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Abstract—In wireless multimedia sensor networks (WMSNs),
visual correlation exists among multiple nearby cameras, thus
leading to considerable redundancy in the collected images. This
paper proposes a differential coding-based scheduling framework
for efficiently gathering visually correlated images. This frame-
work consists of two components including MinMax Degree Hub
Location (MDHL) and Maximum Lifetime Scheduling (MLS).
The MDHL problem aims to find the optimal locations for the
multimedia processing hubs, which operate on different channels
for concurrently collecting images from adjacent cameras, such
that the number of channels required for frequency reuse is
minimized. After associating camera sensors with proper hubs,
the MLS problem targets at designing a schedule for the cameras
such that the network lifetime of the cameras is maximized by
letting highly correlated cameras perform differential coding
on the fly. It is proven in this paper that the MDHL problem is
NP-complete, and the MLS problem is NP-hard. Consequently,
approximation algorithms are proposed to provide bounded
performance. Since the designed algorithms only take the camera
settings as inputs, they are independent of specific multimedia
applications. Experiments and simulations show that the proposed
differential coding-based scheduling can effectively enhance the
network throughput and the energy efficiency of camera sensors.

Index Terms—Differential coding, scheduling, spatial correla-
tion, wireless multimedia sensor networks.

I. INTRODUCTION

HE availability of hardware has fostered the development
of wireless multimedia sensor networks, i.e., networks of
resource-constrained wireless devices that can retrieve multi-
media content such as video and audio streams, still images, and
scalar sensor data from the environment [2]. WMSNs not only
enhance the existing sensor network applications, but also en-
able new applications such as multimedia surveillance, traffic
enforcement, and industrial process control. These new appli-
cations normally involve gathering a number of images from
energy-constrained camera sensors, thus demanding more ef-
fective networking and image compression techniques to limit
the bandwidth and energy consumption.
In a WMSN, multiple camera sensors can perceive the en-
vironment or the events of interest from different and unique
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viewpoints. Since camera sensors generally have large sensing
radius, the spatially separated cameras can still possess over-
lapped field of views (FoV). These overlapped FoVs further
incur a certain degree of visual correlation among multiple cam-
eras, thus leading to unnecessary redundancy in the captured im-
ages. To remove such redundancy, camera sensors can perform
inter-camera differential coding with each other by allowing one
camera encodes its image conditional on the image of the other,
and sends its image with a reduced coding rate. This differential
coding rate depends on the degree of the correlation between
the two cameras. In our recent work [4], for the first time, visual
correlation among multiple cameras is explicitly measured by a
function of camera settings, which are independent of image and
codec types. By leveraging this unique characteristic, we pro-
pose a differential coding-based scheduling framework which
addresses two fundamental problems regarding the image gath-
ering process and provides effective solutions accordingly.

The first problem we consider is how to construct a scal-
able network architecture that improves spectrum utilization.
In a WMSN, a multi-tier network architecture is recommended
[2], in which the energy constrained camera sensors are parti-
tioned into multiple clusters with each cluster coordinated by
a multimedia processing hub, which is either a normal camera
sensor or a special device equipped with higher communica-
tion and processing capabilities. Under this network architec-
ture, the network throughput is enhanced by applying the con-
cept of frequency reuse, which allows concurrent transmissions
within multiple clusters. However, in a WMSN, the effective-
ness of frequency reuse may be jeopardized by the constrained
resource of camera sensors. More specifically, the number of
available orthogonal channels that camera sensors can switch
to is limited by their hardware specifications and the spectrum
availability. On the other hand, vertex coloring theorems [9]
imply that the number of orthogonal channels should exceed
the maximum number of neighboring clusters in a network to
guarantee that all neighboring clusters can be assigned with dif-
ferent channels, Therefore, to increase network throughput of
a WMSN, placing hubs at proper locations that facilitate fre-
quency reuse is of paramount importance.

After cameras are assigned to proper hubs, our second
problem is how to design an image gathering schedule within
each cluster so that the camera sensor’s lifetime is increased.
Specifically, we design a differential coding-based scheduling
approach (DCS). In DCS, a camera is allowed to wake up at
a certain time slot and overhear the on-going transmission of
a neighboring camera. After that, it encodes its own image
conditional on the previously overheard image, and sends its
image with a reduced coding rate. The differential coding rate
a camera can generate depends on the degree of the correlation
between this camera and the one whose image it overhears.
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Thus, the design of a visual correlation-oriented schedule,
which significantly reduces the differential coding rates, helps
to prolong the sensor’s lifetime.

To address the problems above, we formally define two
optimization problems, namely, MinMax Degree Hub Lo-
cation (MDHL) and Maximum Lifetime Scheduling (MLS).
The MDHL problem aims to find the optimal locations to
place the multimedia processing hubs such that the number
of channels required for frequency reuse is minimized. By
defining the degree of a hub as the number of hubs within its
2-hop neighborhood, the MDHL is defined as: find a set of
hub locations such that the maximum degree of the deployed
hubs is minimum and each camera is covered by at least one
hub. In Section III, we prove that MDHL is NP-complete and
therefore can not be solved in polynomial time unless P = NP.
Consequently, an O(log?(n)) factor approximation algorithm
is proposed by using linear relaxation and random rounding
techniques, where n is the number of camera sensors in the
network.

Given a hub and its associated cameras, the MLS problem
targets at designing a schedule for the cameras such that the
camera’s lifetime is maximized. Assuming all cameras have
equivalent initial energy, the MLS problem is defined as: find
a pair of slots for each camera to transmit and overhear, re-
spectively, such that the maximum energy consumption of the
cameras is minimized. In Section V, we prove that the MLS
problem is NP-hard by formulating it as an equivalent binary
program. Consequently, we present a randomized approxima-
tion algorithm, which produces a solution <OPT + ¢yax/e,
where OPT is the optimal result and ¢,,,,x is the maximum en-
ergy consumed by a camera to send its image to the hub without
performing differential coding and ¢ is the exponential constant.
Moreover, a joint power control and scheduling scheme is pro-
posed to further improve the energy efficiency of the camera
Sensors.

This work is based on the the preliminary results in [22]. In
this extended version, an extensive literature review on the re-
source aware solutions in WMSNs is given. An enhanced al-
gorithm for the MDHL problem is proposed to yield a better
approximation ratio than the one proposed in [22]. Along this
new algorithm, the heuristic cluster member assignment algo-
rithms are proposed and the inter-cluster connectivity is ana-
lyzed. What is more important, a new joint power control and
scheduling solution is designed, which, as shown, can lead to
significantly enhanced energy efficiency. Moreover, a compre-
hensive simulation study is performed to verify the proposed so-
lutions and reveal the fundamental impact of network settings
and camera configurations on the energy efficiency of WMSNSs.

The rest of this paper is organized as follows. Section II math-
ematically formulates the problems. In Section III, we intro-
duce the related work. In Section IV, we present the approxi-
mation algorithm for the MDHL problem. We address the MLS
problem in Section V. The performance of the proposed algo-
rithms is examined in Section V1. Finally, Section VII concludes
this paper.

