

overhead should be considered in cooperative sensing.

Finally, the reported sensing results may be unreliable due

to the malfunctioning of SUs, or manipulation of malicious

SUs, known as the Byzantine failure problem [9]. Fur-

thermore, control channel fading incurs reporting errors,

which may further complicate the reliability issue. There-

fore, a mechanism to exclude unreliable cooperating users

and their sensing results from cooperation must be included

in cooperative sensing.

Existing cooperative sensing solutions are mainly based

on the model of parallel fusion network in distributed

detection [10], where all cooperating CR users generate

local decisions and report them simultaneously to FC for

making global decisions by data fusion. To mitigate cor-

related shadowing, [11] takes into account user correlation

in the linear-quadratic fusion method to improve detection

performance in correlated environment. In addition, [12]

proposes user selection algorithms based on location

information to find uncorrelated users for cooperative

sensing. However, these solutions may not be adaptive to

dynamic environmental changes in a timely fashion. To

reduce control messages overhead, [13–16] report quan-

tized and binary sensing data for soft and hard decision

combining, respectively. Alternatively, [17] reduces the

average number of reporting bits by restraining unreliable

sensing results from being reported. For synchronization

and delay issues, recent studies [16, 18, 19] consider the

asynchronous case where cooperating SUs report local

results at different time. However, conventional schemes

based on the parallel fusion model [9, 11, 15] typically

assume conditional independence on observations among

SUs and perfect SU synchronization with instant reporting

on an error-free CCC. Moreover, existing cooperative

sensing methods seldom address all aforementioned

cooperation overheads in response to dynamic environ-

mental changes. Thus, it is clear that a new model for

cooperative sensing with the capability of interacting with

and learning from the environment is required to address

all these problems in CRAHNs.

In this paper, we introduce a novel reinforcement

learning-based cooperative sensing (RLCS) method to

address incurred cooperation overheads and improve

detection performance in multipath and correlated shadow

fading. Reinforcement learning (RL) [20] is an adaptive

method for a decision-making agent learning to choose

optimal actions and maximize received rewards by inter-

acting with its environment. In RLCS, the SU acting as the

FC is the decision-making agent interacting with the

environment that consists of its cooperating neighbors and

their observations of PU activity. By requesting sensing

results from its neighbors, the FC learns the behaviors of

cooperating SUs and takes actions to select users for

cooperation through periodic cooperative sensing. Among

a variety of RL algorithms, we utilize temporal-difference

(TD) learning [20] to address cooperation overhead issues

in cooperative sensing because of its capability to evaluate

the correlation between successive SU selections and

adjust subsequent selection predictions based on the

experiences accumulated over time to mitigate cooperation

overheads by selecting an optimal set of cooperating SUs.

More importantly, TD learning enables SUs to learn from

and adapt to dynamic environmental change, such as the

changes in PU activity, user movement, user reliability, and

channel conditions, while maintaining satisfactory sensing

performance without requiring a model or a priori knowl-

edge about PU activity and SU’s behavior. Obviously,
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Fig. 1 Cooperative sensing and possible cooperation overhead that

limits cooperative gain
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these benefits of TD learning cannot be obtained by pre-

selection of SUs or cooperation of all SUs with no learning.

Although RL algorithms have been applied to dynamic

channel access [21, 22], user selections [23], and multi-

band sensing policy [24, 25] in CR networks, to the best of

our knowledge, RLCS is the first work applying the RL

techniques to address both the cooperation overhead

problems and the detection performance of cooperative

sensing. Our contributions can be summarized as follows:

– We propose the novel RLCS model and algorithm for

SUs to learn the optimal user selection policy for

finding uncorrelated and reliable cooperating neighbors

to improve cooperative gain and mitigate cooperation

overhead in cooperative sensing.

– We show that the optimal solution obtained by RLCS

approach greatly improves the detection performance

under correlated shadowing while minimizing control

channel bandwidth requirement by using binary local

decisions and hard-combining strategy.

– We demonstrate that RLCS converges asymptotically

with the option of optimal stopping for fast response in

dynamic environment, mitigates the impact of control

channel fading, improves the reliability of user and

sensing data selection, and adapts to PU activity change

and the movement of SUs.

The remainder of this paper is organized as follows: Sect.

2 presents our system model and assumptions. Section 3

describes the proposed RLCS scheme. Section 4 discusses

the performance analysis of our proposed scheme. Section 5

evaluates the performance by test scenarios and numerical

results, and Sect. 6 concludes the paper.

2 System model

We consider a group of SUs forming a CRAHN overlaid

with a primary network to opportunistically share a set of

NC licensed channels. Each licensed channel is assumed to

be occupied by one primary transmitter (the PU) and

potential primary receivers in its transmission range. In

order to protect these primary receivers from interference,

the range of PU transmission RP plus the range SU trans-

mission RS, RP� RS, forms the protected region [11]. The

PU activity on channel m is modeled as a two-state birth-

death process with the birth rate rb
m and the death rate rd

m

[26]. In this PU model, the transitions follow a Poisson

process with exponentially distributed inter-arrival time.

Thus, the long-term average probabilities of PU active

(Pon
m ) and inactive (Poff

m ) on channel m are rb
m/(rb

m ? rd
m) and

rd
m/(rb

m ? rd
m), respectively. The PU activity is unknown to

SUs a priori. To balance the traffic load and power con-

sumption, the SUs in the CRAHN may either take turns to

serve as the FC to cooperatively sense one licensed channel

each time, or act as FCs simultaneously to sense multiple

channels at the same time. However, there is only one SU

acting as the the decision-making FC (learning agent) on

each channel. Without loss of generality, we focus on

RLCS with one FC and its cooperating neighbors on one

channel and the channel index m will be omitted from the

notation thereafter unless otherwise specified. How to

determine which channel to sense is beyond the scope of

this work.

Let C be the set of the neighbors of the FC where the FC

is denoted by SU0 and jCj ¼ L. Let yi be the average SNR

in dBm of the received PU signal observed at cooperating

user SUi. yi are Gaussian distributed since the received

signal power in shadowing is assumed to be log-normally

distributed [11]. The observations yi; i ¼ 1; . . .; L; may be

correlated depending on the location of the SUs. The col-

lection of these observations is the Gaussian distributed

vector Y ¼ fyigL
1 under the null hypothesis H0, which

indicates the absence of the PU transmit signal, and the

alternative hypothesis H1, which indicates the presence of

the transmit signal, as follows [11]:

Y� Nð0; r2
0IÞ; H0

Nðl1; r
2
1RÞ; H1

�
; ð1Þ

where 0 is the zero vector, l1 is the mean SNR that

depends on the path loss from the location of the PU, r0
2 is

the Gaussian noise variance under H0, r1
2 is the variance of

noise in correlated shadowing under H1, I is the identity

matrix, and R is the normalized covariance with elements

qij. We assume that the correlation follows the exponential

correlation model [27]. In this model, the correlation

coefficients can be expressed as

qij ¼ e�dij=Dc ¼ e�a�dij ; ð2Þ

where dij is the distance between SUs i and j, Dc is the

de-correlation distance, and a = 1/Dc is the exponential

decaying coefficient set to 0.1204 and 0.002 for urban and

suburban settings, respectively [6]. Thus, two SUs are

correlated if the distance between them is smaller than

Dc, and uncorrelated otherwise.

