
TCP CRAHN: A Transport Control Protocol
for Cognitive Radio Ad Hoc Networks

Kaushik R. Chowdhury, Member, IEEE, Marco Di Felice, and Ian F. Akyildiz, Fellow, IEEE

Abstract—Cognitive Radio (CR) networks allow users to opportunistically transmit in the licensed spectrum bands, as long as the

performance of the Primary Users (PUs) of the band is not degraded. Consequently, variation in spectrum availability with time and

periodic spectrum sensing undertaken by the CR users have a pronounced effect on the higher layer protocol performance, such as at

the transport layer. This paper investigates the limitations of classical TCP newReno in a CR ad hoc network environment, and

proposes TCP CRAHN, a window-based TCP-friendly protocol. Our approach incorporates spectrum awareness by a combination of

explicit feedback from the intermediate nodes and the destination. This is achieved by adapting the classical TCP rate control algorithm

running at the source to closely interact with the physical layer channel information, the link layer functions of spectrum sensing and

buffer management, and a predictive mobility framework that is developed at the network layer. An analysis of the expected throughput

in TCP CRAHN is provided, and simulation results reveal significant improvements by using our approach. To the best of our

knowledge, our approach takes the first steps toward the design of a transport layer for CR ad hoc networks.

Index Terms—Cognitive radio, congestion control, flow control, spectrum sensing, TCP

Ç

1 INTRODUCTION

THE emerging field of Cognitive Radio (CR) networks
attempts to alleviate the problem of spectrum scarcity in

the ISM band by opportunistically transmitting on other
vacant portions of the spectrum, such as frequencies
licensed for television broadcast and public services [1].

In this paper, we consider CR Ad Hoc Networks

(CRAHNs) that do not have a centralized entity for obtaining

the spectrum usage information in the neighborhood, or

external support in the form of a spectrum broker that

enables the sharing of the available spectrum resource. Thus,

compared to infrastructure-based networks, relying on local

decisions makes the problem of node-coordination and end-

to-end communication considerably more involved. While

the mobility of the intermediate nodes and the inherent

uncertainty in the wireless channel state are the key factors

that affect the reliable end-to-end delivery of data in classical

ad-hoc networks, several additional challenges exist in a

CRAHN. The periodic spectrum sensing, channel switching

operations, and the awareness of the activity of the Primary

Users (PUs) are some of the features that must be integrated

into the protocol design [1]. For these reasons, protocol

development at the higher layers of the network stack for CR

ad hoc networks, involving end-to-end communication over
multiple hops, is still in a nascent stage. In this paper, we
propose a window-based, TCP-like spectrum-aware trans-
port layer protocol for CR ad-hoc networks, called TCP
CRAHN that distinguishes between the different spectrum-
specific conditions in order to undertake state-dependent
recovery actions.

At the transport layer in classical wireless ad hoc
networks, the main challenge lies in distinguishing 1) con-
gestion, 2) channel-induced packet drops, and 3) mobility-
based packet losses. In the first case, the packet experiences
greater queuing delay in the buffers of the intermediate
routes, thereby increasing the Round Trip Time (RTT).
Consequently, TCP suffers from timeout events if the RTT
exceeds a given threshold. In the second case of channel-
related losses, such as those caused by fading or shadowing,
the dropped packets are mistaken by the source as a
congestion event. Mobility-related losses are mostly perma-
nent, and if the sender already has a large number of in-
flight packets, then all of them are likely to be lost. Though
these loss-inducing factors are also applicable to CRAHNs,
there are additional unique considerations: the observed
RTT may increase if an intermediate node on the route is
engaged in spectrum sensing and hence, unable to forward
packets. Also, the sudden appearance of a licensed or
primary user may force the CR nodes in its vicinity to cease
their transmissions, leading to an increase in the RTT. In
such cases, the network is partitioned until a new channel is
identified and coordinated with the nodes on the path. As
an example, in Fig. 1, consider a chain topology formed by
the source S, destination D, and intermediate forwarding
nodes. If the node 2 is performing spectrum sensing, then
for that duration, it is unable to send or receive packets,
resulting in a virtual disconnection of the path. Conse-
quently, the data packets in node 1 and moving toward D,
and acknowledgments (ACKs) in node 3 for the source S

790 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 4, APRIL 2013

. K.R. Chowdhury is with the Department of Electrical and Computer
Engineering, Northeastern University, 409 Dana Research Center, Boston,
MA 02115. E-mail: krc@ece.neu.edu.

. M.D. Felice is with the School of Computer Science, University of Bologna,
Via M. Anteo Zamboni, Bologna 740126, Italy.
E-mail: difelice@cs.unibo.it.

. I.F. Akyildiz is with the Broadband Wireless Networking Laboratory,
School of Electrical and Computer Engineering, Georgia Institute of
Technology, Centergy One, Room 5170, Atlanta, GA 30332.
E-mail: ian@ece.gatech.edu.

Manuscript received 22 Dec. 2010; revised 24 Aug. 2011; accepted 14 Feb.
2012; published online 28 Feb. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2010-12-0585.
Digital Object Identifier no. 10.1109/TMC.2012.59.

1536-1233/13/$31.00 � 2013 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

both experience greater queuing delays. If a timeout indeed
occurs, the source is immediately penalized and the rate of
sending data is drastically reduced. Similarly, consider the
case in which the spectrum used by node 4 is reclaimed by
the PUs, and it must immediately cease transmission. There
is a finite time duration in which node 4 must identify a
new spectrum, switch its transceivers, and coordinate this
choice with its neighbors. Thus, in both the above cases of
spectrum sensing and switching, the source may mistake
the increased RTT (or timeouts caused by this increase) for
congestion. In TCP CRAHN, we rely on the intermediate
nodes periodically piggybacking their spectrum informa-
tion on the ACKs, or in times of a sudden event like a PU
arrival, explicitly notifying the source. While several works
have focused on spectrum sensing algorithms in the last
few years [1], the integration of the channel information
collected at the nodes and the performance study of these
approaches from the viewpoint of an end-to-end protocol
remains an open challenge.

The local spectrum decisions undertaken by a node
strongly influence the end-to-end performance. As an
example, if the spectrum sensing duration is large, then
the node can better detect the PU activity in its local area.
However, this also results in lower end-to-end throughput
[23]. Thus, the optimal balance between protection to the
PUs (higher sensing time) with the increase in CR network
throughput (lower sensing time) must also be decided,
which is undertaken by TCP CRAHN. Moreover, our
protocol accounts for the possibility that a channel switch-
ing event may result in a significant change in bandwidth of
the affected link. Here, the number of packets that can be
supported by the network in a unit time can suddenly
increase, especially if the earlier spectrum was the bottleneck
spectrum allowing very low date rates. Consequently, we
propose an artificial scaling of the TCP congestion window
(cwnd) to respond quickly to the change in the environment.
As shown in Fig. 1b, when node 4 switches the spectrum,
choosing a higher capacity channel for the link 4-5 (node 5 is
not shown) the corresponding cwnd is increased immedi-
ately from its normal linear trajectory at B to a new value B’
that allows the source to fully utilize the spectrum. This is
especially important as spectrum is available for limited
durations, and the CR user must make the most efficient use
of it. Our work also addresses several concerns of classical
wireless ad hoc networks, such as the effect of mobility. By
proactively predicting the possibility of a route outage
through the method of Kalman filtering [12], the source can
limit the number of unacknowledged packets at a given
time, thereby also limiting the loss in the event of an actual
route failure.

TCP, in general, is a well-researched area and several
theoretical models exist that explain and predict its
behavior in wireless networks [26]. It is also implemented
at the transport layer for commercially available devices. In
addition, the ad hoc network may ferry user traffic to and
from the external infrastructure network, receiving config-
uration commands from remote stations. TCP is the defacto
standard in the wired world and high compatibility with
existing infrastructure is useful from the network manage-
ment perspective. Hence, the goal of TCP CRAHN is to
retain the window-based approach of the classical TCP, and
at the same time introduce novel changes that allow its
applicability in CR ad hoc networks. We would like to
mention that the main merit of this paper lies in the
theoretical design of a transport layer. The actual imple-
mentation on real software defined radios is currently
limited by the lack of implementations for link layer and
end to end network layer protocols. Thus, there are many
practical issues that exist today, which make it difficult for
demonstrating TCP CRAHN running on such radios, but
we are hopeful that rapid advances will soon make this
feasible. Note that our approach involves making several
assumptions of the underlying protocol operation, which
may not hold in practice in the eventual standardized
implementations.

The rest of this paper is organized as follows: We give
the related work in this area in Section 2. In Section 3, we
motivate the need of a new transport protocol for CR
networks. The network architecture is given in Section 4. In
Section 5, we describe our transport layer protocol in detail,
and provide an analysis of our method is Section 6. We
undertake a thorough performance evaluation in Section 7,
and finally, Section 8 concludes our work.

