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Abstract—The heavy tailed nature exhibited in both primary
and secondary users’ traffic fundamentally challenges the per-
formance limit of dynamic spectrum access (DSA) networks
under the conventional light tailed assumptions. This paper
provides an asymptotic analysis of the steady-state queue length
distribution of secondary users (SUs) under the heavy tailed
network environment. Specifically, two network scenarios are
investigated. In the first scenario where each SU has its exclusive
access to a primary user (PU) channel, it is shown that the
heavy tailed nature of either the PU traffic or the SU traffic can
make SUs experience heavy tailed queue length with unbounded
moments. In the second scenario where multiple SUs share a
single PU channel, the queuing performance under throughput
optimal scheduling policies is studied. It is proven that if the PU
traffic has a heavier tail than any SU traffic, the queue length of
each SU is at least one order heavier than the PU traffic under
any scheduling policy. Otherwise, if the traffic from at least one
of the SUs has a heavier tail than the PU traffic, it is proven that
the celebrated throughput-optimal maximum weight scheduling
leads to the worst possible asymptotic queuing performance for
SUs by letting each SU queue have the heaviest possible tail. On
the contrary, it is shown that there always exists a feasible set of
β parameters such that the maximum weight-β scheduling yields
the best asymptotic performance for the SU queues by letting
each queue have the lightest possible tail.

Index Terms—Heavy tail, queuing analysis, dynamic spectrum
access

I. INTRODUCTION

DYNAMIC spectrum access (DSA) is an emerging tech-
nique that allows the secondary users (SUs) to share

the spectrum in an opportunistic manner [1]. Using such
scheme, the SUs can access the unoccupied spectrum during
idle periods of the primary users (PUs), and stop transmissions
when the PU channels become busy. The achievable Quality of
Service (QoS) performance of cognitive users is significantly
affected by the dynamically changing PU traffic and the access
policies used by the SUs.
Heavy tailed distributions have been widely observed in the

current data-oriented communication networks. Specifically,
the file size on the Internet servers, the web access pattern,
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and the scene length distribution of VBR (variable bit rate)
and MPEG video streams have shown heavy tailed statistical
characteristics [10]. In the classical communication network
paradigms, the heavy tail distributions have been shown to
have a non-negligible impact on the network performance
in terms of network throughput, queue stability, and system
scalability.
So far, the majority of research in dynamic spectrum access

networks focuses on the development of the resource alloca-
tion and spectrum management schemes under the assumption
of the light tailed behavior of primary and secondary users.
Contrary to this conventional assumption, significant empirical
evidence establishes that both PU and SU traffic can actually
exhibit the heavy tailed nature. As for the primary users,
it is shown that the call holding time of mobile users in
3G cellular networks and the session duration of licensed
users in WLANs show heavy tailed statistics [15][8]. On
the other hand, the emerging applications such as mobile
internet, multimedia surveillance, video conferencing, and on-
line gaming require secondary users to support internet and
multimedia traffic, which is inherently bursty and exhibits
heavy tailed nature. In spite of its importance, the performance
limits of DSA network in the presence of the heavy tailed
traffic is still an under-explored area, which, however, can
fundamentally challenge the applicability and effectiveness
of DSA scheme. For example, recent research shows that
such heavy tailed behavior not only has a significant impact
on the spectrum sensing performance [15], but also induces
unbounded transmission delay moments for the SUs, which
is certainly unfavorable for many delay-sensitive applications
[13].
In this paper, we analyze the asymptotic tail behavior of the

queue length for the SUs in the DSA networks under the heavy
tailed network environment. Towards this, we consider a cog-
nitive radio network in which multiple SUs opportunistically
exploit the spectrum holes of a PU channel. The PU channel
is modeled by an alternating renewal process, which alternates
between busy periods {Bi}i≥1 and idle periods {Ii}i≥1. Each
SU is associated with an input queue and a message arrives
to the queue at each time slot with a certain probability. Upon
the arrival of a message with random size L > 0, the SU
first splits it into multiple packets with constant size. At each
time slot, one of the SUs can be scheduled to transmit one
packet provided that the PU channel is currently detected
idle. Apparently, under such generic settings, the queuing
performance for the SUs has a close relationship with the
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message size, the PU channel availability, and the scheduling
policies. For the detailed description of this model, see Section
III.
We first study the queue length asymptotics of the SU when

it has exclusive access to the PU channel without competing
with other SUs. Specifically, it is shown that if either the busy
time or message size is heavy tailed, then the steady state
queue length is one order heavier than the one with the heavier
tail. This result implies that the expected queue length of the
SUs can be infinite even through both the SU’s transmitting
messages and the PU busy periods are of finite mean size.
We next investigate the asymptotic performance of the queue
length under the general work conserving scheduling policies,
where all the detected idle time of the PU channel are occupied
for the SUs’ transmissions unless the SUs have empty queues.
It is proven that if the PU busy time has a heavier tail than the
input traffic of any SU, then the asymptotic performance for
all the SU queues is insensitive to the choice of a scheduling
policy. In this case, under any work conserving policy, the tail
distribution of the queue length of any SU is always one order
heavier than that of the PU busy time. In contrary, if at least
one of the SU queues has the input traffic with a heavier tail
than the PU busy time, only the queue fed by the traffic with
the heaviest tail exhibits the asymptotic behavior independent
of the choice of a scheduling policy.
As the subclasses of the work-conserving scheduling poli-