Depending on the distance between the PU and the SU,

and the degree of fading, the SNR observed at SUs may

vary significantly. Due to these variations, SUs may take

different number of observations to satisfy detection

requirements and report their local decisions on the CCC

asynchronously that causes different reporting delays. We

assume that a narrowband CCC is shared by the FC for

message broadcast and cooperating SUs for reporting local

sensing data. The time-varying wireless channel between

each SU and the FC, known as the reporting channel, is

susceptible to independent Rayleigh fading, which is
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modeled by the finite-state Markov channel (FSMC) model

[28]. Since the received SNR cb varies with time and

ranges from 0 to infinity, the entire SNR range is divided

into J regions in which the jth region is defined as Cj ¼
½Aj;Ajþ1Þ ¼ fcb : Aj� cb\Ajþ1g where {Aj} are region

boundaries with A0 = 0 and AJ ¼ 1. For transmitting

binary local decisions, we assume BPSK modulation at

reporting SU and the coherent demodulation at the FC. In

this case, the error probability can be expressed in terms of

the received SNR as PeðcbÞ ¼ Qð
ffiffiffiffiffiffiffi
2cb

p
Þ where QðxÞ ¼

1ffiffiffiffi
2p
p
R1

x
e�u2=2du is the tail probability of standard normal

distribution. The reported local decision in each channel

state xj follows a binary symmetric channel (BSC) where

the local decisions are received in errors at the FC with

crossover probability ej.

Based on the proposed RLCS model and algorithm

discussed in Sect. 3, the FC selects and combines these

local results, and makes a cooperative decision on the

presence of the PU. In general, the data fusion of selected

K B L local sensing results at FC is given by

XK

i¼1

wif ðyiÞ ¼
XK

i¼1

wiui

H1

?

H0

k0 ð3Þ

where f ð�Þ is the local decision process, wi is the weighting

factor for local sensing data ui 2 f0; 1g from cooperating

user SUi and k0 is the cooperative decision threshold at the

FC. For hard combination with the majority rule, wi = 1,

Vi and k0 ¼ dK=2e. The majority rule is chosen over AND

and OR rules for the balance of false alarms and miss

detection. The cooperative decision u0 2 f0; 1g is then

broadcast to all neighbors. This cooperative sensing pro-

cess is periodically repeated for infinite iterations, called

episodes.

3 RL-based cooperative sensing

In this section, we present the proposed RLCS model and

algorithm for cooperative sensing. We formulate the

problem as a cooperative sensing decision process (CSDP)

and discuss the process of RLCS algorithm for improving

cooperative gain in cooperative sensing.

3.1 Cooperative sensing decision process

In RLCS, the interactions between the FC and cooperative

SUs are modeled as a CSDP. CSDP is a decision process

with non-Markovian rewards for FC’s sequential decisions

on selecting cooperating neighbors. Figure 2 illustrates the

RLCS model with the inherent CSDP and the environment

with which the agent inside the FC interacts. In the figure,

the FC interacts with L cooperating neighboring nodes that

observe the PU activity in the environment and obtain

Gaussian distributed and possibly correlated observations

Y = {yi}1
L as in (1). In each state sk, where k is the time

step or stage index, the FC selects neighbor i by choosing

action ak = i and receives local decision ui determined

from observed yi with reporting delay tdi
as reward rk?1

along with state change to sk?1. By exploring the unknown

states and accumulating the knowledge of receiving

rewards from known states, the FC learns the sequence of

optimal decision rules (optimal policy) that gives rise to the

maximum reward.

The CSDP is represented by a quadruple hS;A; fp; fRi in

which S ¼ f0; 1; . . .; Lg is a finite set of all states,

A ¼ [j2SAj ¼ f0; 1; . . .; Lg is a finite set of actions, where

Aj � A is the set of actions available in state j, fp is the

state transition probability function, and fR is the reward

function. Each component is described as follows:

States: A state of the CSDP is the status of user selection

and reporting in the environment that includes cooperating

SUs and their observations of the PU signal. In each epi-

sode n, the states of the environment sk, which take on

values from S ¼ f0; 1; . . .; Lg; are defined as

sn
k ¼ i � Ifan

k�1 ¼ i 2 Aj; s
n
k�1 ¼ j 2 S; i 6¼ j; k 6¼ 0g; ð4Þ

where Ifxg is the indicator function and equals one if x is

true and zero otherwise, and ak–1
n is the action selected in

sk–1
n . The process starts with the FC state (SU0 state) s0

n = 0

when the FC initiates the process of cooperative sensing at

time t0
n. In each state sn

k ¼ j 2 S; the FC requests local

decision ui from SUi and awaits a response from the envi-

ronment by choosing action an
k ¼ i 2 Aj; or terminates the

cooperative sensing by choosing action ak
n = 0 to return to
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Fig. 2 The model of cooperative sensing with reinforcement learning
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the FC state. The state changes from sk
n = j to sk?1

n = i when

the FC obtains reported ui and the corresponding reward

rk?1
n as the response at time tk?1

n . The FC state is both the start

state and the terminal state in each episode.

Actions: An action is the FC’s decision on selecting an

SU (including the FC itself) for reporting in a state. Let

hn
k ¼ ðsn

0; a
n
0; . . .; sn

k�1; a
n
k�1; s

n
kÞ be the history of state-action

sequence from s0
n to sk

n in episode n. The decision rule lk
n is

the function mapping hk
n into a probability distribution

Dln
k
ðAsn

k
Þ on the set of actions Asn

k
in state sk

n of episode

n. Let also Dn
k�1 be the set of selected SUs from s0

n to sk-1
n of

episode n given by Dn
k�1 ¼ fan

0; . . .; an
k�1g and Dn

�1 ¼ ;.
Thus, the actions of the FC ak

n in state sk
n, which take on

values from Asn
k
¼ A n ffsn

kg [ Dn
k�1g; are defined as:

an
k ¼ ln

kðhn
kÞ 2 Asn

k
; w.p. pðsn

k ; l
n
kðhn

kÞÞ ð5Þ

where p(sk
n, lk

n(hk
n)), defined in (9), is the probability of

selecting ak
n in sk

n according to Dln
k
ðAsn

k
Þ. In each state of

episode n, the FC selects SU i with probability

p(sk
n, ak

n = i) for reporting in sk
n. Specifically, the FC

requests cooperating SU i to report local decision ui by

sending ak
n = i, or informs all cooperating SUs the coop-

erative decision u0 by sending ak
n = 0 along with u0. In

the latter, action ak
n = 0 also terminates one round of

cooperative sensing. Nevertheless, how to choose the

actions depends on the action selection strategy defined in

Sect. 3.2.