2 RELATED WORK

Transport protocols constitute a well investigated topic in
traditional wireless ad hoc networks, but they are quite
unexplored in CR networks. It is well known that classical
TCP implementations which run over the Internet (e.g., TCP
newReno [10], TCP Vegas [3], and TCP SACK [20]) perform
poorly over wireless links because of the additional packet
losses caused by bad channel conditions or by node
mobility, which are often misinterpreted as indicators of
network congestion. As a result, several transport protocols
have been proposed for wireless ad hoc networks, by using
cross-layer or layered approach. As an example of the first
approach, the Ad Hoc TCP Protocol (ATCP) [15] leverages
network feedbacks from intermediate nodes to distinguish
packet losses caused by mobility or by channel errors rather
than by network congestion. Similarly, network feedbacks
and cooperation among layers are also used by Sundaresan
et al. [24]. In this layered approach, the source node does
not rely on feedbacks from intermediate nodes, but it
analyzes the correlation between TCP events (e.g., timeouts
or out-of-delivery events) to detect the cause of a packet
loss. This is also the case for the TCP-DOOR [25] and TCP-
RTO [7] protocols. Moreover, there is a lot of the literature
on how to enhance the performance of TCP by designing
novel solutions at the MAC or link layers, without
modifying the existing TCP standard [27]. However, we
highlight that all these protocols are not suitable for CR

CHOWDHURY ET AL.: TCP CRAHN: A TRANSPORT CONTROL PROTOCOL FOR COGNITIVE RADIO AD HOC NETWORKS 791

Fig. 1. (a) A multihop CR ad hoc network and (b) the forced cwnd
scaling.

networks, because they do not consider the special
characteristics of CR networks. There are few works
investigating the performance of classical TCP over CR
networks, and even fewer addressing the design of novel
transport protocol solutions. Slingerland et al. [23] and
Kondareddy and Agrawal [13] provide insight on the effect
of dynamic spectrum access (DSA) links over TCP
performance, by using analytical and simulation tools. In
both cases, the authors conclude that one dominating effect
which is responsible for TCP throughput reduction is the
sensing time on the current channel. In [16] and [17], Luo
et al. describe a learning framework that decides several
operational parameters, such as channel selection, sensing,
channel access decision, modulation, coding scheme, and
the frame size, using rewards measured on the basis of
observed TCP throughput. However, this work does not
propose any changes to the existing TCP newReno to
respond to PU activity specific events. It is also a challenge
to ensure that the learning algorithm can converge quickly
in a CR ad hoc network that typically operates in a highly
dynamic environment.

In [22], Sarkar and Narayan propose to modify the
congestion window adaptation in the classical TCP West-
wood [18] based on the available bandwidth estimation.
Their approach prevents TCP from incorrectly reducing its
transmission rate (or estimated bandwidth) during spec-
trum sensing. However, this work does not consider the
impact of sensing activity, the durations for spectrum
switching, and network mobility on the flow and conges-
tion control functions. The Spectrum-Aware Event Trans-
port (SET) suite for CR sensor networks is proposed in [2]
that has a proactive congestion control algorithm, with a
focus on energy-efficient and reliable delivery for both
delay-insensitive and real-time data. However, SET does
not provide packet-based reliability and optimize band-
width utilization, as its objective is conserving energy. To
the best of our knowledge, TCP CRAHN is the first work
addressing all the above CR characteristics in an integrated
manner, while retaining the TCP-like approach to enable
communication over wired-wireless heterogeneous scenar-
ios. The preliminary work on this protocol appeared in [6],
which has been extended with improved motivation studies
(Section 3), an analytical model for the purpose of
comparison with classical TCP (Section 6), and new
performance evaluation results (Section 7).

3 MOTIVATION

In this section, we discuss the problems with the existing
implementations of transport protocols based on TCP
newReno in CR ad-hoc networks, in which, nodes are
equipped with a single radio transceiver. The features of the
CR network that we study are: 1) spectrum sensing 2) effect
of primary user activity, and 3) spectrum change. On any
given channel, the PU is modeled as Poisson arrivals, with
an “on” time (1

�) and “off” time (1
�).

3.1 Spectrum Sensing State

CR users periodically monitor the current channel over a
pre-decided sensing duration for the occurrence of PUs
before using it for transmission. During this interval, the
nodes are not actively involved in transmitting data
packets, and the multi-hop network is virtually discon-
nected at the node performing spectrum sensing.

In Fig. 2a, we show the impact of sensing-induced delay
on TCP newReno performance, when there is no PU activity
on the current channel. We analyze the behavior of the
Congestion Window (CW) size under three different
configurations of the sensing time ts, i.e., 0 s (sensing
disabled), 0.2 s, and 0.5 s. When sensing is disabled, we
observe that the CW keeps increasing till the capacity of the
channel is reached. When sensing is enabled, DATA and
ACK packets experience an extra-delay which triggers
timeout events at TCP sender side. As a result, TCP reduces
the CW to 1 segment, and resets to the slow-start state.
When ts is equal to 0.5, the sensing delay is comparable with
the maximum retransmission timeout (RTO) timer value,
and thus, frequent RTO events are triggered, degrading the
end-to-end performance. This analysis is also in accordance
with results shown in [22]. In [6], we also showed that
the duration of ts can play a critical role in deciding the
optimal end-to-end throughput, because it constitutes a
trade-off between 1) accurate PU detection and 2) efficient
channel utilization. Thus, it is responsibility of the transport
layer to adapt the current rate during the sensing state, and
to decide the optimal setting of ts so that the throughput is
maintained at the desired level while the interference on
PUs is minimized.

3.2 Effect of PU Activity

On detecting the presence of a PU, either during spectrum
sensing or an ongoing data transfer, the CR users cease their

792 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 4, APRIL 2013

Fig. 2. (a) A study of the cwnd size as a function of the varying sensing time. (b) The impact of different PU activity on TCP throughput is investigated.

(c) The effect of changing channel bandwidth on cwnd. All simulations are undertaken in ns-2.

operation on the affected channel and search for a different
vacant portion of the spectrum. While the spectrum sensing
on the current channel is periodic and has a well defined
interval, the time taken to 1) search for a set of available
channels on different spectrum bands, and 2) coordinate
with the next hop neighbors to find a mutually acceptable
channel in this set, is generally uncertain. Moreover,
the path to the destination is disconnected until the new
channel is successfully found, the time for which is not
known to the source in advance. Thus, the transport
protocol needs to differentiate this state from other causes
of route disconnections with the help of an explicit feedback
from the nodes affected by the PU activity.

In Fig. 2b, we show the impact of PU activity in terms of
average “on”-time (x-axis) and “off”-time (y-axis) on the
TCP newReno throughout (z-axis). Based on the values of
� and �, it is possible to distinguish among four different
patterns of PU activity: High-Activity Region (1

� � 1; 1
� > 1),

Low-Activity Region (1
� > 1; 1

� � 1), Short-Term Activity
region (1

� > 1; 1
� > 1), and Long-Term Activity region

(1
� � 1; 1

� � 1). Not surprisingly, TCP performance is max-
imized when the CRs have more possibility to access the
licensed spectrum without interfering with the PU activity,
(i.e., in the Low Activity Region) and minimized when the
PUs are more active on the current channel (i.e., High
Activity Region). At the same time, results shown in
Fig. 2b and discussed in [8] demonstrate that TCP suffers
of performance decrease when there are frequent “on”-
“off” switches (i.e., in the Short Term Activity Region) due
to the fact that the CW can not increase because of
frequent PU arrivals on the current channel. As a result,
we believe that transport layer should be informed of
spectrum handoff operations occurring at the lower layer,
in order to distinguish packet losses caused by congestion
or by PU interference.

3.3 Spectrum Change State

A key concern in CR networks is the efficient utilization of
the spectrum resource, as the opportunity for transmission
in the licensed bands is available for a limited time. The
licensed channels may have a large variation in bandwidth,
especially as nodes switch from one spectrum band to
the other. In Fig. 2c, we study through simulation how
classical TCP increases the cwnd as it probes for the
additional bandwidth available on a single link. There are
three different channel bandwidths possible—2=3 Mbps,
4=3 Mbps, and 2 Mbps. The vertical bars denote the
bandwidth available to the node and at any given time, this
is the upper limit that can be utilized by the TCP
connection. This gives three distinct levels of bandwidth
availability with time. On each channel, the PU is modeled
as a Poisson arrival, with an “on” time (1

� ¼ 4 s) and “off”
time (1

� ¼ 5 s). When the PU arrives, the CR user switches to
a different channel, and consequently TCP must adjust to
the new available bandwidth. From the figure, we observe
that the cwnd is unable to correctly track the available
bandwidth. Moreover, the spectrum opportunity is often
lost before the cwnd has increased to half the segments that
may be supported on the new channel. A similar conclu-
sion is drawn in [23], where TCP cannot effectively adapt to
brief reductions in capacity, if the end-to-end delay is large.