II. RELATED WORK

Recent studies have addressed resource awareness in video
sensor networks from different perspectives. The problem of

object detection and tracking for battery-powered smart cam-
eras is studied in [3], where camera sensors are put to idle states
to save energy consumption. A feedback method is first pro-
posed for detection and tracking, which provides significant sav-
ings in processing time. Then, an adaptive methodology is pro-
posed to send the camera sensor to idle state without affecting
the performance of the tracking system. The feedback method
and the adaptive methodology are combined together so as to
provide further savings in energy consumption. In [19], the au-
thors study how multiple cameras should efficiently share the
available wireless network resources and transmit their captured
information to a central monitor. Three different types of re-
source allocation solutions are analyzed and compared: a cen-
tralized optimization approach, a decentralized game-theoretic
approach, and a distributed greedy approach. It is shown that
resource allocation solutions for multicamera wireless surveil-
lance networks need to explicitly consider both the dynamic
source characteristics and network conditions. In [6], the joint
camera selection and resource allocation problem is investi-
gated with an objective to optimally set the camera configura-
tions to meet the coverage and QoS requirements. To solve this
problem, an approximation solution based on the evolutionary
algorithms is presented, which can effectively and timely yield
a suboptimal solution. [25] addresses the problem of optimal se-
lection of a set of cameras from all available cameras to maxi-
mize the network lifetime, while achieving the desired coverage
performance. To attack this problem, a stochastic model is pro-
posed to approximate the network lifetime based on the cov-
erage geometry of cameras and data request statistics. Accord-
ingly, based on this model, the optimal camera selection which
leads to the maximum expected remaining network lifetime is
derived. In [10], an analytical power-rate-distortion model is
developed to capture the impact of the resource limitations of
camera sensors on their rate-distortion performance. Utilizing
a simpler model, the optimal power allocation solution is de-
veloped to minimize the distortion performance of the camera
sensors subject to their power constraints.

In sum, the resource allocation solutions introduced above
aim to enhance the energy efficiency of WMSNs, while
maintaining the certain performance requirements in terms of
coverage, distortion, frame rate, and so on. However, none of
them exploits the inherent visual correlation among camera
sensors, which, as shown in this work, has significant impact
on the energy efficiency of WMSNs. What is more impor-
tant, none of above solutions addresses the critical problem
of how to gather the high-volume image data from resource
constraint camera sensors in an efficient and collaborative
manner. Such problem of scheduling the image collection
from sensor nodes is related to the MAC protocol design in
wireless sensor networks (WSNs). Based on the channel access
policies, MAC protocols designed for WSNs could be classified
into contention-based protocols and contention-free protocols.
Contention-based protocols are mostly based on variants of
the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) protocol. For example, the S-MAC [23] and
the T-MAC [5] protocols are in this type. These protocols
alternate between sleep cycles and listen cycles to save energy
in sensor networks, but energy saving is accomplished at the
cost of latency and by allowing throughput degradation. Some
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contention-based MAC protocols also provide differentiating
network services based on priority levels to satisfy QoS re-
quirements [18]. However, there is little performance guarantee
due to the random access nature of contention-based protocols.
Contention-free protocols are primarily based on reservation of
time slots or channels or codes. The Time Division Multiple
Access (TDMA) is a representative protocol of this class,
in which the cluster head or sink helps in slot assignment,
querying particular sensors and maintaining time schedules.
There have been extensive studies on TDMA for sensor net-
works due to its energy efficiency, bounded delay performance,
and high throughput for high load multimedia traffic [14], [13],
[17]. However, none of the exiting solutions takes the inherent
inter-camera correlation into account to generate the optimal
schedule that can significantly increase the network lifetime.
This is partially attributed to the difficulty of efficiently and
effectively predicting the correlation coefficient among camera
Sensors.

To enhance the throughput of WMSNSs, the concept of fre-
quency reuse is also exploited in this work, where any two
neighboring processing hubs are assigned with different fre-
quencies. The conventional frequency assignment problem aims
to assign frequencies to the users or the cellular cells in such a
way that the signal interference from neighboring users or cells
is avoided, while the required total number of frequencies is
minimized. This problem is closely related to the well studied
vertex coloring problem [9], which is shown to be NP-hard.
Accordingly, many centralized and distributed approximation/
heuristric algorithms have been proposed [11], [12], [15]. Dif-
ferent from the well-known frequency assignment problem, we
address an unique problem for WMSNSs regarding how to find
optimal locations to place the processing hubs in such a way that
the upper bound of the number of the frequencies required for
frequency reuse is minimized.

III. PROBLEM FORMULATION

A. Correlation-Based Joint Coding and Differential Coding

To remove the redundancy among correlated camera sen-
sors, a group of camera sensors with overlapped Field of
Views (FoVs) as shown in Fig. 1 can collaboratively compress
their data by joint coding and differential coding. Consider a
cluster consisting of a multimedia hub with high processing
capabilities and N ordinary camera sensors {v1,...,Un},
where each camera v; produces image X;. We can per-
form multi-camera joint coding in the cluster: each camera
sends its individual images to the hub, while the hub acts
as a single encoder that takes all the collected images as
inputs and perform joint coding. We denote the total coding
rate of all the images by R(Xi,...,Xn). According to
Shannon’s source coding theorem, the total coding rate of
all nodes within a cluster is lower bounded by the joint en-
tropy of the observations H(X;, Xs,...,Xy), given by
R(Xy,....,.XNn)> H(X1, Xo, ..., XN).

On the other hand, two camera sensors can also perform
inter-camera differential coding with each other. For two
images X; and X; observed by cameras v; and v;, we can com-
press X; based on the prediction of X ;. We denote the resulting
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Fig. 1. Field of views of multiple cameras.

differential coding rate of X; by R(X;|X;), and R(X; | X;)
satisfies R(X;|X;) > H(X;|X;), where H(X;|X;) is
the conditional entropy of X; given the knowledge of X;.
The conditional entropy can be derived from joint entropy as
H(X;| X5) = H(X, X;) — H(X;).

Our previous results [4], [20], [21] show that the joint en-
tropy for multiple images can be effectively estimated based on
the visual correlation between cameras, and this correlation is
given by a function of camera settings before the actual images
are captured. Specifically, if two cameras C'; and (% can both
observe an area of interest F;, a spatial correlation coefficient
pj.x for the observations of F; at C; and () is derived as

pin = F(O5,V;, 00, Vi, ) (1)
which indicates that p; ;. is a function of the two cameras’ lo-
cations (O;, Oy,) and sensing directions (V;, V) as well as the
location of the area of interest P;.

B. MinMax Degree Hub Location Problem

Consider a camera network modeled by a graph G = (V, E),
where V' is a set of cameras, i.e., V = {v1,v2,... 0, },and F is
a set of links. A link (v;, v;) exists if v; and v; are within 1-hop
range of each other.

Definition 1: The degree of a hub h, denoted by deg(h), is
the total number of hubs (except ) that reside within the 2-hop
range of the hub A.

To facilitate frequency reuse, the neighboring clusters must
be assigned with different channels and the cameras must be
able to operate on the channels of their associated clusters.
Since the maximum distance between two neighboring clus-
ters is 2-hop distance, by graph coloring theorems [9], this
implies that the maximum degree of hubs should be less than
the available orthogonal channels to ensure the effectiveness
of frequency reuse. For this purpose, we define the MinMax
Degree Hub Location Problem as follows.