Transition probability function: The transition probability

function, fp : H�A� S ! ½0; 1	 where H ¼ S �A�
S � � � � � S; maps the state-action-state transitions to a

probability of changing from the current state to the next

state by choosing the action. The transition probability

from state sk
n = j to sk?1

n = i by choosing action ak
n = i in

sk
n is denoted by pji = P(i | j, lk

n(hk
n)) and is generally not

known a priori. Since a chosen action implies the transition

to a particular state in our model, the probability of

choosing an action ak
n = i in state sk

n = j can be considered

as the state transition probability from sk
n = j to sk?1

n = i.

As a result, the FC gradually learns the state transitions

from the action selection probabilities, even though the

transition probabilities are not required by TD learning

algorithms.

Reward function: The reward function, fR : H�A�
S ! R; maps the state-action-state transitions to a real-

valued reward. The reward is used by the FC to evaluate

action selections for choosing uncorrelated SUs with small

reporting delay for cooperative sensing. The FC receives a

reward rk?1
n upon the arrival of the local sensing data ui

from SUi with reporting delay tn
di

as the result of action

ak
n = i in state sk

n = j. The reward rk?1
n corresponding to the

action ak
n in state sk

n of episode n is given by:

rn
kþ1ðsn

k ; l
n
kðhn

kÞÞ ¼ rn
qkþ1
IfCn

qkþ1
6¼ 0g þ rn

dkþ1
IfCn

qkþ1
¼ 0g;

k ¼ 0; . . .;Kn � 1; ð6Þ

where rn
qkþ1
¼ �Cn

qkþ1
and rn

dkþ1
¼ 1� Cn

dkþ1
are the rewards

attributed to correlation cost Cn
qkþ1

in (7) and delay cost

Cn
dkþ1

in (8), respectively, and Kn B L is the number of

selected cooperating SUs in episode n. Note that rk?1
n = 0

for Kn B k B L. (6) states that rk?1
n is determined by the

delay cost if the selected SU is uncorrelated with previ-

ously selected SUs, and by the correlation cost if the

selected SU incurs correlation. rk?1
n is positive only when

selected SUs are uncorrelated and their cumulative

reporting delay is within the delay constraint.

The correlation between SUs’ observations in correlated

shadowing is captured by the covariance matrix R in (1).

The elements of R correlation coefficients qij, are esti-

mated by using location information and (2). These cor-

relation coefficients affect the correlation cost (7) and the

reward (6) obtained in each state. Given different SUj, j =

i selected in state sl; l ¼ 0; . . .; k � 1 and R ¼ fqijg; cor-

relation cost Cqkþ1
is given by:

Cn
qkþ1
¼ 1

k

Xk�1

‘¼0

jqijðs‘; a‘ ¼ jÞj
" #

Ifk [ 0g; j 6¼ i: ð7Þ

Thus, the correlation cost is simply the average of corre-

lation coefficients between the newly selected SUi and each

selected SUs in previous k states.

The delay cost Cn
dkþ1

; on the other hand, is attributed to

reporting delays. The reporting delay of SUi in sn
k ; t

n
di
¼

tdðsn
k ; a

n
k ¼ iÞ; is the interval between the time of the FC

requesting SUi’s cooperation with the action ak
n = i and the

arrival time of the local sensing data ui at the FC. Thus, the

delay cost Cn
dkþ1

is given by:

Cn
dkþ1
¼
Pk�1

‘¼0 tdðsn
‘ ; a

n
‘ ¼ jÞ þ tdðsn

k ; a
n
k ¼ iÞ

Tlim

;

i 2 Ask
; j 2 As‘ ; i 6¼ j

ð8Þ

where Tlim ¼ minfTcmax
; Tdavg

g is the total reporting delay

constraint, Tcmax
is the maximum allowed cooperative sensing

time, and Tdavg
¼
PL

j¼1
�td;j is the total average reporting delay

of all SUs. It is simply the cumulative reporting time up to the

start of next state sk?1
n normalized by the factor of maximum

cooperative sensing time or total average reporting delay

whichever is smaller. This means that the reward attributed to

the delay cost rn
dkþ1

is lower for SUs to be selected in the later

stage than the earlier stage, which enforces the SU with large

average reporting delay to be less attractive for participation,

especially in the later stage when the cooperative decision

needs to be determined within the limit Tcmax
.
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From (7), (8) and the definition of rk?1
n in (6), we know

that negative rewards are obtained when the selected SUs are

correlated or their cumulative reporting delays exceed the

maximum tolerable cooperative sensing time. Such selec-

tions are learned and will be depreciated from future selec-

tions. Positive rewards are possible only when all selected

SUs are uncorrelated. Thus, large positive rewards are more

likely attributed to selecting more uncorrelated SUs with

small reporting delays within the time constraint Tcmax
.

3.2 RL-based cooperative sensing algorithm

Based on the CSDP model, the RLCS algorithm learns the

environment by iteratively choosing actions, receiving

rewards, and evaluating action selections with the objec-

tives of maximizing received rewards and improving

cooperative gain. In the following, we discuss action

selection strategy, expected cumulated reward for optimal

policy, state-action value updates for action evaluation,

user selection for reliable cooperation, and the impact of

control channel fading on reporting errors and detection

performance.

Action Selection Strategy: The action selection strategy

affects how the FC interacts with the environment. In

RLCS, the softmax approach based on Boltzmann distri-

bution is utilized for action selections. In this action

strategy, the probability of selecting action ak
n = i in state

sk
n is given by:

pðsn
k ; a

n
k ¼ iÞ ¼ eQðsn

k
;an

k
¼iÞ=sn

PjAsn
k
j

j¼1 eQðsn
k
;an

k
¼jÞ=sn

; i 2 Asn
k

ð9Þ

where Q(sk
n, ak

n) is the state-action value (Q-value) function

that evaluates the quality of choosing action ak
n in state

sk
n, and sn is an episode-varying parameter called

temperature that controls the degree of exploration versus

exploitation. For large values of sn, all actions are equally

probable. In this case, the FC explores the opportunities of

more uncorrelated cooperating SUs to achieve potentially

higher detection probability in the future with large sn. For

small sn, on the other hand, the action with maximum

Q(s, a) is favored. Hence, the agent exploits the current

knowledge of best selections of cooperating SUs to achieve

the potentially highest detection probability with small sn.

As a result, sn remains a large value for exploration in

highly dynamic environment while sn is decreased to a

small value for exploitation in static environment where the

convergence can be assured [29]. To achieve the

convergence in a certain number of episodes, we use a

linear function to decrease the value of sn over episodes as

follows:

sn ¼ �ðs0 � sNÞ � n=N þ s0; n�N ð10Þ

where N is the number of episodes to reach the conver-

gence, s0 and sN are the initial and the last value, respec-

tively, of the temperature in N episodes. Note that sn
= 0,

Vn and sn = sN & 0 for n C N until any environmental

change.