We believe that the cwnd in TCP must be scaled appro-
priately to meet the new channel conditions, as shown in
the transition from the operating point B to the point B’ in
Fig. 1b. Estimating this new operating point is a challenge
and link layer metrics that determine the effective
bandwidth, must also be considered apart from the raw
bandwidth. Bandwidth estimation techniques have been
proposed in [4] and [18] that do not require information
from the intermediate nodes, but also do not respond
immediately to the available spectrum.

4 NETWORK ARCHITECTURE

The nodes forming the CR ad hoc network have a single
radio transceiver that can be tuned to any channel in the
licensed spectrum. We assume spectrum bands are
present with nðxÞ channels in a given band x. The channels
of this spectrum band are denoted by �xp ; p ¼ 1; . . . ; nðxÞ. In
general, two channels in different spectrum bands may
have dissimilar raw channel bandwidth, i.e., �xp 6¼ �yq . In
addition, we assume the statistical knowledge of the PU
arrival (�) and departure rate (�) for each channel are
known, so that an initial estimate of the channel sensing
time can be calculated.

We use CSMA/CA at the Medium Access Control
(MAC) layer that has a predecided Common Control
Channel (CCC) for coordination of the spectrum band and
channel during data transfer. We also use a priority queue,
Qp at the MAC layer for the TCP CRAHN control packets,
which may also be drawn from intermediate positions inQp.

In a CR network, nodes maintain a list of unoccupied
channels (other than the current one in use) that may belong
to different spectrum bands. In our work, we assume that
this set of channels is identified through spectrum sensing,
undertaken during the backoff interval following a packet
transmission or reception at the link layer. On the current
operational channel, however, it is important to have an
accurate idea of the PU activity. For this, we do not rely on
probabilistic sensing times. Rather, nodes sense their
current channel for the sensing time ts at regular intervals
at the cost of continued network connection [14].

5 TCP CRAHN: A TRANSPORT PROTOCOL FOR

CR AD HOC NETWORKS

TCP CRAHN comprises of the following 6 states, as shown
by the state diagram in Fig. 3. They are

1. Connection establishment,
2. Normal,
3. Spectrum sensing,
4. Spectrum change,
5. Mobility predicted, and
6. Route failure.

Each of these states addresses a particular CR network
condition and we describe them in detail as follows.

5.1 Connection Establishment

TCP CRAHN modifies the three-way handshake in TCP
newReno so that the source can obtain the sensing
schedules of the nodes in the routing path. First, the source

CHOWDHURY ET AL.: TCP CRAHN: A TRANSPORT CONTROL PROTOCOL FOR COGNITIVE RADIO AD HOC NETWORKS 793

sends out a Synchronization (SYN) packet to the destina-
tion. An intermediate node, say i, in the routing path
appends the following information to the SYN packet: 1) its
ID, 2) a timestamp, and 3) the tuple ft1i ; t2i ; tsig. Here, t1i is the
time left before the node starts the next round of spectrum
sensing, measured from the timestamp. t2i is the constant
duration between two successive spectrum sensing events,
and tsi is the time taken to complete the sensing in the
current cycle. On receiving the SYN packet, the receiver
sends a SYN-ACK message to the source. The sensing
information collected for each node is piggybacked over the
SYN-ACK and thus, the source knows when a node in
the path shall undertake spectrum sensing and its duration.
The final ACK is then sent by the source to the destination
completing the handshake.

We note that the calculation of the sensing time tsi by a
node i is undertaken locally. Based on the bandwidth of the
channel (W), the external signal to noise ratio (�), and the
probabilities of the on period (Pon) and the off period (Poff),
a framework to calculate this time is given as follows [14]:

tsi ¼
1

W�2
Q�1ðPfÞ þ ð� þ 1ÞQ�1 PoffPf

Pon

� �� �2

; ð1Þ

Equation (1) gives the sensing time tsi that minimizes the
probability of missed primary user detection Pf ,
i.e., incorrectly stating the channel is vacant when indeed
there is an active PU and Q is the standard Q function. The
sensing times collected from the nodes are the preliminary
values which are dynamically updated by TCP CRAHN, as
described in Section 5.3.

State transitions. On successful handshake, the source
and destination are synchronized and the Normal state is
entered.

5.2 Normal State

The normal state in TCP CRAHN is the default state and
resembles the classical functioning of the classical TCP
newReno protocol. Our protocol enters this state when
1) no node in the path is currently engaged in spectrum
sensing, 2) there are no connection breaks due to PU
arrivals, and 3) no impending route failure is signaled.
Thus, the path to the destination remains connected and
ACKs sent by the latter are received at the source. The
differences between TCP CRAHN in the normal state and
the classical TCP are as follows.

5.2.1 Explicit Congestion Notification

The congestion control algorithm in classical TCP operates
in two phases, namely, the slow start and the congestion
avoidance. In the slow start, the congestion window cwnd is
initially set to 1 (Maximum Size Segment (MSS)) and
doubled for each incoming ACK. As TCP probes for the
available bandwidth, the cwnd increases exponentially until
the threshold, ssthresh, is reached. It then enters the collision
avoidance phase, where the cwnd is incremented by 1 MSS
for every acknowledged packet. During network conges-
tion, indicated by the retransmission timeout events, TCP
reduces the cwnd to 1 and the new threshold is set to the
value ssthresh

2 .
While the above ACK based self-clocking mechanism

that increases the cwnd is retained in TCP CRAHN, the
congestion event is signaled through an Explicit Feedback
Congestion Notification (ECN) generated by the affected
node. The concept of explicit notification is not new, and
prior works such as ATCP [15] and TCP-EFLN [11] rely on
the source being informed of route outages through Internet
Control Message Protocol (ICMP) messages at the IP layer.
In TCP CRAHN, the congestion is detected at the node by
comparing the current buffer usage for the given flow with
a predecided threshold value Bf

con. The ECN is sent in two
ways to guarantee its timely delivery. First, a packet is sent
from the affected node to the source directly. In addition,
the ECN is piggybacked to the destination over the data
packets and then sent to the source through the ACK. This
is done as the remainder of the connection from the affected
node to the destination may suffer delay from a temporary
disruption caused by channel sensing or switching. When
an ECN is received by the source, TCP CRAHN first
evaluates if it is still relevant to the network congestion state
by checking the time lag from its generation at the affected
node to its reception. If this time is within the time lag
threshold Lmax and no prior action has been taken for an
earlier ECN from the same node, for the detected conges-
tion event, TCP CRAHN reduces the cwnd to 1 and cuts the
ssthresh by half. In our work, we set Lmax ¼ 1:5�RTT , as
any further delay suggests that the path was temporarily
disconnected due to a sensing or channel switching event.
In either case, the transmission rate at the source is reduced,
as we shall see later in the protocol description.

5.2.2 Feedback Through the ACK

The intermediate nodes of the path piggyback the following
link-layer information over the data packets to the destina-
tion, which is then sent to the source through ACKs.

. Residual buffer space (Bf
i). Consider a node i that has

Bu
i unoccupied buffer space. Let the number of flows

passing through it be nfi . The fair share of the

residual buffer space per flow is, Bf
i ¼

Bu
i

nfi
.

. Observed link bandwidth (Wi;iþ1). Each node i main-
tains a weighted average of the observed bandwidth
on the link formed with its next hop, i.e., fi; iþ 1g,
during the normal state. This is obtained from the
link layer as the ratio of the acknowledged data bits
to the time taken for this transfer between the nodes
i and iþ 1.

794 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 4, APRIL 2013

Fig. 3. Finite state machine model of TCP CRAHN.

. Total link latency (LTi;iþ1). Let Li;iþ1 be the sum of the
1) time taken by a packet of the current flow to move
to the head of the queue 2) the time for contending
the access to the channel and finally, 3) the
transmission time measured at node i with respect
to the next hop iþ 1. The total bidirectional link
latency is hence LTi;iþ1 ¼ Li;iþ1 þ Liþ1;i.

Apart from these fields that are updated every time by
the nodes, the ACK also carries the ECN notification
whenever a node experiences congestion and the Mobility
predicted Flag (MF), which is set when there is a possibility
of route disconnection (explained in detail in Section 5.5).

State transitions. The ECN message and the ACKs
regulate the cwnd. When a node in the path performs
sensing, TCP CRAHN transitions into the Spectrum Sensing
state. If PU activity is reported to the source through an
Explicit Pause Notification (EPN), it enters the Spectrum
Change state and resumes the usual operation on receiving
the information about the new channel through the Channel
(CHN) message. Possible route disruptions may be signaled
by the ACKs leading to the temporary Mobility Predicted
state, where the cwnd is restricted to ssthresh. If the ICMP
message is received, TCP CRAHN enters into the Route
Failure state and stops transmission.

5.3 Spectrum Sensing State

We describe how TCP CRAHN adapts to spectrum sensing
through 1) flow control, which prevents buffer overflow for
the intermediate nodes during sensing and 2) regulating the
sensing time to meet the specified throughput demands.