Definition 2: MinMax Degree Hub Location Problem
(MDHL): given a graph G = (V| E) and a set of potential hub
locations I' = V, find a subset '/ C F such that the maximum
degree of hubs, maxpep (deg(h)), is minimum, and for all
v; € V, there is at least one hub h € F” for which (h,v;) € E.
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Note that by the definition above, the set of hubs F” is actually
a dominating set of the WMSN so that every camera sensor is
at most 1-hop away from at least one of the hubs in F”.

C. Maximum Lifetime Scheduling Problem

Given a hub and its member cameras, each hub will generate
an order to schedule image collections from its members. Our
task is to find the optimal schedule such that the lifetime of the
member cameras is maximized.

Definition 3: The lifetime of the member cameras is the time
duration when all the members of a hub keep alive.

Assume that cameras have equal initial energy. The maxi-
mization of the lifetime of the cameras in a cluster is equiva-
lent to minimization of the maximum energy consumption of
the cameras in this cluster. Let Fy,(h,v;) denote the energy
consumed by the camera v; to convey its image to the hub A.
FEt(h,v;) is a function of {dy, ,,,), 12, }, in which d(y, ) is the
Euclidean distance between h and v; and E,, is the predicted
differential coding rate of v;. Consequently, we formulate the
Maximum Lifetime Scheduling Problem (MLS) as follows.

Definition 4: Maximum Lifetime Scheduling Problem (MLS):
given a hub A and a set A; of cameras assigned to £, find a
schedule o assigning a pair of slots for each cameras to transmit
and overhear in such a way that the maximum energy consump-
tion, max,, e a, E£tx(h, v;), is minimum.

In the following sections, we prove the NP-completeness of
the MDHL problem and the NP-hardness of the MLS problem.
Consequently, approximation algorithms are proposed.

IV. MINMAX DEGREE HUB LOCATION

In this section, we first prove that MDHL is NP-complete.
Next, we formulate MDHL problem as an integer program (IP).
Then, we present an approximation algorithm by applying the
linear relaxation and random rounding technique, which was
originally studied in MAX-2SAT [8] and Covering & Packing
problems [16].

A. NP-Completeness

First, the decision version of the MDHL is as follows.

Definition 5: Decision Version of MDHL: given a graph G =
(V, E), a set of potential hub locations /' = V, and a positive
integer k&, determine if there exists a subset // C [ with the
maximum degree of hubs, maxye pr(deg(h)) < k such that for
allv € V, there is at least one hub . € F’ for which (h,v) € E.

Theorem 1: The MDHL is NP-complete.

Proof: First, we argue that the decision version of MDHL
€ NP since given an instance of MDHL, a verification algorithm
can efficiently check if each camera has at least one hub in its
neighborhood, and if the maximum degree of hubs is %. Thus,
the MDHL belongs to NP.

We now show that the Minimum Dominating Set problem
(MDS) is polynomial time reducible to MDHL, i.e., MDS <p
MDHL. An instance of MDS is given by a graph G = (V| E),
and a positive integer £k — 1. The objective is to determine if
there exists a dominating set V' C V such that [V’| < k — 1
and each element v € V is a neighbor of at least one element of
V7.

Next, we will construct an instance of MDHL problem from
an instance of MDS. We define sets V, I, E as follows: let V' =
V U{f'}, where f is anew element and f” is put into the 2-hop
neighborhood S? of eachnode i; Let F' = V; Let & = E. Then,
the instance of MDHL is given by a graph G = (V, E), aset F,
and a positive integer k.

We now prove that the original instance of MDS is a yes in-
stance if and only if the MDHL instance we created is also a
yes instance. First, suppose the instance of MDHL has a solu-
tion F’ C F with maxyc g (deg(h)) < k. By our construction,
/! is the 2-hop neighbor of every element in V' and thus f” has
to be added in F” to cover itself. This implies that f’ is the el-
ement in F” that has the maximum degree k. Meanwhile, since
V =V — {f'}, this indicates that the instance of MDS has a
dominating set V' C V of cardinality less than k& — 1. Next, sup-
pose that there is a dominating set V/ C V with [V/| < k — 1
in the original MDS instance. By the similar arguments, the de-
gree of the elements in F is at most & in the constructed MDHL
instance.

We now have shown that MDS problem can be solved by
the proposed construction and an algorithm that solves MDHL.
Since our construction takes polynomial time, and MDHL is NP,
we can conclude that MDHL is NP-complete. [ |

B. IP Formulation of MDHL

We first model the MDHL as an integer nonlinear program
(INP). Consider a camera network described by a graph G =
(V,E) and a set of potential hub locations F' = V. First, we
define 1-hop neighborhood and 2-hop neighborhood of a camera
v; € V, respectively.

Definition 6: The 1-hop neighborhood of v;, denoted by S},
is a set consisting of v; and cameras within 1-hop range of v;.

Definition 7: The 2-hop neighborhood of v;, denoted by SZ,
is a set of cameras within 2-hop range of v;, excluding v;.

We assign a variable #; for each camera v € V, which is
allowed 0/1 values. This variable will be set to 1 iff a hub is
placed at the location of »;. Consequently, the MDHL problem
can be formulated as an Integer Nonlinear Program INPyppr,

MIN vy (2)
.t Z z;>1, Yy eV 3)

j:'vLES_;}l
Z ri; <y, Yo, €V 4)

j:viesf
z; €{0,1}, Vv €V Q)
The objective function ¥ is the maximum degree of all hubs
({v;|x; = 1}). The first constraint states that each camera

v; € V must reside within the 1-hop neighborhood of at least
one hub, whereas the second constraint indicates that the degree
of each hub (described in Definition 1) must be less than the
maximum value. As the second constraint (4) is quadratic,
the formulated integer program INPypyr is not linear. To
linearize INPypyr,, the quadratic constraint (4) is eliminated
by applying the techniques proposed in [7]. More specifically,
the product x;x; is replaced by a new binary variable w;;,
on which several additional constraints are imposed. As a
consequence, we can reformulate INPyppr exactly to an
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integer linear Program IPypyr, by introducing the following
linearlization constraints:

Z wi <y, Vo, eV (6)
j:UZESJZ.

Wi X wy L3y, Yo, v €V @)

wi; > +w;—1, Yu,v €V (8)

Wi =2 0, Vvi,vj eV )

and removing the quadratic constraint (4). By relaxing variables
x; € {0,1} to z; € [0,1], we get the relaxed linear program
LPuypuL consisting of the objective function (2) along with
constraints (3), (6), (7), (8), (9), and z; > 0, Vv; € V.