Expected Cumulative Rewards: The expected cumula-

tive reward Rn of episode n is defined as

Rn ¼ E½Yn	 ¼ E
XL

k¼0

rn
kþ1ðsn

k ; l
n
kðhn

kÞÞ
" #

; ð11Þ

where Yn =
P

k=0
L rk?1

n is the cumulative reward of episode

n. If there are Kn SUs selected in episode n; Yn ¼PKn

k¼0 rn
kþ1 and rk?1

n = 0 for k ¼ Kn; . . .; L. The objective of

TD learning in RLCS is to find the optimal policy p
 ¼
fl
0; . . .; l
K
g; where K* B L is the optimal number of

selected cooperating SUs, to achieve the maximum

cumulative reward Rp
 ; which leads to higher detection

performance in cooperative sensing.

State-Action Value Updates: To evaluate the quality of

action selections, a table known as Q-table of size

jSj � jAj is used to store the Q-values for all state-action

pairs. In each state sk
n with the selection of action ak

n, the

Q-value Q(sk
n, ak

n) for the state-action pair (sk
n, ak

n) needs to

be updated according to the received reward rk?1
n and

future state-action value estimates Q(sk?1
n , ak?1

n ). The

general form of the Q-value update in TD learning can be

expressed as

Qn
k  ð1� an

kÞQn
k þ an

k rn
kþ1 þ cf ðQn

kþ1Þ
� �

; ð12Þ

where Qk
n = Q(sk

n, ak
n), ak

n is the learning rate, c is the

discount factor for future state-action value estimates Qk?1
n ,

and f(Qk?1
n ) is the function of future estimates Qk?1

n that

depends on the TD learning algorithms used. For example,

f ðQn
kþ1Þ ¼ maxan

kþ1
Qn

kþ1 and f(Qk?1
n ) = Qk?1

n are the future

estimate functions for Q-learning [30] and Sarsa [20],

respectively. The discount factor c determines the weight

of the future Q-value estimates compared to the current

Q-value for the (sk
n, ak

n) pair. For faster convergence, the

learning rate ak
n is generally decreased as the (sk

n, ak
n) pair is

explored more often. However, ak
n should remain suffi-

ciently large and constant to take into account the latest

changes in the highly dynamic environment that may be

caused by, for example, the movement of SUs.

User Selection for Reliable Cooperation: The selection

of cooperating users ensures that reliable users can be

constantly selected to participate in cooperative sensing

and contribute correct local decisions to improve detection

performance while the unreliable ones are excluded. Let

p(ui) be the distribution of local decisions reported from

user SUi and p(u0) be the distribution of cooperative

decisions at the FC. These are SUs’ and FC’s estimates of

1242 Wireless Netw (2013) 19:1237–1250

123



PU activity Pon and Poff. After receiving SUi’s report ui and

having the cooperative decision u0, the FC will update p(ui)

and p(u0), respectively. Based on the assumption that

cooperative decisions are more accurate than local decisions

statistically, we use the Kullback-Leibler (KL) distance,

Dðpðu0ÞkpðuiÞÞ; to measure how far the distribution of local

decisions p(ui) diverge from the distribution of cooperative

decisions p(u0) at the FC. Since Dðpðu0ÞkpðuiÞÞ� 0 and is

zero when p(u0) = p(ui)), larger DL distance indicates that

the degree of the divergence is higher and implies that SUi is

more unreliable. To determine the user reliability, we

compare the KL distance with a threshold dDL and claim that

a user SUi is considered unreliable for cooperative sensing if

Dðpðu0ÞkpðuiÞÞ ¼
X

ui2f0;1g
pðuiÞ log

pðuiÞ
pðuf Þ

[ dDL ð13Þ

and reliable otherwise. The threshold dDL is set to ld ?

crd, where ld and rd are the mean and the standard

deviation, respectively, of the DL distances of all reliable

cooperating SUs, and c is a constant. Let U � C be the set

of uncorrelated SUs selected from the first user selection

step. The set of SUs selected for data fusion D is the subset

of U given by

D ¼ U \ f[ifSUi j DðpðuiÞkpðuf ÞÞ� dDL; 8igg: ð14Þ

Thus, when a previously unreliable SU becomes reliable,

for example, owing to better CCC conditions, and satisfies

the condition in (14), it will be included in D for

cooperation.

Control Channel Fading: As indicated in Sect. 2, FSMC

[28] is used to model Rayleigh fading in the control channel

for reporting local sensing decisions. In Rayleigh fading, the

received SNR c is exponentially distributed with distribu-

tion fCðcÞ ¼ 1
�c e�c=�c; where �c is the average received SNR.

The probability of received SNR c stays in the SNR region

[Aj, Aj?1) is the probability of staying in channel state

xj, which is given by pj ¼
R Ajþ1

Aj
fCðcÞdc ¼ e�

Aj
�c � e�

Ajþ1
�c .

Since the bit error rate of BPSK modulation in additive

white Gaussian noise is Qð
ffiffiffiffiffi
2c
p
Þ; the crossover probability

of the BSC channel for state xj is given by [28]

ej ¼
R Ajþ1

Aj
fCðcÞQð

ffiffiffiffiffi
2c
p
ÞdcR Ajþ1

Aj
fCðcÞdc

¼
cj � cjþ1

pj

ð15Þ

where cj ¼ e�
Aj
�c Qð

ffiffiffiffiffiffiffi
2Aj

p
Þ þ �cc 1� Q

ffiffiffiffiffi
2Aj

p
�cc

� �� �
and �cc ¼ffiffiffiffiffiffi

�c
�cþ1

q
. Hence, the average error probability is

Pe ¼
XJ

j¼0

pjej ¼ c0 � c1 ¼
1

2
1� �ccð Þ; ð16Þ

where the second equality is obtained by canceling

intermediate cj terms and the last equality is obtained by

using A0 = 0 and A1 ¼ 1.