cies, the maximum-weight scheduling and many of its variants
[11] are known to be throughput optimal by stabilizing the
queuing system for every supportable set of traffic arrival
rates. The maximum-weight scheduling makes scheduling
decision based on queue lengths, while the maximum-weight-
β scheduling associates each queue with a different parameter
β and makes the scheduling decision based on the queue
lengths raised to the β-th power. Our asymptotic queuing
analysis shows that the maximum-weight scheduling leads
to the worst possible asymptotic performance for the SU
queues by letting each queue have the heaviest possible tail.
In contrary, it is shown that there always exists a feasible set
of β parameters such that the maximum weight-β scheduling
yields the best asymptotic performance for the SU queues by
letting each queue have the lightest possible tail. In this case,
the maximum-weight-β schedule promises the optimality in
terms of maximizing the orders of the finite moments of the
queue length.
The rest of this paper is organized as follows. Section II

summarizes the related work. Section III introduces system
model and preliminaries. Section IV presents the asymptotic
queue length analysis for the exclusive access policies. The
asymptotic queuing performance of the maximum-weight-β
scheduling is presented in Section V. Finally, Section VI
concludes this paper.

II. RELATED WORK

Although the queue length distribution is a key factor affect-
ing the QoS performance in wireless networks, the asymptotic
queuing analysis for cognitive radio networks is still scarce to
the best of our knowledge. In [7] and [14], the queuing delay
of SUs in a multi-channel cognitive network was investigated

with different objectives. Specifically, using large deviation
approximation, [7] aimed to analyze the stationary queue
distribution of SUs under the Markov chain based PU traffic
model. On the contrary, [14] studied the moments of the SUs’
queue length under the PU traffic modeled as an alternating
ON/OFF process, where the ON periods follow a general
distribution and the OFF periods are exponentially distributed.
Different form [7] and [14], which consider the queuing
performance under the light tailed PU and SU traffic, we aim
to investigate the asymptotic behavior of the SU’s queue length
in the presence of the heavy tailed PU and SU traffic and study
the effectiveness of the queue-length based scheduling policies
on the asymptotic queuing performance. To the best of our
knowledge, little work on the analysis of such queue length
performance has been done for cognitive radio networks.
It is worth to note that [6] and [9] are among the first

research efforts to study the performance of the maximum
weight-β in the queuing network and show that the maximum
weight-β is effective to mitigate the impact of the queue with
heavy-tailed traffic on the other queue with light-tailed traffic.
Different from [6] which consider a queuing system of two
users competing a single channel, we study the maximum
weight-β scheduling for an arbitrary number of SUs which
dynamically access a PU channel with heavy tailed behavior.
In this case, SU can only access PU channel when it is
detected idle and if a miss detection happens, SU needs to
retransmit the collided/loss packet. Apparently, the existing
literature on heavy tails do not consider such dynamic channel
access schemes. What is more important, the existing work
only consider the simple case with two queues and one
server/channel. However, cognitive radio networks generally
need to support much more SUs. This greatly complicates the
queueing analysis because of the correlation and dependence
of the queue length of multiple SUs. Thus, the existing results
can not be applied.

III. SYSTEM MODEL AND PRELIMINARIES

A. System Model

Consider N SUs sharing a PU channel, as shown in
Fig.1. Time is slotted, with a unit slot length. Without loss
of generality, we assume that the PU channel is of unit
capacity and modeled by an alternating renewal process,
which alternates between busy periods with length {Bi}i≥1

and idle periods with length {Ii}i≥1. {Bi}i≥1 and {Ii}i≥1

are mutually independent random sequences of i.i.d. random
variables with distribution FB and FI , respectively. At each
time slot, if the PU channel is detected idle, one of the SUs
can be scheduled to transmit one packet per time slot. If
the transmitted packet is collided with the PU transmission
because of miss detection, the packet is retransmitted in the
future. Assume that before the scheduling takes place, the PU
channel detection result is available either through cooperative
sensing or through the fusion center [1]. Let pf denote the
false alarm probability. By renewal theory, we have the service
rate (throughput) of the PU channel as follows

μ :=
(1 − pf)E[I1]

E[B1] + E[I1]
. (1)
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Fig. 1. System model.

Let qi denote the queue associated with SUi. In each time
slot, a message arrives to the queue qi with a probability λi.
Let Li > 0 denote the number of packets in the message that
arrives to qi. Li is an independent and identically distributed
(i.i.d.) random variable (r.v.) from slot-to-slot, and is indepen-
dent of the channel states {Bi}i≥1 and {Ii}i≥1. Let Ai(t)
denote the number of packets that arrive during time slot t to
qi. Accordingly, the input rate Λi of the queue qi is given by

Λi := E[Ai(t)] = λiE[Li]. (2)

We assume
∑N

i=1 Λi < μ so that the system is stable under
any work-conserving scheduling policy, where every detected
idle time slot of the PU channel is used for transmitting SUs’
packets unless the SUs have empty queues. Let Qi(t) denote
the queue length of qi in time slot t. Let Qi denote the steady-
state queue length of qi. The main objective of this paper is to
study the asymptotic tail distribution of the steady-state length
Qi under throughput optimal scheduling polices.

B. Preliminaries

In this paper we use the following notations. For any
two real functions a(t) and b(t), we let a(t) ∼ b(t)
denote limt→∞ a(t)/b(t) = 1. We say that a(t) �
b(t) if lim supt→∞ a(t)/b(t) ≤ 1, and a(t) � b(t) if
lim inft→∞ a(t)/b(t) ≥ 1. Furthermore, we say that a(t) =
o(b(t)) if limt→∞ a(t)/b(t) = 0. In addition, for any two non-
negative r.v.s X and Y , we say that X ≤a.s. Y if X ≤ Y
almost surely, and X ≤s.t. Y if X is stochastically dominated
by Y , i.e., P (X > t) ≤ P (Y > t) for all t ≥ 0. We

say X
d
=Y if X and Y are equal in distribution. Also, let

FX(x) = P (X ≤ x) denote the cumulative distribution func-
tion (cdf) of a non-negative r.v. X . Let FX(x) = P (X > x)
denote its tail distribution function.