C. Randomized Approximation Algorithm

Given an instance of MDHL modeled by the integer program
IPypmaL, the proposed algorithm (see Algorithm 1) is the fol-
lowing: first solve the relaxed linear program LPyipyr, to get
an optimal fractional solution, denoted by (x’, %'), where x’ =

rounding procedure. This procedure consists of three steps: (i)
first set all Z; to be 0; (ii) then let Z; = 1 with probability =/ and
execute this step for log(n) + 2 times, where 7 is the number of
sensor nodes in the network. Step (ii) yields an integer solution
(X,7), where vector X = (Z1,2,...,Zy). To ensure (X, %)
is a feasible solution to IPyppr, step (ii) is repeated until each
camera is the neighbor of at least one hub, and the maximum
degree i satisfies the condition that 7 < sa%y’, where § and o
are some constants given in line 6 of Algorithm 1. The last step
(iii)(Line 7-12) is to further reduce the maximum hub degree
by removing the possible redundant hub, which has its one hop
neighbors (including itself) covered by other hubs.

Algorithm 1 Approximation Algorithm for MDHL

Solve LPyppr. Let (x’.4') be the optimum solution.
X — 0,7« 0.
while ¢ < log(n) + 2 do

Z; + 1 with probability p; « =z, t — t 4+ 1
end while
Repeat lines 3-5 Until ijies} z; > 1V, €V
and § = arg max,,cyv ».

jius €S2 T;r; < 5052:1/,
1€5;
where o = log(n) +2.6 = (1 — e %)~ and
6 = ming Loni<n ak.
7: find H = {7)1‘ |7‘L = 1}
8: for v; € H do
9: N, es1{d ki, 50 #x = 2} then

10: T, — 0
11: end if
12: end for

13: Return (X, §)

Theorem 2: Let OPT denote the optimal solution of the
MDHL problem. The proposed algorithm yields a solution of
()(logQ(n))OPT with high probability
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Proof: Let y* denote the optimal solution to the MDHL
problem. Consider any element v; € V. Its expected degree
follows

(10)

The first equality holds because v; is not in its own 2-hop neigh-
borhood S? by Definition 7 and thus #; and Z; are independent.
The second equality holds because of linearity of expectation.

Applying union bound, we have the upper bound of the prob-
ability that an element becomes a hub (i.e., Z; = 1) when the
random rounding is done, i.c.,

U z, =1 at round t| < o
t<o+1

where o« = log(n) + 2. This implies FE(Z;) < ax}, by which,
we obtain the upper bound of the expected degree of a candidate
hub v;, (i.e., , # 0)

E Z 3, | <a? Z i <oty (1)
j:UiES? j:UiESIj
As to the lower bound of Pr[z; = 1], we have
Prlz; =1 =1 (1 —a})* > 1 — e % (12)

The inequality follows from the fact that (1 — z) < ¢ *,Vz €
[0 1].

We are now ready to derive the probability that the degree of
a hub is larger than §a?3’. Applying Chernoff bound, it follows
by (11) and (12) that

Pr{ N 25,\,12_7/}

j:'z,',-ESJ‘

NN
(5)

for A > 0, where 6 = (1 —e %)l and § = ming 4opi<n T;-
To simplify this bound, suppose A > 2e, then

< b | .z m\a?y'} <

\J.L,,ESj

Pr| 3 @z > 6xaPy | <27 G
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Thus, if 4’ < 1/e?, thenlet A = 1+ (1/y') > 2e. We get

A 1

Pr [ ST ma; > 60 ’] <o <<

1{ ‘TQJ_ o'yl < se s o
jZ'Uv,,ES?

Ify’ > 1/e?, letting A = 1+ /(2/y’) < 2e, we get

Pr { Z BT > (5)\(J42y’-| <o T <

j:'v,-GS?

In both of the above cases, summing over all elements v; € V,

we get the probability that some hub has a degree larger than
xa?y e,

Prly > 6Aa?y] < ne <1

- ~ 4dn T 4

We next consider the probability that some element has

no neighboring hub after random rounding. By the fact that

> juwies? %, > 1, the probability that an element v; € V" has no

hub in its 1-hop neighborhood at round # can be upper bounded

by

(13)

H Pr[Z; = 0 at round t]

j:wES%
J— /'/
= II a-«)
. 1
]m,ESJ
!
el T 1
- T e
j:v,ESjl.

This implies that the probability that an element v; has no hub
in its 1-hop neighborhood after the random rounding is upper
bounded by

Pr| [ #;=0] <e 180T <1/4p,
j:viES;

(14)

By (14) and union bound, we get the probability that some ele-
ment has no neighboring hub

1
Pr[some element has no neighboring hub] < 1 (15)
This, combining with (13), implies that with probability at least
1/2 the Algorithm 1 yields a solution which is §(log(n) + 2)?
times the solution of the linear program LPypp1, i.e.,

Pr[g < §Aa”y’ A cach clement has a neighboring hub]
>1/2.

This completes the proof. Observe that both events in this bound
can be verified in polynomial time. If not, we repeat the entire
rounding process. The expected number of repetitions is at most
2. [ |

D. Member Camera Assignment

After hubs are located, each camera needs to be assigned to
a hub. Towards this, we consider two strategies: distance-aware
assignment and correlation-aware assignment. The first strategy
assigns each camera to its closest hub so that the transmission

energy can be reduced. The second strategy assigns to each
hub a group of cameras having high correlation so that higher
compression gain can be achieved by letting each hub perform
joint coding on the images collected from its member cameras.
Specifically, this correlation-aware assignment problem can be
formulated by the following nonlinear binary problem. Given
a set of hubs 7 = {h;}%_,, let u;; be an indicator variable de-
noting whether camera v, is assigned to /;. This value is set to 1
iff v; is assigned to ;. Let S; denote the set of cameras residing
within the one-hop range of hub %;. Consequently, the correla-
tion-aware assignment aims to find associate each camera with
a proper hub in such a way that the total entropy (coding rate)
of the whole network is minimized, i.e.,

MIN > H | | a; X, (16)
h,eF 'UjEV
st Y ay=1, Yo eVvheF (17
Ju €85
ai; € {0,1}, Vv, € VVh; € F (18)

To solve this problem, a simple heuristic algorithm can be per-
formed, which uses the average cluster entropy as the metric to
associate cameras with the hubs. Specifically, each sensor is as-
signed to a hub with the minimum average entropy, a ratio of
the estimated joint entropy of the cameras covered a hub to the
number of cameras it covers.

E. Inter-Hub Connectivity

To convey the collected images to the remote data sink, the
hubs need to be interconnected by multi-hop connections. Ac-
cordingly, the hubs should maintain inter-hub connectivity by
properly adjusting their transmission power. The following the-
orem implies that each hub only needs to adjust its transmission
range to three times the 1-hop distance to achieve network con-
nectivity, i.e.,

Claim 1: ITn a WMSN with the minimum node degree 6 >
1, i.e., there is no isolated node in the network, any two hubs
generated by the approximation algorithm are three hops away
at most.

The proof is straight forward and thus is omitted for the sake
of brevity.