Let Dn be the set of selected SUs for data fusion in

episode n and Kn ¼ jDnj. Let also the false alarm proba-

bility of SUi be Pf
i, the detection probability Pd

i , and the

average CCC reporting error probability Pe
i in (16). For SUi

to report a false alarm in CCC fading, there are two pos-

sibilities: 1) a false alarm (ui = 1) is reported and received

at FC with no error, and 2) correct local decision ui = 0 is

reported and received at FC in error (ui = 1) due to CCC

fading. The false alarm probability for local decisions

reported by SUi via fading CCC and perceived by FC is

then Pf
i (1 - Pe

i ) ? (1 - Pf
i) Pe

i . Similarly, we can find the

probability of SUi with correct local decisions under H0

received at FC as (1 - Pf
i) (1 - Pe

i ) ? Pf
i Pe

i . As a result,

the false alarm probability for the cooperative decision in

episode n is given by

Qn
f ¼

XKn

‘¼dKn=2e

XKn

‘ð Þ

i¼1
Li[Mi¼D

Y
l2Li

jLij¼‘

Pl
fe

0
BB@

1
CCA �

Y
m2Mi

jMij¼K�‘

Pm
fe

0
BB@

1
CCA ð17Þ

where Pfe
l = Pf

l (1 - Pe
l ) ? (1 - Pf

l) Pe
l and Pfe

m = (1 -

Pf
m)(1 - Pe

m) ? Pf
m Pe

m are the probability of SUl’s error

reporting and SUm’s correct reporting, respectively, per-

ceived at the FC, Li is the set of the ‘ selected SUs with

received false alarms in the ‘‘‘ out of Kn’’ data fusion rule

from the ith combination of all Kn

‘

� 	
combinations, and

Mi ¼ fDnLig is the set of the rest of Kn - ‘ SUs with

correctly received local decisions under H0 from the ith

combination. For the majority decision rule, ‘ ranges from

dKn=2e to Kn. Similarly, the detection probability for the

cooperative decision in episode n, Qd
n, can be obtained by

replacing Pf
l with Pd

l in (17).

RLCS Algorithm: The RLCS algorithm is listed in

Algorithm 1. The algorithm takes the array of all state-

action values (QðjSj; jAjÞ) as the input and initializes the

array entries to zero. The output is the optimal solution:

optimal number of cooperating SUs (K
 ¼ jPj
), optimal

reporting sequence (p*), and total reporting delay (Td
*). In

the algorithm, RLCS is performed repeatedly (lines 3 to

19) unless the optimal stopping criterion is met. In each

episode, there are Kn B L SUs selected for sensing and

reporting based on the action strategy. In each state of an

episode (lines 6–14), the FC sends the request to the

selected SU, receives the local decision, calculates the

reward, and updates the Q-value using (12). At the end of

the episode, the FC terminates the episode with ak
n = 0,

determines the reliable set of SUs and the cooperative

sensing decision, and broadcasts it to all neighbors (lines

16–18).
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4 Performance analysis

In this section, we analyze the performance of the proposed

RLCS scheme by first showing the optimal solution of

RLCS, proving its convergence, and evaluating the rate of

convergence. We then provide the optimal stopping alter-

native for performance improvement in expected cumula-

tive rewards.

4.1 Optimal solution of RLCS algorithm

The RLCS algorithm is capable of learning the changes in

dynamic environment to reach the optimal solution. The

optimal solution of RLCS is the optimal set of spatially

uncorrelated SUs, P
 � C; selected for cooperation in

sequence by optimal policy p
 ¼ ðl0; . . .; lK
 Þ that

achieves maximum cumulative reward Rp
 ; where

K
 ¼ jP
j is the optimal number of selected SUs. In the

following, we present the necessary conditions of achiev-

ing the optimal solution in static environment, where SU

locations and their reporting delays are known, as two

lemmas followed by the corresponding theorem.

Lemma 1 Given the set of L cooperating SUs, C, with their

locations, the optimal number of selected SUs, K B L, is the

maximum number of spatially uncorrelated SUs that maxi-

mize RqL
¼
PL�1

k¼0 rqkþ1
with maximum value RqK

¼ 0.

Proof Let Pk be the set of selected SUs from s0 to sk and

SUj; j 2 fC n Pk�1g; be the SU selected in sk. From (6) and

(7), rqkþ1
¼ �Cqkþ1

and Cqkþ1
� 0. The maximum value of

rqkþ1
is 0 and can be obtained if and only if Cqkþ1

¼ 0. By

(7), Cqkþ1
¼ 1

k

Pk�1
‘¼0 jqijðs‘; a‘ ¼ iÞj ¼ 0; 8i 2 Pk�1. All

selected SUs in Pk must be spatially uncorrelated to

maximize rqkþ1
. If SUj is spatially correlated to any SU in

Pk�1; rqkþ1
\0. Thus, rqkþ1

¼ 0 for k ¼ 0; . . .;K � 1 for

selecting up to maximum K B L spatially uncorrelated SUs

in C to maximize RqL
with maximum value RqK

¼ 0 as

rqkþ1
\0; k ¼ K; . . .; L� 1; such that Rqk

\RqK
; k ¼ Kþ

1; . . .; L. h

Lemma 2 Given the set of K selected SUs, P, with their

reporting delays tdi
; i 2 P, there exists an optimal user

selection sequence p
K
 ¼ ða
0; . . .; a
K
�1Þ that maximizes

RdK
¼
PK�1

k¼0 rdkþ1
, where a
k ¼ arg minak2Ask

tdðsk; akÞ and

K* B K is the maximum number of selected SUs that

satisfy total reporting delay constraint TdK
 ¼
PK
�1

k¼0

tdðsk; a


kÞ� Tlim.

Proof Let dk;i ¼ tdi
ðsk; akÞ; i 2 Ask

; be the reporting delay

of SUi selected in sk. From (6) and (8),

rdkþ1
¼ 1� Cdkþ1

¼ 1�
Pk

‘¼0 d‘;i

Tlim

¼ 1�
Pk�1

‘¼0 d‘;i

Tlim

 !
� dk;i

Tlim

¼ rdk
� dk;i

Tlim

: ð18Þ

If Tdkþ1
¼
Pk

‘¼0 d‘;i� Tlim; we have 0\Cdkþ1
� 1 and

rdkþ1
� 0. Since dk,i, Tlim [ 0 and Tlim is constant, maximiz-

ing rdkþ1
is equivalent to minimizing dk,i given rdk

obtained in

the previous state. As a result, the optimal user selection that

maximizes rdkþ1
in state sk is a
k ¼ arg mini2Ask

dk;i;

k ¼ 0; . . .;K
 � 1. Since K* is the maximum number of SUs

that satisfy TdK
 � Tlim;we have Tdkþ1
[ Tlim and rdkþ1

\0 for

k ¼ K
; . . .;K � 1; due to Cdkþ1
[ 1 from (8). Thus, there

exists an optimal user selection sequence p
K
 ¼
ða
0; . . .; a
K
�1Þ;where a
k ¼ arg mini2Ask

dk;i; that maximizes

RdK
and achieves maximum value RdK
 ¼

PK
�1
k¼0 rdkþ1

. h
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Theorem 1 (Optimal Solution of RLCS Algorithm)

The optimal solution of RLCS is a 3-tuple hK
;P
; T
d i
obtained by the optimal policy p
 ¼ fl
0; . . .; l
K
�1g that

achieves the maximum cumulative reward given by

Rp
 ¼ K
 �
PK
�1

k¼0 ðK
 � kÞ � tdðsk; l
kÞ
Tlim

ð19Þ

and total reporting delay T
d ¼
PK
�1

k¼0 tdðsk; l
kÞ\Tlim,

where l
k ¼ arg minak2Ask
tdðsk; akÞ.