Definition 1 A r.v. X is heavy tailed (HT) if for all θ > 0

lim
x→∞ eθxFX(x) = ∞, (3)

or, equivalently, if for all z > 0

E[ezX ] = ∞. (4)

Definition 2 A r.v. X is light tailed (LT) if it is not heavy
tailed or, equivalently, if there exists z > 0 such that

E[ezX ] < ∞. (5)

Remark 1 Generally speaking, a r.v. is HT if its tail distri-
bution decreases slower than exponentially. On the contrary,
a r.v. is LT if its tail distribution decreases exponentially or
faster. Some typical HT distributions include Pareto and log-
normal, while Some typical LT distributions cover exponential
and Gamma.

Based on the existence of the moments, we define the tail
index of a non-negative random variable.

Definition 3 The tail index κ(X) of a nonnegative random
variable X is defined by

κ(X) = sup{k ≥ 0 : E[Xk] < ∞}. (6)

Remark 2 The tail index specifies the threshold order above
which a random variable has infinite moments. Some HT
distributions, such as Pareto, have finite tail index, which leads
to infinite moments of certain orders, Some HT distribution,
such as log-normal, have infinite tail index and therefore
possesses finite moments of all orders. In this work, we focus
on heavy tail distributed random variables with finite tail
index because they can effectively characterize lots of network
attributes such as the frame length of variable bit rate (VBR)
traffic, the session duration of licensed users in WLANs, and
files sizes on internet severs [8] [10].

The following Lemma presents the sufficient condition regard-
ing the existence of finite tail index for a r.v. X [4].

Lemma 1 A nonnegative r.v. X has κ(X) if and only if the
tail distribution of X satisfies

lim
t→∞

log[P (X > t)]

log t
= −κ(X). (7)

An important subclass of HT distributions with finite tail
index is the class of regularly varying distributions [2]. Its
definition involves the slowly varying function which is de-
fined as follows.

Definition 4 A measurable positive function L(x) defined in
some interval [a,∞) is called slowly varying if for all y > 0

lim
x→∞

L(yx)
L(x) = 1. (8)

For example, a constant and a logarithmic function are both
slowly varying functions.
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Definition 5 A r.v. X is called regularly varying with tail
index α > 0, denoted by X ∈ RV(α), if

FX(x) ∼ x−αL(x), (9)

where L(x) is a slowly varying function.

Remark 3 Regularly varying distributions are a generaliza-
tion of power law distributions. The tail index α indicates
how heavy the tail distribution is, where smaller values of α
imply heavier tail. Moreover, for a r.v. X ∈ RV(α), the exact
values of α determine whether the moments ofX are bounded
or not, that is if X ∈ RV(α), then κ(X) = α.

IV. ASYMPTOTIC QUEUE LENGTH ANALYSIS FOR
EXCLUSIVE ACCESS POLICIES

In this section, we first study the queue length asymptotics
of the SU when there exists only one SU in the secondary
network and thus it has exclusive access to the PU channel.
Based on the derived queuing performance under this single
SU scenario, we evaluate the queuing performance of multiple
SUs accessing one PU channel (Theorem 2 - 4).
Let qe denote the queue associated with the SU, Qe(t) the

queue length at time slot t, and Qe the steady-state queue
length.

A. Main Theorem

Theorem 1 Assume the SU message size L ∈ RV(αl) and
the PU busy time B1 ∈ RV(αb) and let αl = ∞ or αb = ∞
indicate that L or B1 is light tailed. Then, the steady-state
queue length Qe of the SU satisfies

lim
t→∞

log[P (Qe > t)]

log t
= −min(αl, αb) + 1. (10)

Remark 4 The preceding results establish the relationship
between the tail asymptotics of the message size L, the PU
busy time Bi, and the queue length Qe. Specifically, if either
the busy time or message size is heavy tailed, then the steady-
state queue length is one order heavier than the one with the
heavier tail. This result implies that the expected queue length
of the SUs can be infinite even if both the SU’s transmitting
messages and PU busy periods are of finite mean size. For
example, if the message size is LT and the PU busy time
is heavy tailed with tail index 2 > αb > 1, then both the
message size and the PU busy time are finite. In this case,
by Theorem 1, the steady-state queue length of the SU has a
tail index 1 > κ(Qe) > 0, which implies that both the mean
and variance of Qe are infinite. Moreover, by Theorem 1, it is
evident that the detection results of the PU channel have no
impact on the asymptotic behavior of the queue length.