V. MAXIMUM LIFETIME SCHEDULING

By solving the member camera assignment (MSCA) problem
in the previous section, each hub is associated with multiple
camera sensors with high visual correlation. By effectively ex-
ploiting such correlation, in this section, we study the differ-
ential coding based scheduling strategy with an objective to
maximize the lifetime of the camera sensors. Towards this, we
first prove that the MLS problem is NP-hard by formulating it
as an equivalent binary program. Consequently, we present a
randomized approximation algorithm, which produces a solu-
tion <OPT + ¢ax/e in expectation, where ¢yax is the max-
imum energy consumed by a camera to send its image to the hub
without performing differential coding and ¢ is the exponential
constant. In the end, we propose the joint power control and dif-
ferential coding-based scheduling to further improve the energy
efficiency of the camera sensors.
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A. IP Formulation for MLS

Given a hub 4 and a set A of cameras assigned to it. To save
energy, we let the transmission range of each camera v; € A
be the distance between v; and hub £, denoted by d;5. For each
camera v; € A, let N, denote a set of cameras within »;’s trans-
mission range, and let X; denote the image gathered by v;. We
assign two variables x; and y;; for each camera v; € A, which
are allowed 0/1 values. z; is set to 1 iff v; sends its image without
overhearing and performing differential coding. ;; is set to 1 iff
v; overhears v;’s transmission and encodes its image X; con-
ditional on v;’s image X;. In particular, y;; is set to 1 iff v;
does not overhear anyone’s transmission. Consequently, we for-
mulate the maximum lifetime scheduling problem as an integer
program [Pprs.

MIN 2z 19)
st > w21, Vu €A (20)
JwsEN;
Z Yji = 1, Yo, € A (21)
JiEN
Yi; =¥ >y Vv, v; € A (22)
D yiH(X [ X)d5 <z Vui€ A (23)
JwiEN;
T, Ygi S {0, 1}, V’Uj,’l)qj eV (24)

The objective function z is the maximum energy consump-
tion of all cameras in A. The constraint (20) ensures that each
camera has at least one camera to overhear. The constraint
(21) states that each camera only overhears once. The equality
of the constraint (22) indicates if v; decides to send its image
without performing differential coding, it will not overhear at
all, whereas the inequality «; > y;; states that v; must send its
image before v; can overhear v;’s transmission. The constraint
(23) ensures that the energy consumed by each camera v; to
send its compressed image of H(X,;|X;) bits over the dis-
tance d;;, is less than the maximum value z. Slightly different
from the notation of the classic information theory, we let
H(X;|X,) = H(X,), which means that a camera only sends
its original image if it does not overhear anyone’s transmission,
i.e., y;; = 1. By relaxing the binary variables «;,y;; € {0,1}
to 25,4 € [0, 1], we get the relaxed linear problem LPyrg.

B. Approximation Algorithm for MLS

In this subsection, we propose an approximation algorithm
based on the random rounding techniques, shown in Algorithm
2. More specifically, we call a camera v; as a broadcaster if its
variable z; = 1, and as a listener if z; = 0. The proposed algo-
rithm works as follows (see Algorithm 2): initially, let all cam-
eras v; € A stay as listeners, after solving the linear problem
LPwLg, which yields an optimal fractional solution (x’, y’, 2’),
let each camera v; € A become a broadcaster with probability
x}. Otherwise, the camera stays as a listener. For each listener
v;, find all broadcasters v; € A that have nonzero y;“ and if
such broadcasters exist, assign the listener v; to the broadcaster
having the smallest cost H (X | S;)d%, , otherwise let v; become
a broadcaster itself.
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Algorithm 2 Approximation Algorithm for MLS

1: Solve LPys. Let (x/,y’, 2’) be the optimum solution.

2: X« 0,5 «< 0.

3: &, < 1 with probability «}, 7, — 1 ifz; =1

4: Foreachv; € A withz; = 0, find O; = {v; |y}, #
O,fj = 1}

5. if O; # () then

6: wvj- = argmin,eo, H(X; |Xj)d§h and g;+; «— 1

7: else

8 I +— landy; «— 1

9: end if

10: Return (X, 3. Z)

Theorem 3: Let OPT denote the optimal solution of the
MLS problem. The solution of the proposed algorithm is at
most OPT + H(X)d2,,. /e in expectation, where dpp.x is the
maximum distance between a camera and its assigned hub and
e is the exponential constant.

Proof: First, by the pseudo code in Algorithm 2, we can
verify that the proposed algorithm produces a feasible solu-
tion, that is, when the algorithm is done, every camera is ei-
ther a broadcaster or a listener. To get the expected energy of
a camera v;, we establish an overhearing list L; for »;, which
consists of 4’s potential broadcasters (v; | y}; # 0). These po-
tential broadcasters are arranged in an increasing order of the
cost ¢;; = H(X;|X;)d?,,7 = 1,2,...,1, where [ is the list
length. By this way, we have

o o7 L
Yie = T Y2 = Tose o Y = Tpe (25)

The above equalities hold because to reduce the cost of a lis-
tener, it has to listen to the broadcaster that leads to the smallest
cost as possible as it can. Now, we get the probability that a
camera v; has no broadcaster in its overhearing list.

[1 (-sy< I e -e Do

pi =
Jri €L j; €Ly
el
— ijvigwj Yir _ 1
€

The first inequality results from the inequality (1 — z) <
e " Vo € [0,1]. The first equality in the second line
holds because of (25). The last equality follows the fact
that 32, e, U5 = 1.

According to the algorithm, if v; is a broadcaster, an event
that occurs with probability %, then v; has a cost ¢;;. Other-
wise, v; overhears the first camera in the list. If this camera is a
broadcaster, an event that occurs with probability (1 — y;;)y1;,
then v; has a cost ¢1;. If the first camera is not a broadcaster
and the second is, an event that occurs with probability (1 —
yi) (1 — y1.))yh;, v; has a cost co;, and so on. If there exists
no broadcasters in the list, an event that occurs with proba-
bility p;, then v; becomes a broadcaster and has a cost less than
Cmax = H(2)d2,,. By the fact > jwien, Yiicii < 2 < OPT,
the expected cost of a camera has an upper bound

yiicii + (1 — yiycn + -+ (1 — ¥yl + Picmax
< Z YiiCji + Cmax/e¢ < OPT + H(x)d?,. /e

Jiv €N

which completes the proof. ]
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Note that the solution of the MLS problem only defines the
precedence constraints in the schedule. For example, if 3;; = 1,
this only implies that v;’s transmitting slot must be ahead of
v;’s, without specifying v;’s or v;’s slot location in the schedule.
Thus, as long as the precedence constraints are satisfied, the
cameras’ transmitting slots can be arranged in any order. One
of the simplest way to convert the pairwise precedences into
the transmission schedule SCH; is as follows. First, identify
the broadcasters, which are the camera nodes with non-zero
value x; (or non-zero value ¥;;) and the listeners, which are the
camera nodes with zero value z;. Next, arrange the transmis-
sion sequence SCHj, of the broadcasters in the ascending order
of their IDs and so does the transmission sequence SCH; of the
listeners. Then, the transmission schedule SCH, is equivalent
to the sequence SCH; followed by SCH;. By constructing the
transmission schedule in this manner, we can guarantee that if
#i; = 1, which means z; = 1 and z; = 0, then the node v;
surely transmits before the node v;. In addition, for each lis-
tener v; with ;; = 1, v; will wake up during the transmission
slot of v; and overhear v;’s transmission.