Proof In (11), rk?1 received in sk can be negative if

Cqkþ1
[ 0 in (7) or Cdkþ1

[ 1 in (8). That is, the SU selected

in sk either causes spatial correlation with any previously

selected SUs or incurs reporting delay that does not satisfy

the total reporting delay constraint Tlim. To avoid negative

rewards, Cqkþ1
¼ 0 and 0\Cdkþ1

� 1 are required. Using

Lemma 1, we obtain maximum K spatially uncorrelated

SUs to ensure rqkþ1
¼ Cqkþ1

¼ 0. By plugging (6) into (11)

and setting Cqkþ1
¼ 0;Rp is reduced to Rp ¼

PK�1
k¼0

rdkþ1
¼ RdK

. Using Lemma 2, we obtain optimal user

selection sequence p
K
 to maximize Rp and ensure

0\Cdkþ1
� 1 with maximum K* selected SUs that satisfy

TdK
\Tlim. Since the decision rules lk are deterministic,

l
k ¼ a
k ¼ arg minak2Ask
tdðsk; akÞ in p
 ¼ p
K
 with T
d ¼

TdK
 to achieve

Rp
 ¼ R
dK

¼
XK
�1

k¼0

r
dkþ1
¼ K
 �

XK
�1

k¼0

C
dkþ1

¼ K
 � 1

Tlim

XK
�1

k¼0

Xk

‘¼0

tdðs‘; l
‘ Þ: ð20Þ

After some algebraic manipulation, (19) follows. h

4.2 Convergence of RLCS algorithm

The optimal solution is achieved when the RLCS algorithm

converges with sufficient exploration of state-action pairs.

In the case of insufficient exploration, a suboptimal solu-

tion may be obtained upon convergence. To prove the

convergence, we first show that the sequence of expected

cumulative rewards {Rn} is a submartingale in Lemma 3,

and the result follows the Martingale convergence theorem

given in Lemma 4 whose proof can be found in [31] and is

omitted here due to limited space.

Lemma 3 The sequence of expected cumulative rewards

Rn; n ¼ 1; 2; . . . is a submartingale that satisfies

EjRnj\1 and E[Rn?1 | Ri] C Rn, V i B n.

Proof From (11), we can easily show that EjRnj\1; n ¼
1; 2; . . . since L and rk?1

n are finite. Next, we show E[Rn?1 |

Ri] C Rn, V i B n. Let P be the set of all policies.

E½Rnþ1jRi	 ¼
X
p2P

Rnþ1
p pðRnþ1

p jRiÞ ð21Þ

¼
X
p2P

XL

k¼0

E rnþ1
kþ1ðsnþ1

k ; lnþ1
k Þ

� �
pðRnþ1

p jRiÞ ð22Þ

¼
X
p2P

XL

k¼0

X
snþ1

k
;lnþ1

k

rnþ1
kþ1ðsnþ1

k ; lnþ1
k Þ

� prðsnþ1
k ; lnþ1

k ÞpðRnþ1
p jRiÞ ð23Þ

¼
X
p2P

XL

k¼0

X
snþ1

k
;anþ1

k

rnþ1
kþ1ðsnþ1

k ; anþ1
k Þ

� ppðsnþ1
kþ1jsnþ1

k ; anþ1
k Þ

ð24Þ

where Rp
n?1 in (21) is the expected cumulative reward

obtained by p, pr in (23) is reward distribution for p, and

pp in (24) is the transition probability for p in episode

n ? 1 given Ri, equivalently, all Q-value updates with

ri
kþ1; k ¼ 0; . . .; L; i� n; in previous n episodes. Since, as

indicated in Sect. 3, the state transition probability is the

action selection probability and let sk
n?1 = x and

ak
n?1 = sk?1

n?1 = y, from (9), we have

pnþ1
xy ¼

eQnþ1ðsk¼x;ak¼yÞ=snþ1

PjAxj
j¼1 eQnþ1ðsk¼x;ak¼jÞ=snþ1

; y 2 Ax: ð25Þ

We now compare rk?1
n?1(x,y) pxy

n?1 with rk?1
n (x,y) pxy

n for a

policy p. For simplicity, we first assume no future

estimates (c = 0). Since the Q-value for each (x, y) is

updated no more than once in one episode, Qn?1 before the

update in episode n ? 1 equals Qn after the update (12) in

episode n. Hence, (12) simplifies to

Qnþ1
k ¼ ð1� aÞQn

k þ arn
kþ1 ¼ Qn

k þ aðrn
kþ1 � Qn

kÞ: ð26Þ

If the delays and locations of SUs are fixed, the reward of

the same state-action pair (x, y) in a policy p is the same for

different episodes: rk?1
n?1(x, y) = rk?1

n (x, y). Moreover, pxy
n?1

is the function of Qnþ1

snþ1 and we know from (10) that

sn?1 \ sn. As a result, depending on how Q-values change

from episode n to n ? 1, we have the following six cases:

(i) Qn?1 C Qn C 0: In this case, pxy
n?1 [ pxy

n because
Qnþ1

snþ1 [ Qn

sn . From (26), Qk
n?1 - Qk

n = a(rk?1
n - Qk

n) C 0.

We have rk?1
n?1 = rk?1

n C Qk
n C 0. Thus, rk?1

n?1pxy
n?1 C

rk?1
n pxy

n .

(ii) Qn?1 C 0 C Qn: As in case (i), pxy
n?1 [ pxy

n . Using (26)

and Qk
n B 0, we obtain rnþ1

kþ1 ¼ rn
kþ1�ð1� 1

aÞQn
k � 0.

Thus, rk?1
n?1pxy

n?1 C rk?1
n pxy

n .

(iii) 0 C Qn?1 C Qn: Similarly, pxy
n?1 [ pxy

n . In this case,

rn
kþ1 2 ½Qn

k ; ð1� 1
aÞQn

k 	. Thus, Pr(rk?1
n?1pxy

n?1 C rk?1
n pxy

n )

\ Pr(rk?1
n?1 pxy

n?1 \ rk?1
n pxy

n ).
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(iv) Qn?1 B Qn B 0: Since sn?1 \ sn and Qnþ1

snþ1 \ Qn

sn ; we

have pxy
n?1 \ pxy

n . From (26), Qk
n?1 - Qk

n = a(rk?1
n

- Qk
n) B 0. We obtain rk?1

n?1 = rk?1
n B Qk

n B 0. Thus,

rk?1
n?1pxy

n?1 C rk?1
n pxy

n .

(v) Qn?1 B 0 B Qn: Similar to (iv), pxy
n?1 \ pxy

n . Using (12)

and Qk
n C 0, we obtain rnþ1

kþ1 ¼ rn
kþ1�ð1� 1

aÞQn
k � 0.

Thus, rk?1
n?1pxy

n?1 C rk?1
n pxy

n .

(vi) 0 B Qn?1 B Qn: Similarly, we obtain pxy
n?1 \ pxy

n and

rn
kþ1 2 ½ð1� 1

aÞQn
k ;Q

n
k 	. Since Qn?1, Qn C 0, Pr(rk?1

\ 0) \ Pr(rk?1 C 0). Thus, Pr(rk?1
n?1pxy

n?1 C rk?1
n pxy

n )

\ Pr(rk?1
n?1pxy

n?1 \ rk?1
n pxy

n ).