B. Proof of the Main Theorem

1) Fictitious Queues: To prove Theorem 1, we construct
two fictitious queues, namely the slow queue q̃s and the fast
queue q̃f , which have the same packet arrivals, experience the
same PU channel activities, and obtain the same PU channel
detection results as queue qe, but receive different services.
Without loss of generality, for each queue, we assume that
the first message arrives at the beginning of an idle period of

the PU channel. As for the slow queue q̃s, the transmission of
a new message always starts at the beginning of an idle period.
This means that even if the transmission of the current message
is over in the middle of an idle period, the transmission of the
next message is not initiated until the next idle period begins.
Thus, during the same time interval, less messages are served
in the slow queue q̃s than in the original queue qe. This implies
that

Qs(t) ≥ Qe(t). (11)

As for the fast queue q̃f , if the transmission of a message is
finished in the middle of an idle period, we do not count this
idle period in its service time so that each message waiting in
the queue starts to be served from the beginning of the idle
period during which the transmission of the previous message
is finished. If a message arrives when the queue is empty, we
consider two scenarios. (1) If it arrives at the beginning of an
idle period, its service time will not include the idle period
during which its transmission is finished. Otherwise, (2) if it
arrives in the middle of an idle period, we treat this message
as if it arrives at the beginning of the idle period. It is easy to
verify that during the same time interval, more messages are
served in the fast queue q̃f than in the original queue qe. This
implies that

Qf(t) ≤ Qe(t). (12)

By (11) and (12), we obtain

P (Qf (t) > t) ≤ P (Qe(t) > t) ≤ P (Qs(t) > t). (13)

We will next prove Theorem 1 by showing that the lower and
upper bounds in (13) asymptotically coincide. Towards this,
we derive the tail asymptotics of the steady-state queue length
for the slow queue q̃s and the fast queue q̃f , respectively.
2) Queue Length Asymptotics of Queue q̃f :

Lemma 2 Assume the SU message size L ∈ RV(αl) and the
PU busy time B1 ∈ RV(αb) and let αl = ∞ or αb = ∞
indicate that L or B1 is light tailed. Then the steady-state
queue length Qf of the SU satisfies

lim
t→∞

log[P (Qf > t)]

log t
= −min(αl, αb) + 1. (14)

To prove Lemma 2, we first define the transmission time of
a message with size L in the fast queue q̃f . The construction
of q̃f indicates that the transmission attempt of a packet is
always started at the beginning of an idle period. In addition,
the last idle period during which the transmission is finished
is excluded from the service time. Accordingly, we have the
service time Tf (L) of transmitting a message of size L in the
queue q̃f as follows. During an idle period Ii, let e(j) denote
the event that the PU channel is detected idle at time slot j
and 1e(j) denote the indicator function of the event e(j) where
1e(j) = 1 iff the event e(j) occurs.

Definition 6 During an idle period with length Ii, the trans-
mission time Xi of the SU is defined as

Xi :=

Ii∑
j=1

1e(j), (15)
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the total number of idle periods the SU occupies for transmit-
ting a message of size L,excluding the last idle period during
which the transmission is finished, is defined as

Mf := inf

{
m :

m∑
i=1

Xi ≥ L

}
− 1, (16)

and for the fast queue q̃f , the total service (transmission) time
Tf (L) of a message of size L is defined as

Tf(L) :=

Mf∑
i=1

{Ii +Bi} . (17)

The tail asymptotics of the transmission time Tf is given
by the following Lemma.

Lemma 3 Assume that Bi ∈ RV(αb). If L ∈ LT or L ∈
RV(αl) with αb < αl, we have

P (Tf(L) > t) ∼ E[Mf ]P (B1 > t). (18)

Assume that L ∈ RV(αl) and E[L] < ∞.

1) If Bi ∈ LT, we have

P (Tf(L) > t) ∼ P

(
L >

E[X1]

E[I1] + E[B1]
t

)
. (19)

2) If Bi ∈ RV(αb) with αl < αb, we have

P (Tf (L) > t) ∼
(
E[B1]

E[X1]

)αl

P (L > t)

+

(
E[I1]

E[X1]

)αl

P (L > t). (20)

3) If Bi ∈ RV(αb) with αl = αb, we have

P (Tf (L) > t) ∼
(

E[I1]

E[X1]

)αl

P (L > t)

+(E[B1])
αlP (L > t)

+E[Mf ]P (B1 > t). (21)

Remark 5 From the above results, we see that the tail distri-
bution of the message transmission time is as heavy as either
the SU’s message size or the PU busy time, whichever has the
heavier tail.

Proof of Lemma 3: The proof is lengthy and relies on
the large deviation theory. See [12] for details.
We are now ready to prove Lemma 2 regarding the tail

asymptotics of queue length of the fast queue q̃f .
Proof of Lemma 2: Let Qm denote the steady-state

number of messages waiting in the queue. Thus, Qm is
actually the steady-state queue length of a GI/G/1 queue,
with the message arrival rate λ and service time Ts(L). Since
each message i that arrives to the queue q̃f consists of Li

packets, the steady-state queue length Qf satisfies

Qm−1∑
i=1

Li ≤ Qf ≤
Qm∑
i=1

Li. (22)

We next prove that the lower and upper bounds match asymp-
totically by considering the following three cases.
(1) If Bi ∈ RV(αb) and L ∈ LT or L ∈ RV(αl)

with αb < αl, it follows by Lemma 3 that the service time

Tf (L) ∈ RV(αb), which implies that Tf (L) is subexponen-
tially distributed. Let ρ = λE[Tf (L)] is the traffic intensity.
By applying Theorem 1 in [3], the steady-state waiting time
Wm of a message in the queue is given by

P (Wm > t) ∼ ρ

1− ρ

∫ ∞

t

P (Tf(L) > x)

E[Tf (L)]
dx, (23)

which, by distributional Little’s law and regular variation,
yields

P (Qm > t) ∼ P (λWm > t) ∼ λαb+1E[M ]

(1 − ρ)(αb − 1)
tP (B1 > t).