5.3.1 Flow Control

When a node i undertakes spectrum sensing, the path gets
virtually disconnected for a finite duration. At this time, the
goal of TCP CRAHN is to adapt the flow control mechanism
in TCP, so that the node i� 1, prior to the sensing node, is
not overwhelmed with incoming data packets. If another
node j has an overlapping sensing schedule, TCP CRAHN
uses the residual buffer space of the previous hop of the
node closest to the source during the period of overlap, say i.
When the sensing time of the closest node is completed, the
buffer space of node j� 1 is used in the ewnd computations.

We recall that, in classical TCP, the maximum number of
bytes of unacknowledged data allowed at the sender is the
minimum of the current congestion window, cwnd, and
the receive window advertised by the destination, rwind.
The rwind represents the free space in the receiver’s buffer
that can accommodate additional transmitted packets.
During the sensing duration, no ACKs are received by the
source and hence the rwind remains unchanged. This also
results in a constant cwnd as TCP is self clocked and does
not increase in the absence of the receiver ACK. The
effective window, ewnd at the sender is modified to include
an estimate of the free buffer space, Bf

i�1, at the previous
hop node i� 1 as ewnd ¼ minfcwnd; rwnd;Bf

i�1g.
As the packets fill up the buffer in the node i� 1, the

remaining free buffer space needs to be progressively
reduced. The intermediate node, unlike the destination,
does not send back the ACKs with the new advertised
receive window and hence, this is estimated as follows: from

the last received ACK, we know the free buffer space for the
given flow, at the node i� 1, is Bf

i�1. The approximate time
for successfully transmitting a packet over the link
i� 2; i� 1 can be calculated at the source as

Li�2;i�1 ¼
LTi�1;i�2

2
;

where LTi�1;i�2 is the bidirectional link latency piggybacked
over the ACK. Thus, the space availableBf

i�1 in the node i� 1
is decremented at intervals of Li�2;i�1, when node i is
engaged in sensing. We note that while the rate of decrease of
the buffer space is not exact, the node i� 1 is oblivious to this
sender-side adaptation. It can still force the source to reduce
its sending rate through the congestion notification. If its
buffer is reaching the overflow limit, the congestion
condition will be signaled and the cwnd will be reduced to
1 at the source.

If any of the intermediate nodes on the path from the
source to the node i� 1 detect congestion, the ECN packet
is sent by them and the cwnd is then reduced to 1. We note
that the effective window ewnd remains at 1, as long as the
path remains disconnected, as the cwnd cannot be increased
without the ACK.

5.3.2 Sensing Time Regulation

In Section 3.1, we stated that if there is no PU activity on a
given channel, the comparatively large sensing times
degrade the end-to-end throughput. To address this, TCP
CRAHN conservatively reduces ts for the nodes that
see limited PU activity. This calculation is carried out at
the transport layer as it is aware of the observed (�o) and the
desired (�d) throughputs, respectively. The two inputs
needed by our protocol are—1) the value, �si , by which the
sensing time should be decreased, and 2) the node i at
which this reduction must be undertaken.

Sensing time decrease. Figs. 4a and 4b give the optimal
sensing time and the gradient of the curve for the sensing
time, respectively, in order to maintain a given missed
detection probability (Pf) for different SNR ranges and a
bandwidth of 2 MHz, as per the analytical formulation (1)
from [14].

We observe that the ts is large when the target error
probability is very low. Moreover, there is also a large fall in
the ts for a finite change in the Pf , as shown by the gradient
curve (Fig. 4b), when the Pf is small. This means that the ts

can be reduced by a greater margin in the initial stage,
when it has a comparatively higher duration, without

CHOWDHURY ET AL.: TCP CRAHN: A TRANSPORT CONTROL PROTOCOL FOR COGNITIVE RADIO AD HOC NETWORKS 795

Fig. 4. The sensing duration for increasing error probability and the
gradient of the curves are shown in (a) and (b), respectively, as
obtained from (1). We assume � ¼ 0:5; � ¼ 0:25, giving Pon ¼ 0:333
and Poff ¼ 0:67.

impacting the error significantly. The intuitive reasoning is
as follows: a node i first sets ts ¼ tsmax corresponding to the
low error probability of Pf ¼ 0:1. If the number of spectrum
changes that occur over time is small in proportion to the
number of total changes, we assume that the node is
situated in a region with limited PU activity. Thus, the
periodic sensing time tsi may be reduced at this node. If the
current tsi at the node is large, its reduction is consequently
higher, as the probability of error is not affected propor-
tionally. However, as the tsi value falls, the reduction gets
progressively smaller until tsi ¼ tsmin is reached, correspond-
ing to the limiting error probability, Pf ¼ 0:5. We can now
formulate the steps for obtaining the new sensing duration
tsi ðnewÞ from the old value tsi as follows:

4t ¼
tsmax

2
; ð2Þ

�tsi ¼
dts

dPf
jts¼tsi ; Pf¼funcðtsi Þ; ð3Þ

�tsmax ¼
dts

dPf
jts¼tsmax; Pf¼0:1; ð4Þ

�si ¼ �
�tsi
�tsmax

4t; ð5Þ

tsi ðnewÞ ¼ tsi � �si : ð6Þ

The default decrement value of the sensing time, 4t, is

taken as half of the maximum value, tsmax, needed to

maintain the error probability at 0.1, as shown in (3). This

is later scaled by a factor in the range [0,1] to get the true

decrement �si . In (4), we calculate the value of the gradient

�tsi to the sensing curve at the current sensing duration tsi ,

at node i. The corresponding value of Pf is obtained from

the current tsi from Fig. 4a, which is in turn, a numerical

plot of (1). The maximum gradient of the sensing curve

�tsmax is given in (5) and is computed at tsi ¼ tsmax. The

normalized gradient,
�ts
i

�tsmax
, at the current tuple given by

ftsi ; Pfg is used as the scaling factor to give the true

decrement �si in (6). Finally, the sensing time is adjusted to

the new value tsi ðnewÞ in (7).
When successive missed detection events occur, the node

increases the sensing duration in the steps f1
2� tsmax,

3
4� tsmax; tsmax}, in that order. Whenever the sensing time is
changed, the node sends back the new value to the sources of
the flows passing through it by piggybacking over the ACK.

Node selection. In order to identify a specific node i for
adjusting the sensing time, TCP CRAHN ranks the nodes in
the path based on the number of times the operational
channel was changed due to PU activity. It keeps a count of
the CHN messages sent by each node of the path, which
reveals the number of times the connection was paused
while a new channel was being coordinated. Intuitively, the
node that generated the highest proportion of the CHN
message also experienced the maximum number of PU
detection events and thus, must be located in a region of
frequent PU activity. Such a node needs to retain a higher
sensing duration.

Let the total number of times the spectrum change occurs
at a given node i, and that considering all the nodes of the
path be given by �i and �T , respectively. We define the
probability of the node i being susceptible to PU activity, Si
as the ratio Si ¼ �i

�T
. Let the set of n nodes along the route

have their PU activity susceptibility given by the set
S ¼ fS1; . . . ; Sng. Recalling that �d and �o are the desired
and observed throughputs, the source executes the follow-
ing algorithm to determine the node q and adjust its sensing
time to the new value tsqðnewÞ:

We explain the algorithm as follows: if the desired
throughput (�d) is greater than the observed throughput
(�o), then TCP CRAHN finds the node q with the minimum
PU susceptibility, Si; i ¼ 1; . . . ; n. Two conditions are
checked for the node q—1) the current sensing time at the
node tsq must be greater than the minimum allowed sensing
time tsmin and 2), the PU susceptibility must be below the
limiting threshold smax, considered as 0.3 in our work. This
ensures that only nodes that are relatively undisturbed by
PU activity over time are chosen for reduction of the
sensing duration by the value �si , as described in (7). This
new value of the sensing interval is sent to the intermediate
node by the source.

State transitions. On receiving the EPN message, the
Sensing state is interrupted and our protocol immediately
transitions to the Spectrum Change state, or else, it reverts
back to the Normal state on the completion of the sensing
duration. The transitions to the Mobility Predicted and the
Route Failure state are similar to the description of the
Normal state.

5.4 Spectrum Change State

In the ideal case, the effective bandwidth of the TCP
connection is dependent on several factors, such as
contention delays and channel errors at the link layer,
apart from the raw bandwidth of the channel. In this
section, we show how TCP CRAHN scales its cwnd rapidly,
say from point B to a different value B’, in Fig. 1b,
accounting for these factors, so that the available spectrum
resource is most efficiently utilized.