If c[ 0, one may replace rk?1
n in (26) with rk?1

n ? c
f(Qk?1

n ) and the analysis above still applies with variations

of future estimates. Since cases (i)–(vi) are applicable to all

(x, y) pairs in any policy p and equally likely, we conclude

that

E½Rnþ1jRi	 ¼
X
p2P

XL

k¼0

X
x;y

rnþ1
kþ1ðx; yÞpnþ1

xy ð27Þ

�
X
p2P

XL

k¼0

X
x;y

rn
kþ1ðx; yÞpn

xy ð28Þ

¼ E½RnjRi	 ¼ Rn; 8i� n; ð29Þ

and {Rn} is a submartingale. h

Lemma 4 (Martingale Convergence Theorem) (Theo-

rem 5.14 in [31]) Let R1;R2; . . . be a submartingale such

that sup EjRnj\1, then there exists a random variable

(r.v.) R such that Rn ? R almost surely (a.s.) and

EjRj\1.

Based on Lemma 3 and Lemma 4, we present the con-

vergence theorem of RLCS.

Theorem 2 (Convergence of RLCS Algorithm) The

sequence of expected cumulative rewards Rn; n ¼ 1; 2; . . .

converges to a value R almost surely (a.s.).

Proof Since {Rn} is a submartingale (Lemma 3), by

following Lemma 4, there exists an r.v. R such that Rn ?
R a.s. and EjRj\1 due to EjRnj\1. The convergence of

RLCS follows.

From (24), Rn increases with pxy
n according to (25). If we

set a = Qn/sn such that pi ¼ eaiP
j
eaj
; we obtain that opi

oai
¼

pi � p2
i and o2pi

oa2
i

¼ ðpi � p2
i Þð1� 2piÞ. pi is convex if pi 2

½0; 0:5	 and concave if pi 2 ½0:5; 1	. As a result, when sn is

large at the beginning of learning where exploration takes

place, all possible actions i in that state are equally likely and

pi 2 ½0; 0:5	. Rn is convex in this region. On the opposite,

when sn is close to zero at the end of learning where

exploitation takes effect, pi = 1 for the best action i in all

states. Rn in this region is concave. The region in between

where the transition from exploration to exploitation occurs

is, thus, linear. Based on this observation, we show the rate of

convergence in the following theorem. h

Theorem 3 (Rate of Convergence) The sequence of

expected cumulative rewards Rn in RLCS converges

sublinearly.

Proof Let R1 be the initial Rn and Rn = R* at episode

n = N. The increasing rate of Rn in the linear region

between exploration and exploitation can be approximated

as R
�R1

N�1
. From Rn ¼ R
�R1

N�1
ðn� 1Þ þ R1; we obtain Rnþ1 �

R
 ¼ n�Nþ1
N�1

ðR
 � R1Þ and Rn � R
 ¼ n�N
N�1
ðR
 � R1Þ. Using

the rate of convergence K̂ defined in [32], we have

K̂ ¼ lim sup
n!1

kRnþ1 � R
k
kRn � R
kf

¼ lim sup
n!1

kn� N þ 1k
kn� Nk ¼ 1

ð30Þ

where f is the order of convergence and f ¼ 1 indicates the

convergence of the first order. The same result can be

obtained by using (19). Since R* is upper bounded by K*

in (19) and N � K* for sufficiently large N, DR ¼
Rnþ1 � Rn ¼ R
�R1

N�1
� K
�R1

N�1
� 0. Thus, K̂ ¼ 1 is obtained

in (30) with Rn?1 & Rn. {Rn} is said to converge

sublinearly. h

4.3 Optimal stopping time

In Sect. 3, the RLCS algorithm is introduced to find the

optimal solution. However, the number of episodes needed

to reach the optimal solution may be large due to the

exploration of all state-action pairs in state and action

spaces. In this section, we aim to find the optimal stopping

time T* to reduce the total learning time by formulating the

problem as Markov optimal stopping with finite horizon N.

Let F n; n ¼ 1; . . .;N be a nondecreasing sequence of

sub-r-algebras of event class F called a filtration. Consider

a set of stopping times T N
n ¼ fT 2 T jn� T �Ng; 1�

n�N; where T is the set of all stopping time. Thus, with

cumulative reward sequence {Yn}, the optimal stopping

problem is to find the stopping time T such that the

expected cumulative reward is maximized:

sup
T2T

E½YT 	 ð31Þ

According to the optimal stopping theory [33, 34], the

solution to (31) can be obtained by backward induction as

defined by a sequence of random variables:

SN
n ¼ maxfYn;E½SN

nþ1jF n	g; n ¼ N � 1; . . .; 1 ð32Þ

with SN
N = YN. Thus, we stop at n = T if YT �E½SN

Tþ1jF T 	
and continue otherwise. The stopping time is given by
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TN
n ¼ inffn� T �NjSN

T ¼ YTg; 1� n�N: ð33Þ

However, unlike Yn;E½SN
nþ1jF n	 is difficult to obtain in

each episode n. This is because the probability distributions

of the r.v.’s in the sequence Sn?1
N is unknown in episode

n and may be significantly changed owing to the action

selections in future episodes nþ 1; . . .;N. Thus, we use the

optimal reward estimate ~Y
 as the alternative to

E½SN
nþ1jF n	. ~Y
 is the best-known cumulative reward

estimate in episode n based on the optimal set of

uncorrelated SUs, ~K
; obtained from the sequence of

sorted average reporting delay, T n
d ¼ f�tn

di
g in ascending

order. By using (19), we obtain the following:

~Y
 ¼ ~K
 �
P~K
�1

k¼0 ð~K
 � kÞ�tn
di
ðkÞ

Tlim

; i 2 ~K
 ð34Þ

where ~K
 ¼ jK
j and �tn
di
ðkÞ 2 T n

d is indexed for the kth

uncorrelated SU in ~K
. Thus, (32) reduces to SN
n ¼

maxfYn; ~Y
g and the optimal stopping time T* in the

RLCS algorithm is the smallest episode number n = T*

whose cumulative reward Yn is greater than or equal to the

optimal reward estimate ~Y
:

T
 ¼ inffn�N j Yn� ~Y
g: ð35Þ

In other words, the optimal stopping occurs if the cumu-

lative reward of episode n, Yn, is greater than or equal to

the current best known reward estimate, ~Y
; or the RLCS

algorithm continues to find the optimal solution.

5 Performance evaluation

In this section, we evaluate the performance of our pro-

posed RLCS scheme by showing the convergence the

RLCS algorithm, the improvement of detection probability,

and the adaptability to environmental changes.

We consider an SU (the FC) and its 9 neighbors

deployed in a 600 m 9 600 m square area placed in the

first quadrant of the Cartesian coordinate system. A PU

with rb = 0.3 and rd = 0.2 at 900 MHz is located at (0, 0).