(24)
This implies that Qm ∈ RV(αb − 1). Combining (22) and
(24), it follows from the sum property of random number of
regularly varying random variables [5] that

P (Qf > t) ∼ λαb+1E[M ]E[L]αb

(1− ρ)(αb − 1)
tP (B1 > t). (25)

(2) If L ∈ RV(αl) with E[L] < ∞ and Bi ∈ LT, by
Lemma 3, we have Tf(L) ∈ RV(αl) and thus Tf(L) is
subexponentially distributed. By the similar arguments for the
case (1), we have

P (Qf > t) ∼ λαl+1 ((E[I1] + E[B1])E[L])
αl

(1− ρ)(αb − 1)E[X1]
αl

tP (L > t).

(26)
(3) If L ∈ RV(αl) with E[L] < ∞ and Bi ∈ RV(αl)

with αl ≤ αb, this implies by Lemma 3 and the properties of
slowly varying function that Tf(L) ∈ RVαl . By the similar
arguments for the case (1) and (2), we have Tf(L) ∈ RV(αl−
1).
By the similar techniques, it can be shown that the steady-

state queue length of slow queue Qs has the same asymptotic
performance as the fast queue Qf . This indicates by (13) that
the lower and upper bounds of the queue length Qe coincide,
which completes the proof of Theorem 1.

V. ASYMPTOTIC QUEUE LENGTH ANALYSIS FOR
THROUGHPUT OPTIMAL SCHEDULING POLICIES

In this section, we study the steady-state queue length
asymptotics under throughput optimal scheduling policies.
We first investigate the asymptotic queue length performance
under the general work conserving scheduling policies. Our
results show that the tailness of the PU traffic has a profound
impact on the effectiveness of the scheduling policy. Then, we
study the asymptotic queuing performance under maximum-
weight-β scheduling and prove its optimality in terms of
maximizing the orders of the finite moments of the queue
length.

Theorem 2 If 1 < αb < min1≤i≤N αli , then under any work
conserving scheduling policy, the steady-state queue length
Qi of any SU i ≤ N is one order heavier than the PU busy
period, i.e.,

κ(Qi) = αb − 1, ∀1 ≤ i ≤ N (27)

Theorem 3 Assume αb ≥ min1≤i≤N αli > 1 . Let α− :=
min1≤i≤N αli . Under any work-conserving policy, the steady-
state queue length Qi of the queue qi with the smallest tail
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index αli = α− follows

κ(Qi) = αli − 1 = α− − 1, (28)

while the steady-state queue length Qi of any other queue qi
with αli > α− follows

min(αli , αb)− 1 ≥ κ(Qi) ≥ α− − 1. (29)

Remark 6 We can see from Theorem 2 that if the PU busy
time has a heavier tail than the input traffic of any SU, then the
tail asymptotic of the queue length is insensitive to the choice
of a scheduling policy. In this case, under any work conserving
policy, the tail distribution of the SU queue length is always
one order heavier than that of the PU busy time. In contrary,
by Theorem 3, if at least one of the SU queues has the input
traffic with a heavier tail than the PU busy time, only the queue
fed by the traffic with the heaviest tail exhibits the asymptotic
behavior independent of the choice of a scheduling policy,
while the other queues have bounded asymptotic performance.

Proof of Theorem 2: Since the best scheduling scheme
for a particular queue qi is to let it receive service whenever
the queue is not empty. In this case, qi behaves as if it
has exclusive access to the PU channel and no other queues
compete for the service. Under this scheduling policy, qi
behaves like qe. Thus, under any work conserving policy, we
have Qi(t) > Qe(t) and thus P (Qi > t) > P (Qe > t),
which, by Theorem 1 and the assumption αb < min1≤i≤N αli ,
implies that the upper bound of the tail index of Qi satisfies

κ(Qi) ≤ min(αb, αli)− 1 ≤ αb − 1. (30)

Moreover, since P (Qi > t) ≤ P (
∑N

i=1 Qi > t), invoking
Lemma 4, we have the lower bound of the tail index of Qi,
i.e.,

κ(Qi) ≥ min( min
1≤i≤N

αli , αb)− 1 ≥ αb − 1, (31)

which agrees with the upper bound and completes the proof.

Proof of Theorem 3: We first prove the asymptotic
results in (28) regarding the queue qi with the input pro-
cess of the heaviest tail, i.e., the smallest tail index αli =
argmin1≤i≤N αli . It is evident that the queue length Qi

is stochastically dominated by the composite queue length∑N
i=1 Qi, which, by Lemma 4 and the assumption αli ≤ αb,

proves the lower bound of (28), i.e., κ(Qi) ≥ αli − 1.
As to the upper bound, we consider the best scheduling

policy for qi, which allows qi to receive the service whenever
qi is not empty. This policy yields the best asymptotic results
for the queue qi since qi does not have to compete with other
queues for the service and thus behaves like qe. Invoking
Theorem 1, it follows from the assumption αli ≤ αb that
the lower bound in (28) holds, i.e., κ(Qi) ≤ αli − 1, which
matches the upper lower and proves (28).
Using the similar arguments, we can prove (29) by showing

that the tail asymptotics of the queue length Qi are lower
bounded by those of the composite queue length and upper
bounded by those of the queue qe. The details are omitted in
the interest of brevity.