Consider three nodes given by i� 1, i, and iþ 1 on the
current path and the channels used by the links fi� 1; ig
and fi; iþ 1g be ci�1;i and ci;iþ1, respectively (Fig. 5a). If the
PU is on the channel �xp and either ci�1;i ¼ �xp or ci;iþ1 ¼ �xp ,
the node i must search for a new channel to prevent
interference to itself and to the PU, respectively. At this
stage, it sends an explicit pause notification to the source,
which in turn, freezes the protocol state and waits for a new
channel CHN message to resume the transmission. We
consider the case where TCP CRAHN adjusts to a single

796 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 4, APRIL 2013

affected link fi� 1; ig and then extend the analysis for the

case when both the previous and next hop links need a

channel change.
The set of available channels is known at node i, as

described in Section 4. The preferred list of channels, from

this available set, is sent by this node to the previous hop i� 1

(Fig. 5b). The node i� 1 chooses a channel from this set, say

�xq . It then sends back a link layer ACK to node i to inform the

node of its choice, �xq . All the coordination up to this point

occurs on the old channel. A second set of Probe and ACK

messages are then exchanged on the channel to be switched,

�xq , as a confirmation and also to approximately estimate the

new link transmission delay times Li;i�1 and Li�1;i. If the

probe and ACK packets are of the size Pprobe and PACK ,

respectively, the observed link bandwidth Wi;i�1 is

Wi;i�1 ¼
Pprobe þ PACK
Li;i�1 þ Li�1;i

: ð7Þ

The CHN message contains in it the bidirectional link

layer packet delay over the newly identified channel,

(LTi;i�1 ¼ Li;i�1 þ Li�1;i) that is used by the source to calculate

Wi;i�1 from (7). From Section 5.2.2, we recall that the ACKs

forwarded over the intermediate hops also carry the total

bidirectional link latency, L0Ti;i�1, corresponding to the

earlier used channel. On receiving the CHN message, the

source first estimates the new RTT using 1) the earlier

observed RTT’ during the last normal state of the protocol

and 2) adjusting for the new bidirectional link delay, LTi;i�1.

This is given by RTT ¼ RTT 0 þ LTi;i�1 � L0
T
i;i�1.

For the given path of n nodes, let W 0
b be the old

observed bottleneck bandwidth, before the channel change.

After the channel change, the new bottleneck bandwidth is

identified as Wb, where Wb ¼ minfWl;lþ1g; l ¼ 1; . . . ; n� 1.

The updated estimate of the bandwidth Wi;i�1 is used in

this calculation from (7). If the ratio of the old bottleneck

bandwidth to the new is within the allowed range of

½1�$; 1þ$�, i.e.,
W 0

b

Wb
2 ½1�$; 1þ$�, then no scaling of

the earlier cwnd is needed, where $ ¼ 0:2. If it lies beyond

this range, then we calculate the new value of the cwnd as

follows:

cwnd ¼ �cWbRTT: ð8Þ

The factor �c ¼ 0:8 in (8) is used to adjust the cwnd to a

value slightly lower than the predicted bandwidth to

prevent the risk of overestimating the cwnd [5]. Over time,

the cwnd converges to the optimal value around this range.

In the event that the channels of both the upstream and

downstream links are changed, the bidirectional link
latencies, LTi;i�1 and LTi;iþ1 are used in (7) and (8).

State transitions. The Spectrum Change state is entered as
soon as an EPN message is received. It reverts back to the
Normal state when the new channel information is received
in the CHN message or enters into the Route Failure state on
the receipt of an ICMP message. Existing sensing schedules
are ignored as long as the protocol stays in the current state.

5.5 Mobility Predicted State

In order to address the problem of delayed route failure
notification (Section 3), we develop a mobility prediction
framework based on Kalman filter-based estimation [12],
which uses the Received Signal Strength (RSS) information
from the link layer. We construct the set of Kalman
equations similar to the disposition for calculating sensor
location in [19], but for a simpler, scalar case of a single
dimension of the received power value. Formally,

xk ¼ Fxk�1 þGuk�1 þBwk�1; ð9Þ

describes the transition between the states for the system
used for predicting the new RSS value (i.e., xk) at the
kth iteration, using the previous prediction (i.e., xk�1), and
current control input or observed RSS value (i.e., uk�1), and
the variable wk represents discrete random changes owing
to fading or multipath. This 1D sample wk � Nð0; QÞ, where
Q � 0 is the covariance value of the process. Furthermore,
the gains F ¼ G ¼ B ¼ 1, as described in [19]. The remain-
ing steps of updating the Kalman filter gain, calculating the
new value of the prediction, i.e., the estimate of the RSS xk,
and updating the covariance value of the obtained samples
follow the classical steps described in [19] and are not
replicated here.

The nodes of the path monitor the connectivity to their
next hop downstream node by measuring the RSS of the
ACKs and the periodic beacon messages. At each epoch,
the prediction value is compared with the minimum RSS
required for receiver operation. If the condition of possible
link failure is predicted in the next epoch, the destination
is informed, which then sets the Mobility Flag (MF) in the
outgoing ACKs. The source responds to this by limiting
the cwnd to the ssthresh and the congestion avoidance
phase is never initiated. The aim of this adjustment,
cwnd � ssthresh, is to limit the number of packets injected
into the route which has a possibility of an outage, as the
CR specific function of the nodes may delay the arrival of
the actual link failure notification. If no ICMP message is
received at the source subsequently, signaling that a route
failure has indeed occurred or the incoming ACKs do not
have the MF flag sent, the mobility prediction state is
cancelled and TCP CRAHN reverts back to the normal
state, where the cwnd is no longer bounded.

State transitions. TCP CRAHN regards the Mobility
Predicted state as a transient or virtual state, in which the
cwnd is restricted to the ssthresh and the current operation
either in the Normal or the Spectrum Sensing state is continued.

5.6 Route Failure State

The node i sends a destination unreachable message in the
form of an ICMP packet if 1) the next hop node iþ 1 is not
reachable based on link layer retries, 2) there is no ongoing

CHOWDHURY ET AL.: TCP CRAHN: A TRANSPORT CONTROL PROTOCOL FOR COGNITIVE RADIO AD HOC NETWORKS 797

Fig. 5. (a) The PU interference scenario and (b) the link layer total delay
estimation are shown.

spectrum sensing based on the last known schedule, and
3) no EPN message is received at node i signaling a
temporary path disconnection due to PU activity. At this
stage, the source stops transmission and a fresh connection
needs to be formed over the new route by TCP CRAHN.

State transitions. The Route Failure state is the terminal
state of the current cycle and a fresh TCP connection must
be established when a new route is formed. The protocol
enters this state on receiving the ICMP message and it takes
precedence over all the others states.

6 TCP CRAHN THROUGHPUT ANALYSIS

In this section, we derive an analytical expression for
throughput in TCP CRAHN, using a previously existing
model for TCP newReno. Similar to other modeling efforts
[21], we ignore the slow-start phase, thereby allowing us to
view the cwnd as a concatenation of statistically indepen-
dent cycles. Thus, in each cycle, the cwnd increases linearly
till a loss event occurs, resulting in the immediate reduction
of the cwnd to half, followed by fast recovery. To keep the
analysis tractable, we assume that the spectrum switches do
not result in large scale bandwidth availability changes
(i.e., cwnd scaling derived in (8) is absent).

Consider a chain topology of k Cognitive Radio nodes
with an active TCP connection between the end-points,
and M licensed channels. Each channel can be occupied by
a PU which follows an alternate on-off activity pattern with
the mean durations represented by 1

� and 1
� , respectively.

Each CR node performs sensing for ts time units and
transmission for Tp time units, alternately. We assume that
time is divided into logical slots. Our analysis focuses on
the normal, spectrum sensing, and spectrum switching states
of the TCP CRAHN protocol, and in any given slot, the
protocol can be in one of these states. In summary,

. Normal state: for a duration Tp. This represents the
normal situation in which the network is connected
and CR can transmit data packets.

. Spectrum sensing state: for a duration ts. There is at
least one CR node of the chain which is sensing
channel and thus it is unable to transmit data
(network is disconnected).

. Spectrum change state. There is at least one CR node
of the chain which is switching channel because of
PU interference on the current channel (network is
disconnected) for a time duration tc.

Based on the duration and frequency of each logical slot,
the TCP CRAHN throughput (B) in each time slot can be
derived as follows:

B ¼ Bnð1� Ps � PcÞTp þBsPst
s þBcPctc

Psts þ Pctc þ ð1� Ps � PcÞTp
; ð10Þ

where

. Ps: probability that the network is in the spectrum
sensing state.

. Bs: TCP-throughput in the spectrum sensing state.

. Pc: probability that the network is in the spectrum
change state.

. Bc: TCP-throughput in the spectrum change state.

. Tc: spectrum handoff delay. It includes channel
switching delay, overhead for protocol reconfigura-
tion (at layers 2/3), negotiation of a new channel
with the next-hop node, etc.

. PN : probability that the network is in the normal
spectrum state.

. Bn: TCP-throughput in the normal spectrum state.