The FC is located at (500, 500) and its neighbors are

located within 40 m of FC’s location. For channel model

and sensing parameters, we set cpl = 3.1 for path loss,

noise uncertainty r0 = 6 dB and lognormal dB-spread

r1 = 6 dB in (1), decaying coefficient a = 0.1204 in (2)

for urban settings, and local detection threshold kth = 0.2

dB for all SUs. The FSMC model for independent Rayleigh

fading CCC consists of 1,024 SNR regions in which the

range of each SNR region is of 0.1 dB. We set the SU

transmit power to 20 mW with path loss exponent

cpl = 4.1. For data fusion at the FC, hard combinations of

local decisions with the majority rule are used. With these

settings, the SUs are approximately located at the boundary

of the protected region of the PU. At this border location,

the received power is close to the noise floor set to

-101 dBm. Thus, cooperative sensing is essential for SUs

to improve their detection performance. A test scenario can

be found in [1].

5.1 Convergence of RLCS algorithm

Figure 3 shows the expected cumulative rewards with

N = 1,000, s0 = 1, and sN = 0.01, for Q-learning, Sarsa,

and Action-Critic TD learning strategy over 1,000 runs.

The sublinear convergence of RLCS (both with and with-

out optimal stopping) is evident. The maximum value R* is

obtained by (19). For both cases, Q-learning converges to

the optimal value while the other two settle for a subopti-

mal value due to more exploitation than exploration in

early stages (n \ 500). All three methods show significant

improvement in Rn with optimal stopping.

5.2 Detection performance

Figure 4 shows the improvement of detection performance

(both Qd and Qf) under Poisson and bursty PU traffic

during the RLCS process. Qd and Qf are averaged over the

most recent 500 cooperative decisions at the FC. The

detection performance of full cooperation (FCS) case is

approximately the same for all episodes. It is evident that

Qd of RLCS is gradually improved and reaches above 0.9

after 3,000 episodes, significant improvement over FCS.

The initial large Qf of RLCS is attributed to non-optimal

SU selections at the beginning of learning during the

exploration phase. However, Qf is constantly decreasing
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Fig. 3 Expected cumulative rewards of RL-based cooperative
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and considerably reduced to 0.025 to be comparable to Qf

of FCS at the end. Thus, with RLCS, the detection per-

formance improves as soon as the learning from the envi-

ronment takes effect. Figure 5 shows the receiver operating

characteristic (ROC) curves of FCS and RLCS in corre-

lated shadowing and possible user movement and CCC

fading. We see that the cooperative gain achieved by FCS

in independent shadowing is compromised by correlated

shadowing with Qd dropping from 0.97 to 0.85 at Qf = 0.1.

The detection performance of full cooperation in inde-

pendent shadowing is attainable only when all cooperating

SUs are uncorrelated. However, with RLCS, Qd is

increased to 0.91. Hence, RLCS scheme is effective in

combating correlated shadowing.

5.3 Adaptability to environmental change

With the learning capability, the RLCS algorithm is able to

adapt to changes in the environment. In this subsection, we

evaluate the adaptability of RLCS based on the changes of

PU activity, user location, user reliability, and fading

control channel.

PU Activity Changes: Figure 4 shows adaptability to PU

activity changes for different PU traffic types in addition to

constant improvement in detection performance. To mani-

fest the effect of PU activity changes on detection perfor-

mance, we generate bursty PU traffic by staying in either PU

state with high probability for a period that spans a random

number of episodes, and toggling the ON/OFF states with

low probability. As seen in the figure, Qd is improved

mostly during the period of active PU while the Qf is pri-

marily improved during the period of no PU activity. For

this reason, Qf = 0 during the first 500 episodes. Thus,

RLCS is adaptable to PU activity and consistently improves

detection performance for arbitrary PU traffic patterns.

User Movement: In this test scenario, an SU with inde-

pendent observations at original location moves to a new

location (distance 33.12 m) at the pedestrian speed 1.25 m/s.

Since it takes 26.5s to reach the destination, the movement

spans 133 RLCS episodes for cooperative sensing period of

200 ms. Since this movement incurs correlation with other

SUs, the optimal solution is changed accordingly when the

algorithm converges. Figure 5 shows the ROC curve before

and after the movement for both FCS and RLCS. For

Qf = 0.1, Qd of FCS drops from 0.85 to below 0.8 after the

movement while Qd of RLCS is even slightly improved after

the movement due to the selection of all uncorrelated SUs.

This shows the capability of RLCS adapting to user move-

ment while maintaining detection performance.

User Reliability: Figure 6 shows the KL distance curve

of an unreliable SU, the average KL distance values of all

reliable users, and the detection threshold dKL = ld ? 2rd

over 5,000 episodes. The low KL values before episode

1,000 indicate that the SU is normally a reliable user. Its

KL value is dramatically increased after the user becomes

unreliable at episode 1,000. It is detected and removed

from the set of cooperation at episode 1,391 when its KL

value exceeds the threshold dKL. When the SU becomes

reliable again, its KL distance is gradually reduced. After

its KL distance meets the threshold in episode 4,016, the

user may be selected by the FC again for cooperation.

Fading Control Channel: We first compare the detec-

tion performance obtained by simulations with that

obtained by using (17) and its counterpart for Qd. Local Pd

and Pf are set to 0.7633 and 0.1466, respectively, for all

SUs. This corresponds to Qd = 0.91 and Qf = 0.025,

respectively, with Pe = 0. The results are obtained at epi-

sode 5000 when the optimal solution is reached, and are
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averaged over 10 runs. Figure 7 shows the theoretical and

empirical detection performance versus Pe ranging from 0

to 0.5 on fading control channel. The simulation results

follow the theoretical curves closely for both Qd and Qf.

Figure 5 also shows the ROC curve of RLCS with fading

CCC versus perfect CCC. The detection performance of the

fading CCC is similar that of the perfect CCC case with

slight degradation (Qf = 0.0255, Qd = 0.9027). Thus,

RLCS can effectively maintain the detection performance

with reporting in fading control channel.

6 Conclusions

In this paper, we propose a novel cooperative sensing

model via RL to improve the cooperative gain and mitigate

the cooperation overhead in correlated shadowing and

dynamic environment. We show that the proposed RLCS

method is capable of converging to an optimal solution

asymptotically and enhancing rewards by using optimal

stopping. The optimal solution achieved by an optimal user

selection policy includes finding the optimal set of coop-

erating neighbors with minimum control traffic, reducing

the overall reporting delay, selecting independent users for

cooperation under correlated shadowing, and excluding

unreliable users and data from cooperation. The results

show that RLCS improves or maintains the comparable

detection performance while adapting to environmental

change, such as the changes in PU traffic patterns, user

locations, user reliability, and fading control channel con-

ditions, that may compromise the cooperative gain in

cooperative sensing.
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