C. Joint Power Control and Scheduling

In the previous section, we assume that the transmission
range of each camera is fixed, which is equal to the distance
between the camera and the hub. In the section, we will study
the maximum lifetime scheduling problem by allowing each
sensor to adjust its transmission power. Specifically, the trans-
mission range, the transmission slot, and the overhearing slot
are jointly assigned for each member camera in such a way that
the lifetime of the member cameras is maximized. Intuitively,
this joint power control and scheduling strategy could lead to
more energy saving since each camera has more candidates to
choose for performing differential coding.

MIN 2 (26)
st Y ab>1, VeieAd (27)
7 UL'EP]{C
N
doakb <1, VneA (28)
k=1
Y oyhi=1, VneA (29)
jzviEP_}“
yho=al >k, vPFeP vy e A (30)

ih

>

Jiu € PJk Av;Fv;

LD

7iv; EPJ(”‘ Av; =5

Y H (X | X;)d
y]’-”‘jH(Xi)(’rk)2 <z Vv, €A

(€2))

Ti,Yji € {O, 1}, ‘v’q;j,vi eV (32)

Before formulating the maximum lifetime scheduling
problem with power control (MLS_PC), we first introduce
some notations. Consider a hub ~ and a set A of cameras
assigned to it. Each camera can switch among N potential
transmission ranges by properly adjusting its transmission

power. We model each potential transmission range of each

camera as a set of cameras residing within this range. The
potential transmission ranges of all cameras constitute a col-
lection of sets of cameras, denoted by P. Each set P}“ e P
consists of a center camera v; and the cameras residing within
the radius ry < Rpa.x, where rg is a potential transmission
range of the center camera v;. For each P;‘ € P, we assign a
binary variable =¥ such that ¥ = 1 iff P} is selected and its
center camera transmits its original image without overhearing
and performing differential coding. For each camera v;, we
assign a binary variable yJ’-",L-, which is set to 1 iff v; overhears
the transmission of the center camera v; of the set ij. Let
H(X;|X,;) denote the coding rate of encoding the image X
from the camera v; conditional on the image X; from the
center camera v; of the set P*. Consequently, we formulate the
maximum lifetime scheduling problem with power control as
an integer program IPE&S.

The objective function is the maximum energy consumption
of all member sensors. The first constraint (27) ensures that
each camera has at least one camera to overhear. The second
constraint (28) indicates that if one set with the center camera
v; 1s selected, no other sets with the same center camera can
be selected, which guarantees that a center camera can not be
equipped with multiple transmission ranges simultaneously.
The third constraint (29) guarantees that each camera only
overhears once. For the fourth constraint (30), the first equality
says that if the center camera v; of P;" becomes a broadcaster
(i.e., it decides to send its image without performing differential
coding), it will not overhear at all, while the second inequality
indicates that a broadcaster v; (i.e., the center camera of the set
P}“) must transmit its image before its neighboring camera v;
can overhear this transmission. The fifth constraint (31) states
the energy consumed by each camera is less than the maximum
value z. Specifically, the energy consumption of a camera v,
depends on whether it is a broadcaster or not. If v; is a listener,
it only needs to send its compressed image of H(X; | X;) bits
over the distance d;; between v; and the hub k. Otherwise, if
v; is a broadcaster, it has to send its entire image of H (X;) bits
over its transmission range 7. By relaxing the binary variables
x5 € 0,1} tozj, yj: € [0, 1], we obtain the relaxed linear
problem LPK{%S'

To solve the IPE&S problem, we propose an approximation
algorithm (See Algorithm 3), which works as follows. First,
solve the linear problem LP&%S , which yields an optimal frac-
tional solution (x’,y’,2'). Let (X, X, z) denote the integer so-
lution. Then, select the set P* € P (i.e., ¥ = 1) with prob-
ability (z¥)’. The center camera c(PF) of the selected set PF
becomes a broadcaster with the transmission range equal to the
set radius 7. The sensors which are not broadcasters become
listeners. For each listener v;, there will be two scenarios. (1)
If at least one of the selected sets has the center camera with
nonzero (y5;)’, associate the listener v; with the set having the
smallest cost H (X; | X;)d?, . Note that given a listener v;, this
cost only depends on the center camera »; of the set. There-
fore, multiple sets with the same center camera and different
transmission ranges can lead to the same smallest cost. In this
case, we select the set with the shortest transmission range. (2) If
there are no selected sets having the center camera with nonzero
(y%:)", let the listener v; become a broadcaster itself. The last
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step of the algorithm is to check the uniqueness of the broad-
casters’ transmission range. Specifically, when the above proce-
dures terminate, a broadcaster could be associated with multiple
transmission ranges since it could be the center camera of mul-
tiple selected sets. In this case, we let the transmission range of
the broadcaster be the one that covers all the listeners assigned
to this broadcaster.

Algorithm 3 Approximation Algorithm for MLS_PC

1: Solve LPYS, . Let (x',y’, 2') be the optimum solution.
2: 0,5 — 0, Ryp(v;) — 0

3: v; € {Broadcaster, Listener}, Vo, € A

4: P — {PF|z% — 1 with probability (x}‘)’}

5: if ¥ = 1 then

6: w; <« Broadcaster, gfj — 1, Rez(v;) — Ryr(v;)U{r}
7: end if

8: if v; # Broadcaster then

9: Find O; = {PF € P|(y}) # 0}

10: if O; # ) then

11:  w; « Listener and Ry, (v;) «— {din}

12:  FE « argmineeo, H(X;| X;)d3,

13: Pf — arg Ininpf,eE ri and gy — 1

14: else

15:  w; « Broodcaster and Ry, (v;) — {d;n}

16: end if

17: end if

18: if | Rt (v;)| > 1 then

19: Rin(vi) « sup{r € Ru.(vi)] |lvi — vj|| £ r,Vu; €
ANgy =1}

20: end if

21: Return (X,¥, %)

Theorem 4: Let OPT denote the optimal solution of the
MLS_PC problem. The solution of the proposed algorithm is
at most OPT + H(X)R2, /e in expectation, where R,y is
the maximum transmission range of the camera sensor and ¢ is
the exponential constant.

The proof is similar to the one for Theorem 3. Thus, the proof
is omitted here for brevity.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
image gathering schemes. First, we evaluate the effectiveness of
the estimator that predicts the efficiency of differential coding
between correlated cameras. Then, we study the efficiency of
the proposed network deployment approach that consists of the
proposed hub placement and camera assignment algorithms. In
the end, we evaluate the differential coding-based scheduling
algorithm in terms of energy saving.

A. Validation of the Coding Efficiency Prediction

Since the entropy-based estimator provides predicted coding
efficiency for the proposed visual correlation-based schemes,
we need to validate its effectiveness by comparing the estimated
coding efficiency with the actual coding efficiency from prac-
tical coding experiments. Since the performance of the estimator
for predicting joint coding efficiency was tested in [20] and [21],
we only need to validate its capability to predict the differential
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Fig. 2. Estimation of coding efficiency.

coding efficiency. Suppose image X; is coded based on the pre-
diction of image X ;, and we can define an estimated differential
coding efficiency as
p_ o HXi[X;)

where H(X; | X,) is the theoretical coding rate of differential
coding. This metric predicts the percentage of rate savings of
differential coding compared to individual coding. The actual
differential coding efficiency is calculated by replacing the en-
tropy terms in (33) with the corresponding coding rates from
our coding experiment.