The first term in the numerator gives the effective

number of bits transmitted in the normal state. For this, the

protocol has to first be in the normal state, given by the

probability ð1� Ps � PcÞ, i.e., not in the spectrum sensing or

the spectrum change states. The effective time for which TCP

CRAHN enjoys the normal state bandwidth Bn is hence

Bnð1� Ps � PcÞTp. Similarly, the second and the third

terms in the numerator gives the bits transmitted in the

spectrum sensing state, and the spectrum change state,

respectively. This separate consideration of the individual

states is the key characteristics of TCP CRAHN, and

classical TCP is unaware of the distinction of Bn, Bs, and

Bc in the absence of cross-layer and node-level feedback.

We now derive the expressions for the variables in (10), Bn,

to arrive at the closed form analytical expression.

6.1 Normal State Analysis

In the Normal state, the TCP CRAHN source follows the

congestion control of classical TCP, and thus the achievable

throughput Bn can be derived by using of the many existing

TCP analytical models in the literature [21], [23]. In our case,

we use the SQRT model, which provides a simple yet

effective model for estimating the TCP throughput [23] in

the normal state, as follows:

Bn ¼
DATA

RTT

ffiffiffiffiffi
3

2p

s
; ð11Þ

whereDATA is the size of the TCP segment,RTT is the round

trip time for data delivery and receiving the confirmation,

and p is the probability of end-to-end packet loss.
In our case, the RTT is the average time to deliver a TCP-

DATA message to the destination, and receive an TCP-ACK

message over a network chain of k nodes. At the link layer,

assuming a CSMA/CA protocol with ARQ and backoff

procedure, the average RTT can be approximated as

RTT ¼ nkðTDATA þ TACKÞ, where n is the average number

of MAC re-transmission experienced on each link of the

chain. TDATA and TACK are the time required to transmit a

TCP data and a TCP-ACK,
Now, n can be calculated as n ¼

PL�1
i¼0 ip

i
eð1� peÞ, where

L is the maximum number of retries defined in the CSMA/

CA protocol (e.g., 7 in the MAC DCF 802.11 standard) and

pe is the probability of packet loss at link-layer. We

consider two causes of packet loss in the network:

1) transmission errors due to channel effects (e.g., shadow-

ing; modeled as a uniform distribution with probability pT)

and 2) interference from PU. We also assume that these two

causes are independent, and do not occur simultaneously.

Thus, we get

pe ¼ pI þ pT ; ð12Þ

798 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 4, APRIL 2013

where pI is the probability of packet loss due to PU
interference. This is a function of the activity of the PU on
the current channel as well as of the probability of correct
detection (pd). The probability of correct detection (pd) is a
function of �, � and ts, and can be derived from [14]:

pd ¼
�

�þ �Q
	� 2tsW

�

2
s þ
2

n

�
ffi
4tsW

�

2
s þ
2

n

�2
q

0
B@

1
CA: ð13Þ

Thus, the probability of PU induced packet loss (pI) is the
product of the probability of PU being in the “on’ state (�

�þ�),
and the probability of missed detection (1� pd). Hence,

pI ¼
�

�þ � ð1� pdÞ: ð14Þ

For the calculation of pT , we assume a Rayleigh fading
channel and M-PSK modulation (currently used in IEEE
802.11b systems). The Bit Error Rate (BER) is

BER ¼ 1�

ffi
m0:rc:� sin2 �

M

1þm0:rc:� sin2 �
M

s

[28], where, M ¼ 2m
0
gives the order of modulation and rc is

the rate encoder used. The probability of the packet error
assuming a single bit error is irrecoverable is1

pT ¼ 1� ð1�BERÞDATA: ð15Þ

After calculating pe from (12), (14), and (15), we can
calculate the probability of packet loss in the network p as
the probability that at least one node of the path will drop
the packet after exceeding the maximum number of retries
L at MAC layer, i.e.,

p ¼ 1�
�
1� pLe

�k
: ð16Þ

6.2 Spectrum Sensing State Analysis

In the spectrum sensing state, the TCP CRAHN adapts the
cwnd size to prevent buffer overflow at intermediate node
immediately preceding the sensing node. Let BFmax the
maximum size of the buffer at each node. Then, if node i is
performing sensing at time t, the residual buffer space at
node i� 1 can be approximated as

Bf
i�1 ¼ Bf

max �
W

i� 1

� �
DATA; ð17Þ

where W is the size of the cwnd at the sender node,
i.e., W ¼ Bn

DATATp
. The congestion window W represents the

number of transmitted but as yet unacknowledged
segments, i.e., the segments that are in-flight. Moreover,
the number of segments that are in-flight from the source
to the node preceding the sensing node i is approximated
by W

i�1 . All these segments shall eventually arrive at node
i� 1 and take up the buffer space during the sensing
duration, as node i� 1 is unable to transmit to the
downstream node i. The residual space, in terms of
segments, left in the buffer of node i� 1 (for the source
to fill up additionally) is then calculated trivially as the
difference between the maximum buffer capacity (Bf

max)

and the in-flight segments W
i�1 . To get the value of Bf

i�1 in
terms of bytes, we multiply the segment count with the
packet size DATA.

If sensing is performed by node 0 (the source) or node 1
(first next hop node), then Bs ¼ 0 because the source node is
forced to block its transmissions. Otherwise, the TCP
CRAHN adapts the current rate so that node i does not
overwhelm the buffer of node iþ 1. The average through-
put during a sensing slot (Bs) can be derived using (17):

Bs ¼ min
Xk
i¼2

Bf
i

1

kts

 !
; Bn

()
ð18Þ

� min 1

ts
ðk� 1ÞBf

max �
W

k
lnðk� 2Þ

� �
; Bn

	

: ð19Þ

The probability to enter in the spectrum sensing state is the
probability to have at least one node of the path starts
sensing the current channel. Given ts and Tp, the probability
that at a given time interval a node is performing sensing is
ps ¼ ts

tsþTp .
Thus, the probability that at least one node of the chain is

busy because of sensing activity can be derived as

Ps ¼ 1� ð1� psÞk: ð20Þ

6.3 Spectrum Change State Analysis

In the Spectrum Change State, the TCP CRAHN freezes the
current state till the notification of spectrum handoff is
received at the sender node. Thus, Bc ¼ 0. The probability
that a node detects the PU user during the sensing period
(pc) is the product of the independent probabilities of the
PU being “on” ð �

�þ�Þ, the detection at the CR user being
correct (pd), and the CR user undertaking spectrum sensing
at that time (ps). Hence,

pc ¼
�

�þ � pdps: ð21Þ

Thus, the probability to enter in the spectrum change state
because at least one node can detect the PU activity during
the “on” time is

Pc ¼
�

�þ � 1� ð1� pdÞk
h i

: ð22Þ

Thus, all the terms for calculating the TCP CRAHN
maximum throughput B are available, which can now be
calculated using (11).

6.4 Analytical Expression for TCP newReno

In the classical TCP throughput, we do not have the
additional spectrum change and spectrum sensing states. Thus,
the throughput in this case (B0) can be approximated by

B0 ¼ DATA
RTT

ffiffiffiffiffi
3

2p

s
:

Here, p and RTT are calculated in Section 6.1. However, if
we there is no network feedback we can have additional
packet loss for each link (i.e., pe) given by the fact that when
a node i transmits to node j, node j might be involved in
sensing or switching activities, and thus be unreachable for

CHOWDHURY ET AL.: TCP CRAHN: A TRANSPORT CONTROL PROTOCOL FOR COGNITIVE RADIO AD HOC NETWORKS 799

1. This analysis can be extended easily for specific FEC schemes.

data transmission. Again, we assume packet loss due to
sensing or switching are independent from packet loss due
to PU interference or channel error. Thus, the revised
expression for pe needed for calculating p is

pe ¼ pI þ pT þ ps þ pc: ð23Þ

6.5 Validation of Analytical Models

In this section, we compare the analytical maximum
achievable throughputs for TCP CRAHN (B) and TCPne-
wReno (B0) under different network parameters. For this
study, the nodes are stationary, and we assume Q-PSK
modulation M ¼ 4;m0 ¼ 2; rc ¼ 1

3 [28]. Other parameters are
DATA ¼ 1;500 bytes and the transmission rate is 11 Mbps.
Unless varied, default values of the number of hops (k) is
assumed as 10, the sensing time (ts) is 0.15 s and the
transmission time (Tp) is 3 s.

As seen in Fig. 6a, the effect of the number of hops is
significant for longer paths, as each additional node
contributes to the end to end delay by spectrum sensing,
and periodic spectrum switching, which are not predicted
by classical TCP. As the PU “on” time increases in Fig. 6b,
we find that the maximum throughput converges. This is
because even though the spectrum change state is initiated
by TCP CRAHN, the significant “on” time causes a
complete stop in transmission by the source for large extent
of time. Note that the fall in throughput is due to the
intentional pause by the source (thereby protecting the
PUs). This is different from the case for classical TCP,
wherein the throughput loss is caused by segment losses
due to collisions with the PUs. Finally, the fall in the
maximum throughput is graceful for TCP CRAHN for
different sensing durations owing to the intelligent flow
control done by the source, as seen in Fig. 6c.