A. Maximum-Weight-β Scheduling

As shown in Theorem 2, if the PU busy time has a heavier
tail than the input traffic of any SU, the asymptotic behavior
of the SU queue is insensitive to the choice of the scheduling
policy. More specifically, the queue length of each SU is one
order heavier than the PU traffic under any scheduling policy.
That is, it is impossible for any scheduling policy to either
improve or deteriorate the tail asymptotic performance for the
SUs.
Therefore, to investigate the effectiveness of the scheduling

policy, in this section we assume that at least one of the SUs
has the input traffic with a heavier tail than the PU busy time,
i.e., αb ≥ min1≤i≤N αli .
In this section, we study the tail asymptotics of the steady-

state queue length distribution under maximum-weight-β
scheduling, which works as follows. ForN queues {qi}1≤i≤N ,
each queue qi is assigned with a positive parameter βi. During
each time slot t, the queue qi, which satisfies the condition

Qi(t)
βi = max

1≤j≤N
Qj(t)

βj (32)

wins the competition and one packet from this queue is
served provided that the PU channel is detected idle. Ties
are broken arbitrarily. If all parameters {βi}1≤i≤N are equiva-
lent, maximum-weight-β scheduling becomes the conventional
maximum-weight scheduling, where at each time slot, the
largest queue is served.
The asymptotic analysis of the queue length distribution

in this section shows that the well-known maximum-weight
scheduling leads to the worst possible asymptotic behavior
for the SU queues such that each queue can have a queue
length with the heaviest possible tail, which indicates that as
long as one SU queue has unbounded delay or variance, so
do all SU queues. On the contrary, the maximum-weight-β
scheduling is proven to yield the best asymptotic performance
for the SU queues by letting each queue have the smallest
possible tail. Consequently, the maximum-weight-β schedul-
ing is asymptotically optimal because it can ensure the queue
length has the same asymptotic performance as the exclusive
access case, which is the best performance one can expect.

Theorem 4 Let αi := min(αli , αb) > 1, i.e., E[Li] < ∞ and
E[B] < ∞, and α− := min1≤i≤N αi. Define

αm
i = min

1≤j≤N

βi

βj
(αj − 1). (33)

Under Maximum-Weight-β scheduling, the tail index of the
steady-state queue length Qi for SU i follows

κ(Qi) = max(αm
i , α− − 1). (34)

Remark 7 (Ineffectiveness of Maximum Weight Schedul-
ing) From the above results, we see that if all parameters
{β}1≤i≤N are equivalent, all queues have the same tail index
as the heaviest queue which has the smallest tail index equal
to min1≤j≤N (αj −1). This implies that the maximum-weight
scheduling leads to the worst possible tail asymptotics for the
SU queues so that the queue length of each queue has the
lowest orders of the finite moments. In this case, if among all
queues, the queue qi is fed by the traffic with the smallest tail
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index 1 < αli < 2, then under maximum-weight scheduling,
all the queues have the infinite mean steady state queue length.

Remark 8 (Asymptotic Optimality of Maximum Weight-
β Scheduling) Theorem 4 indicates that by adjusting the pa-
rameters {βi}1≤i≤N , the maximum-weight-β scheduling can
lead to the best possible asymptotic queue length performance
which is as good as that under the case where the queue has
the exclusive access to the PU channel. To see this, recalling
Theorem 3, the best tail performance (the largest tail index) of
the queue lengthQi is that κ(Qi) = αi−1 = min(αli , αb)−1.
Our objective is as follows.

Find {βi}1≤i≤N

Such that αi − 1 = min
1≤j≤N

βi

βj
(αj − 1) ∀1 ≤ i ≤ N

One feasible solution to the above optimization problem is
given by

βi =
αi − 1

α− − 1
, ∀1 ≤ i ≤ N. (35)

The feasibility of this solution can be easily verified by
inserting (35) into (33).
The proof of Theorem 4 relies on Lemma 4, 5 and 6, which

we state and prove first.

Lemma 4 Define α− := min1≤i≤N αli . We have

κ

(
N∑
i=1

Qi

)
= min(αb, α

−)− 1. (36)

Proof of Lemma 4: Consider a fictitious queue qv which
has the arrival process Av(t) =

∑N
i=1 Ai(t) and experiences

the same PU channel as the original queuing system. Since
Ai(t) ∈ RV(αli), it implies by regular variation that the
arrival processAv(t) ∈ RV(α−), where α− = min1≤i≤N αli .
LetQv denote the steady state queue length of qv, It follows by
Theorem 1 that κ(Qv) = α−− 1. Let Qv(t) denote the queue
length of qv at time t. Under any work conserving policy in the
original queuing system, we have Qv(t) =

∑N
i=1 Qi(t). This

implies that Qv =
∑N

i=1 Qi and thus κ(
∑N

i=1 Qi) = α− − 1.
This completes the proof.

Lemma 5 Under Maximum-Weight-β scheduling, the tail in-
dex κ(Qi) of the steady-state queue length Qi is lower
bounded by

κ(Qi) ≥ αm
i . (37)

Proof of Lemma 5: For any 1 > δ > 0, we have

P (Qi > t) = P

⎛⎝Qi > t ∧
⎧⎨⎩⋂

j �=i

Q
βj
βi

j < δt

⎫⎬⎭
⎞⎠

+P

⎛⎝Qi > t ∧
⎧⎨⎩⋃

j �=i

Q
βj
βi

j ≥ δt

⎫⎬⎭
⎞⎠

:= I + II. (38)