In our experiment, we deploy a number of camera nodes in a
field and record each camera’s FoV parameters. We deploy the
cameras in two scenes, an indoor scene and an outdoor one. For
each scene, we let each camera capture an image at the same
time, and perform coding experiments on the observed images.
For any 2 images in the same scene, we take one image as the
reference frame and perform multi-view coding on the other
image. The H.264 Multi-View Coding (MVC) coding standard
with reference software version JMVC 2.5 [1] is used here.
To test the performance of differential coding under different
parameters, we set three different quantization steps (QP =
28,32, and 37). Other key parameters for the encoder are listed
in Table L.

In this experiment, we used the same data sets and coding
parameters as that in our previous paper [21]. The difference is
that we considered joint coding efficiency in [21] and evaluate
differential coding efficiency here, which serves as an important
design metric for the proposed differential coding based sched-
uling algorithm. The resulting estimated coding efficiency and
actual coding efficiency for the two scenes are plotted in Fig. 2.
When the quantization step increases, the actual coding effi-
ciency is slightly higher. This is because a larger quantization
step allows for more distortion, in which case more bits could
be potentially saved from differential coding. Comparing the
results of the two scenes, there is more deviation in coding
efficiency for the outdoor scene when the quantization step
varies. We find that this is because the outdoor scene contains
more texture information, so that the coding performance of
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Fig. 3. Number of orthogonal channels under MDHL sp.

the outdoor scene is more sensitive to the extent of quantiza-
tion. In both cases, the actual differential coding efficiency is
approximately proportional to the estimated differential coding
efficiency. Therefore, the proposed entropy-based estimation
method can be used to predict the performance of inter-camera
differential coding.

B. Effectiveness of Hub Location Scheme

In this section, we first evaluate the performance of the pro-
posed algorithm for the MDHL problem. We study the required
number of orthogonal channels, varying network size and trans-
mission range. Specifically, we consider a WMSN with camera
nodes uniformly deployed in a 100 x 100 meter region. The net-
work size or number of deployed sensors ranges from 30 to
70 and the transmission range increases from 10 to 20 meters.
Fig. 3 recodes the mean maximum hub degree of 20 topology
instances. It is shown that the number of required orthogonal
channels slightly increases as the network size or the transmis-
sion range increases. This is as expected since larger network
size or transmission range implies a single cluster may have
more neighboring clusters so that more orthogonal channels are
required to enable the current transmissions of multiple clusters.

We next compare our approximation algorithm, denoted by
MDHLap, with the hybrid energy-efficient distributed clus-
tering (HEED) protocol [24]. HEED is a well known clustering
protocol that is specially designed for wireless sensor networks.
HEED is a good candidate for reducing the number of orthog-
onal channels, since it is able to make the hubs evenly dis-
tributed across the network, which implies lower opportunity
of having larger hub degree in the network. The HEED protocol
consists of two phases: cluster head (hub) selection and cluster
member assignment. In the first phase, sensor nodes are selected
as CHs probabilistically. More specifically, each node is given
an initial probability p (i.e., 0.05 in [24]) with which it becomes
a CH. In the first iteration, each sensor uniformly draws a value
between 0 and 1 and compares this value with the initial proba-
bility. If this value is less than p, the sensor becomes a CH and

501
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10+ ]
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Fig. 4. Performance enhancement of MDHL sp compared with HEED.

all its neighbors are covered. After this iteration, many sensors
may still be uncovered since the initial probability (i.e., 0.05) is
very small. Therefore, in each of the following iterations, every
sensor doubles p and with this probability the uncovered sensors
become new CHs. When p reaches 1, the first phase completes.
In the second phase, each sensor is assigned to the closest CH
as its cluster member.

In Fig. 4, we measure the number of required orthogonal
channels under HEED and evaluate the percentage of channels
saved by MDHL sp, compared with HEED, varying the net-
work size n and transmission range 7. Since MDHL s p is a ded-
icated algorithm for minimizing the maximum hub degree, it is
expected that MDHL 4 p can lead to better hub placement by re-
ducing the number of required orthogonal channels. As shown
in Fig. 4, MDHL 4p requires 28%-40% percent less orthog-
onal channels compared with HEED. Meanwhile, we observe
that MDHL sp can maintain the comparable performance en-
hancement under different network size and transmission range,
which indicates that MDHL o p is less sensitive to the network
settings and has good network scalability. This is as expected
since by approximately solving the MDHL problem, MDHL s p
can explicitly avoid such hub placement which leads to larger
hub degree and consequently more required orthogonal chan-
nels. It should be noted that although the proposed solution
yields better performance than HEED protocol in terms of re-
quired orthogonal channels, HEED protocol, as a distributed
heuristic algorithm, requires less computational efforts than our
solution, which is a centralized approximation algorithm and in-
volves solving the linear program.

We now evaluate performance of the two camera assignment
schemes: distance-aware assignment and correlation-aware as-
signment. Specifically, we study the overall coding/compres-
sion efficiency under the two schemes, where the overall coding
efficiency is used to predict the percentage of rate savings of
joint coding and defined as follows. Consider a WMSN with
N camera sensors with observations X;,..., Xy. Let 7 =
{h;}¥_, denote the set of hubs, where each hub i is associated
with a set of member cameras, denoted by 5, . Letting H (S}, )
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Fig. 5. Overall coding efficiency of member camera assignment schemes.

denote the joint entropy of cameras in S,, the overall coding
efficiency is defined as

ZhieF H(Sh:)

J
Ny =1-— >
4 2}7‘\:1 H(Xj)

(34

where Zj\:l H(X;) is the total coding rate when the cameras
compress their observations individually. In Fig. 5, we eval-
uate the overall coding efficiency in a network of 70 nodes with
transmission range r = 20 meters. The FoV parameters of the
cameras are set as follows. The sensing directions V' of the cam-
eras are uniformly chosen among three scenarios V' € 0°-360°,
V € 0°-180°, and V' € 0°-90°, the sensing radius R ranges
from 5 to 30 meters, and the offset angle o equals 60°. In Fig. 5,
we observe the elevation in coding efficiency of both schemes
with larger sensing radius and smaller deviation in sensing di-
rections. This observation is due to the fact that larger sensing
radius or smaller deviation in sensing directions leads to higher
correlation among adjacent camera nodes, implying more vi-
sual redundancy in the network. In this case, more bits can be
saved by performing joint coding. It is also seen that the perfor-
mance of distance-aware and correlation-aware assignment is
comparable, varying different camera settings. This is attributed
to the following: under the network hierarchy constructed by the
MDHL sp, the hubs are evenly located across the network so
that most of the camera sensors are covered by a single hub. For
those sensors, the distance-aware assignment associates them
to the same hubs as the correlation-aware one, which makes the
two schemes yield comparable performance.

C. Energy Saving of Differential Coding-Based Scheduling

We now investigate the performance of the proposed dif-
ferential coding-based scheduling scheme. We test the energy
efficiency of a cluster by varying the cluster size, deployment
range, as well as the FoV parameters of camera sensors.