7 PERFORMANCE EVALUATION

In this section, we study the behavior of TCP CRAHN
under the scenarios of 1) spectrum sensing, 2) spectrum
change with PU activity, and 3) node mobility. To the best of
our knowledge, there is no existing transport layer protocol
that is designed considering the CR specific functions, and
protocols devised for classical ad hoc networks cannot be
compared fairly with our work. Rather, we use TCP
newReno (henceforth referred to as TCP) as a benchmark
and focus on how TCP CRAHN adjusts to each of the above
CR scenarios through a stage-wise implementation of its

modules. We have extended the NS-2 simulator for
CRAHNs by modeling the activity of PUs and the multi-
channel operations performed by CR nodes [9]. At MAC
layer, we have implemented the spectrum management
functionalities including: spectrum sensing, decision, mo-
bility and sharing functionalities. Periodically, each CR
node senses the channel for a ts time interval. In case of PU
detection, it switches to another channel based on a round-
robin channel selection algorithm. We consider a channel
switching time of 5 ms. Otherwise, it may transmit on the
current channel based on a CSMA/CA MAC scheme with
acknowledgments (ACK) and frame retransmissions at the
MAC layer. We also model the interference among CR
nodes (secondary interference) and the interference be-
tween CR nodes and PUs (primary interference). In order to
study the effect of the cwnd scaling, we consider five
channels, C ¼ fc1; . . . ; c5g, having varying raw channel
bandwidth given by fB; BK ;B�K; BK ;B�Kg, respectively,
where B ¼ 2 Mbps, K ¼ 2. In addition, a priority queue is
implemented at the link layer, as described in Section 4, and
the allowed retries for the feedback packets in TCP CRAHN
is raised to 20. Out of 100 nodes any source-destination pair
is chosen forming a chain topology and we vary the number
of flows in the path. A parallel chain is then created, which
uses the same channel selection as our test chain topology.
The corresponding nodes of the two chains are placed
within transmission range of each other and this provides
the link contention for the bandwidth calculation. The
transmission ranges of the PU and the CR users are 300 m
and 120 m, respectively, and the desired throughput �d ¼
800 Kbps. For maintaining the weighted average of the link
bandwidths, we assign a weight of 0.2 to the latest sample
and 0.8 to the previous recorded average.

7.1 Spectrum Sensing

The evaluation of TCP CRAHN during spectrum sensing is
carried out in two parts—1) by observing the improvement
in throughput resulting from the change in the ewnd
(Section 5.3.1), and 2) the benefit of reduction of the sensing
duration in the absence of PU activity (Section 5.3.2).

Figs. 7a and 7b show the end-to-end throughput for
varying network loads as the sensing time of the nodes is
increased to the maximum value ts ¼ tsmax ¼ 0:3, for a
constant data transmission time Tp. In the first set of
experiments, we disable the dynamic adjustment of the
sensing time. We observe that TCP CRAHN outperforms

800 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 4, APRIL 2013

Fig. 6. The upper bound on the TCP CRAHN and TCP throughput is shown as a function of (a) varying path length, (b) PU “on” time, and (c) CR
sensing duration.

TCP significantly as it does not stop transmitting when the
path gets disconnected, but transmits at a reduced rate to
prevent a buffer overflow. This ensures a higher throughput
in TCP CRAHN, as TCP suffers an RTO timeout whenever
a node in the path undertakes sensing. This phenomenon is
also seen in Fig. 7c, where the cwnd almost never reduces to
1 for the case ts ¼ 0:15; Tp ¼ 3, unless there is congestion in
the network (at sim. time = 70 s). Compared to this, TCP
undergoes repeated timeouts during the sensing and the
cwnd is forced to the slow start phase in the absence of true
congestion. For the study of the dynamically changing
sensing duration, we first define the PU operation as
follows: We continuously vary the on time (Ton) of the PU
on the x-axis, and measure the throughput for different PU
off times, Toff , for 1 and 5 flows as shown in Figs. 8a and 8b,
respectively. We first assign a a low PU susceptibility of 0.01
to a randomly chosen number of nodes Slow in the path, and
for the remaining nodes, forming the set Shigh, we set an
initial high susceptibility value of 0.95. This ensures that
TCP CRAHN changes the sensing duration from the
maximum value tsmax ¼ 0:28 only for the nodes present in
the set Slow. When the sensing time is varied, (shown by
sensing time ¼ var), we observe that the throughput

improves significantly for 1 and 5 flows (Figs. 8a and 8b).
The variation of the cwnd for throughput as a function of the
changing sensing time is shown in Fig. 8c.The sensing
time falls in a nonlinear manner (Section 5.3.2), and in the
absence of PU activity, this improves the throughput. For
successive PU missed detections, the sensing time is scaled
to 1

2� tsmax, then 3
4� tsmax and finally to the maximum value

tsmax to reduce the interference to the PUs.

7.2 Spectrum Change and PU Activity

From Section 5.4, we recall that when PU activity is
detected, TCP CRAHN stops the source from transmitting
and coordinates the use of a new channel. The source then
modifies its cwnd, if the new channel on the affected link
significantly changes the bottleneck bandwidth. We study
the performance improvement in TCP CRAHN by con-
sidering the throughput, the bandwidth efficiency (ratio of
the available bandwidth to average used bandwidth of the
bottleneck link), and the variation in the cwnd.

A PU is placed on each of the five possible channels so
that the channel (and hence, the bandwidth) change often
and its effect is clearly demonstrated. Figs. 9a and 9b give
the throughput for 1 and 5 flows, respectively, when PUs

CHOWDHURY ET AL.: TCP CRAHN: A TRANSPORT CONTROL PROTOCOL FOR COGNITIVE RADIO AD HOC NETWORKS 801

Fig. 7. (a) and (b) The effect of spectrum sensing on the throughput is shown for 1 and 5 flows. (c) Variation of the congestion window with time.

Fig. 8. (a) and (b) The effect of dynamically changing the sensing duration on throughput is shown for 1 and 5 flows. (c) A study of the throughput as
a function of the varying sensing time.

Fig. 9. (a) and (b) The effect of the bandwidth scaling adjustment on throughput is shown for 1 and 5 flows. (c) and (d) The bandwidth utilization
efficiency and the cwnd scaling.

exist on the channel. We observe that the throughput

improvement in TCP CRAHN increases with higher PU

activity, formally defined as
 ¼ Ton
TonþToff . For lower values of

, i.e., when Ton is small, the channels are readily available

and the gain in TCP CRAHN is due to the scaling of the cwnd

alone. For higher values of
, when Ton is large, it takes

longer for the affected node to find a vacant channel. This

delay dominates the network performance and by explicitly

specifying the source to pause its transmission, TCP

CRAHN prevents packet loss and improves the throughput.
The effect of cwnd scaling results in higher bandwidth

efficiency in TCP CRAHN, as seen in Fig. 9c. Moreover, the

performance improves when the difference in the raw

bandwidths of the available channels (given by increasing

the factorK) is higher, implying that the forced scaling of the

cwnd is effective in fully utilizing the spectrum resource. The

variation of the cwnd against time in Fig. 9d shows that TCP

CRAHN responds to the changed bandwidth immediately.

8 CONCLUSIONS

The implementation of the TCP CRAHN protocol requires

close coupling with the underlying link and network layers,

especially during channel changes and during mobility-

induced route outages. We note that complete implementa-

tion at the transport layer is only possible when link and

network layer research on CRs have resulted in viable and

standardized protocols, wherein the specific information

available to the upper layers is known a priori. There are

several assumptions made in the design of TCP CRAHN

regarding this lower layer operation that may be different

from the eventual practical implementations, and thereby

require modifications in our approach when used on an

actual CR testbed.

ACKNOWLEDGMENTS

K. Chowdhury was supported by the US National Science

Foundation (NSF) under Grant No. CNS-1265166. I.F.

Akyildiz was supported by the NSF under Grant No.

ECCS-0900930. Marco Di Felice was supported by Italian

Miur PRIN-2006 project NADIR.

REFERENCES

[1] I.F. Akyildiz, W.Y. Lee, and K. Chowdhury, “CRAHNs: Cognitive
Radio Ad Hoc Networks,” Ad Hoc Networks J., vol. 7, no. 2,
pp. 810-836, Elsevier, July 2009.

[2] A.O. Bicen and O.B. Akan, “Reliability and Congestion Control in
Cognitive Radio Sensor Networks,” Ad Hoc Networks J., vol. 9,
no. 7, pp. 1154-1164, Elsevier, Sept. 2011.

[3] L. Brakmo and L. Peterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE J. Selected Areas in Comm.
vol. 13, no. 8, pp. 1465-1480, Sept. 1995.

[4] A. Capone, L. Fratta, and F. Martignon, “Bandwidth Estimation
Schemes for TCP over Wireless Networks,” IEEE Trans. Mobile
Computing, vol. 3, no. 2, pp. 129-143, Apr.-June 2004.