As to the term I , it denotes the probability that the queue qi
has a queue length Qi larger than t, when all the other queues
have a queue length less than (δt)βi/βj , i.e., Qj < (δt)βi/βj ,
∀j 	= i. Without loss of generality, we assume that this

event occurs at time 0, which means Qj(0)
βi/βj < δt. Let

−τ denote the last time when some of the queues j 	= i
receive service. We have two implications. (1) Qi(−τ)βi <
Qj(−τ)βj , ∀j 	= i since qi did not receive service at time −τ .
(2) Qj(−τ)βj/βi < δt, ∀j 	= i since qj did not receive service
during the time interval [−τ + 1, 0]. The two implications
imply that Qi(−τ) < δt. Thus, to ensure Qi(0) > t,
the number of packets accumulated in qi during the time
interval [−τ + 1, 0] is at least larger than (1 − δ)t, i.e.,∑0

n=−τ+1(Ai(n)− Ci(n)) > (1 − δ)t, where Ci(n) denotes
the number of packets that depart from qi at time n. Thus, we
obtain the upper bound of I

I ≤ P

(
0∑

n=−τ+1

(Ai(n)− Ci(n)) > (1− δ)t, ∃τ ≥ 0

)

= P

(
sup
τ≥0

Sτ > (1− δ)t

)
= P (Qe > (1− δ)t) ,

where Sτ :=
∑0

n=−τ+1(Ai(n) − Ci(n)). The last equality
holds since supτ≥0 Sτ is actually the event that a single server
queue (a queue having exclusive access to the PU channel)
has a queue length beyond (1 − δ)t at time 0. It follows by
Theorem 1 that

κ(Qe) = min(αli , αb)− 1 = αi − 1. (39)

As to the term II , it follows by union bound that

II = P

⎛⎝⋃
j �=i

{
Qi > t ∧Q

βj
βi

j ≥ δt

}⎞⎠
≤

∑
j �=i

P

(
Qi > t ∧Q

βj
βi

j ≥ δt

)
≤

∑
j �=i

P

(
Qi +Qj ≥ (δt)

βi
βj

)
. (40)

Invoking Lemma 4, we have κ(Qi +Qj) = min(αi, αj)− 1.
It follows from Lemma 1 that

κ((Qi+Qj)
βj/βi) = min

(
βi

βj
(αi − 1),

βi

βj
(αj − 1)

)
, (41)

which, by Lemma 1, implies that∑
j �=i

P

(
(Qi +Qj)

βj
βi ≥ (δt)

)
∼ P

(
(Qi +Qj∗)

βj∗
βi ≥ (δt)

)
(42)

and

κ((Qi +Qj∗)
βj∗
βi ) = min

{1≤j≤N}
βi

βj
(αj − 1) = αm

i . (43)

Combining with (38), (39), (40), and (42) yields

P (Qi > t) � P (Qe > (1 − δ)t)+P

(
(Qi +Qj∗)

βj∗
βi ≥ (δt)

)
(44)

by which, we obtain the upper bound of the steady-state queue
length Qi under two cases.
(1) If αi−1 < αm

i , it follows by (39) and (43) that κ(Qe) <

κ((Qi +Qj∗)
βj∗
βi ), which, by Lemma 1, implies that∑

j �=i

P

(
(Qi +Qj)

βj
βi ≥ (δt)

)
= o(P (Qe > (1− δ)t))

(45)
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by which we obtain from (44) that

lim sup
t→∞

[log(P (Qi > t))]

log t
≤ lim sup

t→∞
log[P (Qe > (1− δ)t)

log t
.

(46)
This implies from (39) that

κ(Qi) ≥ κ(Qe) = αi − 1. (47)

(2) If αi − 1 ≥ αm
i , we have κ(Qe) < κ((Qi +Qj∗)

βj∗
βi ).

It follows by Lemma 1 that

P (Qe > (1− δ)t) = o

⎛⎝∑
j �=i

P

(
(Qi +Qj)

βj
βi ≥ (δt)

)⎞⎠ .

(48)
This, combining (43) and (44), yields

κ(Qi) ≥ κ((Qi +Qj∗)
βj∗/βi) = αm

i , (49)

which, in conjunction with (47), completes the proof.

Lemma 6 Under Maximum-Weight-β scheduling, the tail in-
dex κ(Qi) of the steady-state queue length Qi is upper
bounded by

κ(Qi) ≤ αm
i . (50)

The proof of Lemma 6 depends on Lemma 7 [5]. Let {Yi}i≥1

be non-negative i.i.d. random variables independent of the
non-negative random variable N . Define SN :=

∑N
i=1 Yi.

Lemma 7 1) Assume Y1 ∈ RV(α), E[N ] < ∞ and
P (N > t) = o(P (Y1 > t)). Then,

P (SN > t) ∼ E[N ]P (Y1 > t).

2) Assume N ∈ RV(α), E[Y1] < ∞, and P (Y1 > t) =
o(P (N > t)). Moreover, assume that E[N ] < ∞ if
α = 1. Then,

P (SN > t) ∼ P (N > (E[Y1])
−1t).

Proof of Lemma 6: To prove Lemma 6, we construct
a fictitious queuing system, which consists of N queues
{qi}1≤i≤N . Each queue qi has the same input process as
qi and is associated with a dedicated PU channel i. All PU
channels have the same PU activities and the same channel
detection results as the PU channel in the original system.
Each queue follows the same regulations as the fast queue q̃f .
Consider a particular queue qi. We let all the queues

{qj}j �=i except qi have the exclusive access to their own
dedicated PU channel j without competing with each other.
The queue qi receives service if and only if Q

βi

i =

max1≤j≤N Q
βj

j . In such a system, it is easy to prove that the
fictitious queue qi has shorter queue length than the queue qi
in the original system, i.e.,

Qi(t) ≥ Qi(t). (51)

We assume that the fictitious system is in the steady state. Let
pj denote the probability that the queue qj �=i is not empty,
i.e., pj := P (Qj > 0). Let Ej denote the event where qj is
not empty and all other queues are empty, i.e.,