We consider a cluster with camera nodes uniformly deployed
in a 10 x 10 meters region. A hub is placed in the center of the
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region, and each camera node can communicate directly with
the hub. To test the performance under different cluster sizes, we
deploy 4 to 20 camera nodes within the region. The sensing di-
rections of the cameras are uniformly chosen between 0°-360°,
while the FoV parameters of all the cameras are fixed, with
the sensing radius E = 30 meters and the offset angle a« =
60°. For each number of camera nodes, we randomly generate
50 instances and measure the maximum energy consumption
per image yielded by our proposed approximated algorithm. As
benchmarks, the optimal schedules are also found by the Branch
and Bound algorithm, an enumeration based technique. These
two algorithms are compared to a conventional TDMA-based
scheduling scheme where correlation is not exploited.

The average maximum energy consumption per image for the
above schemes are shown in Fig. 6. The energy consumption
in the vertical axis corresponds to the minimization term z in
(19), which is measured as a relative value here. Specifically,
to transmit image X; over a distance d;, if X is differentially
coded based on another image X, the transmission energy is
proportional to H(X; | X;) - d* (corresponding to (23)). In our
simulation, the entropy of an individual image H(X,) is set
as a unit value, and H(X; | X;) is estimated from our corre-
lation model as a relative value of H(X;). We observe that the
maximum energy of the approximated algorithm is comparable
with the optimal solution regardless of cluster sizes. Based on
the data in Fig. 6, the average maximum energy of the approxi-
mated algorithm is merely 2.75% more than that of the optimal
solution. The approximated scheduling algorithm also leads to
13.68% reduction in terms of average maximum energy con-
sumption compared with the conventional TDMA-based sched-
uling. This is due to the fact that the differential coding-based
scheduling allows cameras to remove the redundancy between
each other, thus reducing the bits sent to the hub. Moreover, for
the conventional TDMA-based scheduling scheme, the average
maximum energy consumption increases as the cluster size in-
creases. In the case that no correlation is exploited, the max-
imum energy consumption is brought by the node that is farthest
away from the hub. Therefore, when the cluster size is large,
there is higher probability for a node to be placed far away from
the node, so that the average maximum energy consumption is
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higher. However, as the proposed scheme introduces correla-
tion-based differential coding to reduce the maximum energy
consumption, there is no obvious increase in average maximum
energy consumption in the proposed algorithm when the cluster
size increases.

We now study the impact of deployment range and sensing ra-
dius on the performance of the proposed scheduling algorithm.
We deploy 10 camera sensors in a cluster, where the deployment
range varies from 5 x 5 meters to 40 x 40 meters. We also vary
the sensing radius R to 5, 10, 20, and 30 meters, respectively.
Other parameters are the same as given above. Fig. 7 shows
the impact of different deployment range and sensing radius
on the energy efficiency, which is given by the percentage of
maximum energy reduction of the approximated algorithm over
the conventional TDMA-based scheduling scheme. The energy
efficiency increases as the sensing radius increases, while the
energy efficiency decreases as the deployment range increases.
This can be attributed to the following: larger sensing radius and
smaller deployment range can lead to more overlapped FoVs
of the cameras and more redundancy of the observed images,
so that higher energy efficiency could be achieved by differen-
tial-coding based scheduling.

The distribution of cameras’ sensing directions and the offset
angle of cameras’ FoVs can also affect the performance of the
proposed scheduling algorithm. To evaluate these factors, we
fix the other parameters in the experiment. (The cluster size is
set to 10 camera sensors, the deployment range is set to 10 x 10
meters, and the sensing radius is £ = 30.) We then measure
the average energy efficiency under changing sensing direction
distributions and offset angles. The sensing directions of each
camera sensor is randomly selected within a region of degrees.
The deviation in the sensing directions of multiple cameras can
affect the degree of correlation of the observed images. Ac-
cording to our previous results on correlation [4], sensors with
similar sensing directions are likely to have higher degree of
correlation, resulting in more potential bit saving by differen-
tial coding. This explains the results in Fig. 8, where the lowest
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energy efficiency is obtained when the sensing directions are
selected within 0°-360°, while the best energy efficiency is
achieved when all the cameras have identical sensing directions.
As shown in Fig. 8, the energy efficiency is also related to the
degree of the offset angle in the camera’s FoV. The energy effi-
ciency increases when the offset angle increases. Since a large
offset angle leads to a wide FoV, there is greater probability that
the cameras share large common area and have high correla-
tion. The energy efficiency reaches the maximum value when
the offset angle reaches 80°—90°.

Furthermore, we show the result of MLS scheduling on clus-
ters formed by MDHL. We first run MDHL algorithm for a
network of 40 nodes, where the communication range for each
node is 15 meters. The MDHL algorithm selects 6 nodes as pro-
cessing hubs in the network, (i.e., 6 clusters are formed), and
the number of cluster member nodes are 2, 4, 5, 6, 7, and 10.
We then find the MLS schedule for each cluster. Fig. 9 shows
the maximum energy consumption of these 6 clusters. In av-
erage, the approximation algorithm for MLS can reduce the
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maximum energy consumption by 9% compared to the conven-
tional TDMA-based scheduling.

We now evaluate the performance of the joint power control
and maximum lifetime scheduling algorithm in Section V.C.
We consider the same settings as the previous experiment: there
is a cluster with camera nodes randomly deployed in a 10 x 10
meters region. A hub is placed in the center of the region,
and each camera node can communicate directly with the hub.
For different cluster sizes (4 to 20), we randomly generate 50
instances and measure the maximum energy consumption per
image yielded by the optimal maximum lifetime scheduling
with power control scheme (MLS_PC). The corresponding
approximated solution is also found from Algorithm 4. The
results are compared to our MLS scheme without power con-
trol. Fig. 10 shows the optimal and approximate solutions of
MLS_PC and MLS. For MLS_PC, the approximation algo-
rithm results in 7.28% more energy than the optimal solution.
Because of power control, more candidate power levels could
be utilized to minimize the maximum energy consumption
in a cluster. Therefore, MLS_PC can reduce the maximum
energy consumption compared to the MLS scheme. Based on
the results in Fig. 10, the optimal MLS_PC scheme can reduce
the maximum energy consumption by 14.34% compared to the
optimal MLS, and the approximation algorithm of MLS_PC
can reduce the maximum energy consumption by 10.58%
compared to the approximation algorithm of MLS.

VII. CONCLUSION

In this paper, we address two fundamental problems involved
in the process of image gathering. More specifically, the MDHL
problem aims to find the optimal hub locations such that the re-
quired number of orthogonal channels for frequency reuse is
minimum. To solve this problem, an O(log?(n))-factor approx-
imation algorithm is proposed. After assigning the camera sen-
sors to the proper hubs, a novel differential coding-based sched-
uling scheme is proposed with an objective to maximize the
sensor’s lifetime. It is proven that the proposed scheme yields
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a near-optimal performance, which, as shown, can be further
elevated by jointly considering power control and differential-
coding based scheduling. Experiments and simulations show
that the proposed differential coding-based scheduling frame-
work is effective and efficient in improving the spectrum uti-
lization and energy efficiency in a WMSN.
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