[5] K. Chen, Y. Xue, and K. Nahrstedt, “On Setting TCP’s Congestion
Window Limit in Mobile Ad Hoc Networks,” Proc. IEEE Int’l Conf.
Comm. (ICC), pp. 1080-1084, May 2003.

[6] K.R. Chowdhury, M. Di Felice, and I.F. Akyildiz, “TP-CRAHN: A
Transport Protocol for Cognitive Radio Ad Hoc Networks,” Proc.
IEEE INFOCOM, pp. 2482-2491, Apr. 2009.

[7] T. Dyer and R. Boppana, “A Comparision of TCP Performance
over Three Routing Protocols for Mobile Ad Hoc Networks,” Proc.
ACM MobiHoc, pp. 256-266, 2001.

[8] M. Di Felice, K.R. Chowdhury, and L. Bononi, “Modeling and
Performance Evaluation of Transmission Control Protocol over
Cognitive Radio Ad Hoc Networks,” Proc. 12th ACM Int’l Conf.
Modeling, Analysis and Simulation of Wireless and Mobile (MSWIM
’09), pp. 4-12, 2009.

[9] M. Di Felice, K. Chowdhury, W. Kim, A. Kassler, and L. Bononi,
“End-to-End Protocols for Cognitive Radio Ad Hoc Networks: An
Evaluation Study,” Performance Evaluation, vol. 68, no. 9, pp. 859-
875, 2011.

[10] S. Floyd and T. Henderson, The NewReno Modification to TCP’s Fast
Recovery Algorithm, IETF RFC 2582, Apr. 1999.

[11] G. Holland and N.H. Vaidya, “Analysis of TCP Performance over
Mobile Ad Hoc Networks,” Proc. ACM MobiCom, pp. 219-230,
Aug. 1999.

[12] S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice-Hall, 1993.

[13] Y.R. Kondareddy and P. Agrawal, “Effect of Dynamic Spectrum
Access on Transport Control Protocol Performance,” Proc. IEEE
GlobeCom, pp. 1-6, 2009.

[14] W.Y. Lee and I.F. Akyildiz, “Optimal Spectrum Sensing Frame-
work for Cognitive Radio Networks,” IEEE Trans. Wireless Comm.,
vol. 7, no. 10, pp. 3845-3857, Oct. 2008.

[15] J. Liu and S. Singh, “ATCP: TCP for Mobile Ad Hoc Networks,”
IEEE J. Selected Areas of Comm., vol. 19, no. 7, pp. 1300-1315, July
2001.

[16] C. Luo, F.R. Yu, H. Ji, and V. Leung, “Optimal Channel Access for
TCP Performance Improvement in Cognitive Radio Networks,”
Springer Wireless Networks, vol. 1, no. 16, pp. 1-14, 2010.

[17] C. Luo, F.R. Yu, H. Ji, and V. Leung, “Cross-Layer Design for TCP
Performance Improvement in Cognitive Radio Networks,” IEEE
Trans. Vehicular Technology, vol. 59, no. 5, pp. 2485-2495, June 2010.

[18] S. Mascolo, C. Casetti, M. Gerla, M.Y. Sanadidi, and R. Wang,
“TCP Westwood: Bandwidth Estimation for Enhanced Transport
over Wireless Links,” Proc. ACM MobiCom, 2001.

[19] T. Melodia, D. Pompili, and I.F. Akyildiz, “Handling Mobility in
Wireless Sensor and Actor Networks,” IEEE Trans. Mobile
Computing, vol. 9, no. 2, pp. 160-173, Feb. 2010.

[20] M. Mathis, J. Mahadavi, S. Floyd, and A. Romanow, “TCP
Selective Acknowledgment Options,” IETF RFC 2018, Oct. 2006.

[21] N. Parvez, A. Mahanti, and C. Williamson, “An Analytic
Throughput Model for TCP NewReno,” IEEE/ACM Trans.
Networking, vol. 18, no. 2, pp. 448-461, Apr. 2010.

[22] D. Sarkar and H. Narayan, “Transport Layer Protocols for
Cognitive Networks,” Proc. IEEE INFOCOM, pp. 1-6, Mar. 2010.

[23] A.M.R. Slingerland, P. Pawelczak, R.V. Prasad, A. Lo, and R.
Hekmat, “Performance of Transport Control Protocol over
Dynamic Spectrum Access Links,” Proc. Second IEEE Int’l Symp.
New Frontiers in Dynamic Spectrum Access Networks (DySPAN),
Apr. 2007.

[24] K. Sundaresan, V. Anantharaman, H-Y. Hsieh, and R. Sivakumar,
“ATP: A Reliable Transport Protocol for Ad Hoc Networks,” IEEE
Trans. Mobile Computing, vol. 4, no. 6, pp. 588-603, Nov. 2005.

[25] F. Wang and Y. Zhang, “Improving TCP Performance over Mobile
Ad-Hoc Networks with Out-of-Order Detection and Response,”
Proc. ACM MobiHoc, pp. 217-225, June 2002.

[26] H. Xiao, K.C. Chua, J.A. Malcolm, and Y. Zhang, “Theoretical
Analysis of TCP Throughput in Adhoc Wireless Networks,” Proc.
IEEE GlobeCom, pp. 2714-2719, Nov./Dec. 2005.

[27] K. Xu, M. Gerla, L. Qi, and Y. Shu, “Enhancing TCP Fairness in
Ad Hoc Wireless Networks Using Neighborhood Red,” Proc.
ACM MobiCom, pp. 16-28, 2003.

[28] D. Yuan, L. Zhang, and C. Gao, “Performance Analysis of RS-BCH
Concatenated Codes in Rayleigh Fading Channel,” Proc. Asia-
Pacific Conf. Comm., vol. 3, no. 1, pp. 315-325, 1999.

[29] X. Yu, “Improving TCP Performance over Mobile Ad Hoc
Networks by Exploiting Cross-Layer Information Awareness,”
Proc. ACM MobiCom, pp. 231-244, Sept. 2004.

802 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 4, APRIL 2013

Kaushik R. Chowdhury received the BE
degree in electronics engineering with distinc-
tion from VJTI, Mumbai University, India, in
2003, the MS degree in computer science from
the University of Cincinnati, Ohio, in 2006, and
the PhD degree from the Georgia Institute of
Technology, Atlanta, in 2009. He is an assistant
professor in the Electrical and Computer En-
gineering Department at Northeastern Univer-
sity, Boston, Massachusetts. His expertise and

research interests include wireless cognitive radio ad hoc networks,
energy harvesting, and multimedia communication over sensors
networks. His MS thesis was given the outstanding thesis award
jointly by the Electrical and Computer Engineering and Computer
Science Departments at the University of Cincinnati. He won a best
paper award at the IEEE ICC Conference in 2009 and again in 2012.
He was also the recipient of a best paper award at the ICNC 2013
conference. He is a member of the IEEE.

Marco Di Felice received the laurea (summa
cum laude) and PhD degrees in computer
science from the University of Bologna, Italy, in
2004 and 2008, respectively. In 2007, he was a
visiting researcher at the Broadband Wireless
Networking Laboratory, Georgia Institute of
Technology, Atlanta. In 2009, he was a visiting
researcher at the Electrical and Computer
Engineering Department, Northeastern Univer-
sity, Boston. He is now an assistant professor at

the University of Bologna. His research interests include: modeling and
simulation of wireless systems, including cognitive radio, mesh and
vehicular networks, the distributed resources optimization, and the multi-
hop communication in wireless networks. He authored more than
30 conference and journal publications on mobile and wireless network
protocols, standards, and architectures.

Ian F. Akyildiz received the BS, MS, and PhD
degrees in computer engineering from the
University of Erlangen-Nürnberg, Germany, in
1978, 1981, and 1984, respectively. Currently,
he is the Ken Byers chair professor with the
School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, the
director of the Broadband Wireless Networking
Laboratory and the chair of the Telecommunica-
tions Group at Georgia Tech. In June 2008, he

became an honorary professor with the School of Electrical Engineering
at Universitat Politècnica de Catalunya (UPC) in Barcelona, Spain. He is
also the director of the NaNoNetworking Center in Catalunya (N3Cat).
He is the editor-in-chief of Computer Networks (Elsevier) Journal, and
the founding editor-in-chief of the Ad Hoc Networks (Elsevier) Journal,
the Physical Communication (Elsevier) Journal, and the Nano Commu-
nication Networks (Elsevier) Journal. He serves on the advisory boards
of several research centers, companies, journals, conferences, and
publication companies. His research interests include nanonetworks,
cognitive radio networks, and wireless sensor networks. He received
numerous awards from the IEEE and ACM. He is a fellow of the IEEE
and ACM, in 1996 and 1997, respectively.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHOWDHURY ET AL.: TCP CRAHN: A TRANSPORT CONTROL PROTOCOL FOR COGNITIVE RADIO AD HOC NETWORKS 803

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