Ej :=
⎧⎨⎩Qj 	= 0 ∧

⋂
k �=i,j

Qk = 0

⎫⎬⎭ (52)

and P (Ej) := pj
∏

k �=i,j(1− pk). Thus, by (51), we have the
lower bound of moments of Qi with any order d

E[Qd
i ] ≥

∑
j �=i

P (Ej)E
[
Q

d

i |Ej
]
. (53)

In the rest of the proof, we will derive the lower bound
of the conditional moments E[Q

d

i |Ej ]. We first define the
following denotations for the queue qj . Assume that the event
Ej occurs at time t. Let Lr

j(t) denote the residual length of the
message currently in service, which is the number of packets
that belongs to this message but still remain in the queue at
time t. Let L̃r

j(t) denote the residual length of the message
currently in service if the queue is served at every time slot of
the PU channel. Since actually, the queue can be only served
at the idle time periods of the PU channel, this implies that

Lr
j(t) > L̃r

j(t). (54)

Let Ls
j(t) denote the age of the message currently in service,

which is the number of packets from this message that
are already served. Let T r

j (t) and T s
j (t) denote respectively

the residual and the expanded service time of the message
currently in service. From renewal theory and Lemma 3, we
have

κ(L̃r
j(t)) = αlj − 1 (55)

and if B1 ∈ RV(αb) and P (Lj > t) = o(P (B1 > t)), then

P (T s
j (t) > t) ∼ C1tP (B1 > t), (56)

where C1 is a constants. Otherwise, if Lj ∈ RV(αlj ) and
P (B1 > t) = o(P (Lj > t)), then

C2tP (Lj > t) � P (T s
j (t) > t) � C3tP (Lj > t), (57)

where C2 and C3 are some constants. By renewal theory, it
follows from (56) and (57) that

κ(T s
j (t)) = κ(T r

j (t)) = min(αlj , αb)− 1 = αj − 1. (58)

We are now ready to prove the lower bound of the con-
ditional moments E[Q

d

i |Ej ]. If the event Ej occurs, then
two possible events, Γ(t) and Γc(t), occur to Qi(t). Define
Γ(t) = {Qi(t)

βi ≥ T r
j (t)

βj} and its complement Γc(t). If
Γ(t) occurs, we have

Qi(t) ≥ T r
j (t)

βj
βi . (59)

Otherwise, if Γc(t) occurs, there are two possibilities including
(1) Lr

j(t)
βj < Qi(t)

βi < T r
j (t)

βj , and (2) Qi(t)
βi < Lr

j(t)
βj .

In the case (1), it implies from (54) that

Qi(t) ≥ Lr
j(t)

βj
βi ≥ L̃r

j(t)
βj
βi . (60)

In the case (2), let τ denote the last time before t that qi
receives service. This means that Qj(τ)

βj < Qi(τ)
βi . This,

combining with the fact that Qj(t)
βj ≥ Lr

j(t)
βj > Qi(t)

βi >

Qi(τ)
βi , implies that the burst being served at time t did not

begin to receive service at τ , i.e., t− τ > T s
j (t). This implies

that

Qi(t) =

t−τ∑
k=1

Ai(k) +Qi(τ) ≥
T s
j (t)∑
k=1

Ai(k). (61)
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Let ST s
j
:=
∑T s

j (t)

k=1 Ai(k). Applying Lemma 7, it follows from
(56) and (57) and

κ(ST s
j
) = min(αlj , αb)− 1 = αj − 1. (62)

Let pΓ = P (Γ(t)) and pΓc = P (Γc(t)). Combining (53),
(59), (60) and (61), we obtain

E[Qd
i ] ≥

∑
j �=i

P (Ej)
(
pΓE

[
T r
j (t)

dβj
βi

]
+pΓcE

[
min(L̃r

j(t)
dβj
βi , (ST s

j
)d)

])
≥
∑
j �=i

P (Ej)
(
pΓE

[
T r
j (t)

dβj
βi

]
+pΓc min(E

[
L̃r
j(t)

dβj
βi

]
, E
[
(ST s

j
)d
]
)

)
. (63)

This, combining with (55), (58), and (62), implies that if
the order of the moments d ≥ minj �=i

βi

βj
(αj−1), then at least

one of the terms on the right hand of (63), is infinite, which
implies

κ(Qi) ≤ min
j �=i

βi

βj
(αj − 1). (64)

Moreover, since under any working conserving scheduling
policy, Qi is lowered bounded by Qe. This implies that

κ(Qi) ≤ βi

βi
(αi − 1), (65)

which, combining with (64) completes the proof.
Proof of Theorem 4: By Lemma 6 and 5, it follows

that the upper and lower bounds of κ(Qi) matches, This,
combining the fact that κ(Qi) ≥ α− − 1 by Theorem 3,
completes the proof.

VI. CONCLUSIONS

This paper provides an asymptotic analysis of the steady-
state queue length distribution of secondary users (SUs) for
Dynamic Spectrum Access (DSA) networks. For the single-
user single-channel case, it is shown that if either the busy
time or message size is heavy tailed, then the steady state
queue length is one order heavier than either the busy time or
message size, whichever has the heavier tail. For the multi-
user single-channel case, we study the throughput-optimal
scheduling policies. Specifically, it is shown that the celebrated
maximum-weight scheduling yields the worst possible queu-
ing performance by making the tail of the SU queue length
as heavy as possible. On the contrary, the maximum-weight-
α scheduling can lead to the best queueing performance in
terms of inducing the lightest possible tail distribution of the
SU queue length.
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