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Abstract—Molecular Communication (MC) is a communication
paradigm based on the exchange of molecules. The implicit bio-
compatibility and nanoscale feasibility of MC make it a promising
communication technology for nanonetworks. This paper pro-
vides a closed-form expression for the information capacity of an
MC system based on the free diffusion of molecules, which is of
primary importance to understand the performance of the MC
paradigm. Unlike previous contributions, the provided capacity
expression is independent from any coding scheme and takes into
account the two main effects of the diffusion channel: the memory
and the molecular noise. For this, the diffusion is decomposed
into two processes, namely, the Fick’s diffusion and the particle
location displacement, which are analyzed as a cascade of two
separate systems. The Fick’s diffusion captures solely the channel
memory, while the particle location displacement isolates the
molecular noise. The MC capacity expression is obtained by
combining the two systems as function of the diffusion coefficient,
the temperature, the transmitter–receiver distance, the bandwidth
of the transmitted signal, and the average transmitted power.
Numerical results show that a few kilobits per second can be
reached within a distance range of tenth of micrometer and for an
average transmitted power around 1 pW.

Index Terms—Channel memory, information capacity, molec-
ular communication (MC), molecular noise, molecule diffusion,
nanonetworks.

I. INTRODUCTION

M OLECULAR communication (MC) is a promising par-
adigm for communication in nanonetworks [1], where

the applicability of classical communication technologies is
limited by several constraints. In particular, the very restricted
size of the nanodevices and the peculiarities of the environ-
ments in which they are envisioned to operate (e.g., biological
scenarios) demand for novel solutions from the perspective of
both the choice of the communication medium and the study of
suitable communication techniques. While a possible solution
to the problem of communication in nanonetworks is suggested
by recent studies [2] on nanostructures and on the properties of
carbon nanoelectronics, a bioinspired approach suggests MC
[3] as a new paradigm.
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MC is based on the exchange of molecules, through which
information is transmitted, propagated, and received. This ap-
proach is studied in biology since it is successfully adopted
by cells for intra- and intercellular communication [28], where
message-carryingmolecules are synthesized, emitted, collected,
and converted to cellular responses through biochemical pro-
cesses. Given the tight integration of MC within the biological
environment and its feasibility at the cellular scale (nm), we
study MC not only as a candidate for nanonetwork communica-
tion, but also as a possible tool for the future nanonetworks to
interact with the living organisms and their biological processes.
Disease control and infectious agent detection [38], smart drug
delivery systems [18], bacterial biofilm monitoring and control
[12], and automated surveillance systems against biological and
chemical attacks [39] are among the potential practical applica-
tions of MC-enabled nanonetworks.
MC relies on mass transport phenomena for the propagation

of information between a sender and a receiver, since informa-
tion-bearing molecules have to physically cover the distance
from one location to the other. Amongst others, molecular
motors [26], bacteria chemotaxis, pheromone diffusion [11],
[30], and ion (e.g., calcium) diffusion [27] have been taken into
account as mass transport phenomena options for MC. Among
those, the free molecule diffusion in a fluid is the most basic and
widespread mass transport phenomenon, where molecules, due
to the Brownian motion, are subject to a random walk which
tends to spread their concentration throughout the available
space. In this paper, we focus on MC systems based on the free
molecule diffusion (diffusion-based MC systems). This allows
the maximum possible generality for the obtained results,
which will be tailored in the future to address special cases
where the transport phenomena, such as turbulent diffusion
[35] for the pheromones or electro-diffusion [36] for the ions,
stem from the free molecule diffusion.
The theoretical analysis and the modeling of the informa-

tion capacity in MC are of primary importance to understand
the performance of an MC system from an information theoret-
ical perspective. Up to date, some contributions from the liter-
ature have attempted to study the information capacity in dif-
fusion-based MC systems, but often these are focused on spe-
cific modulation and coding schemes or do not take into account
the two main effects of the molecule diffusion channel, namely,
the memory and the molecular noise. The work in [4] addresses
for the first time the capacity of MC systems by emphasizing
the need for its mathematical analysis, but no concrete solutions
are proposed. In [6] and [7], the MC capacity is computed for
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Fig. 1. Information-theoretic diagram of a diffusion-based MC system.

a specific binary coding scheme and by taking into account the
molecular receiver model, but without modeling the molecule
diffusion propagation. An analysis of the molecular achievable
rate is conducted in [8] by assuming a single instantaneous emis-
sion of molecules from the transmitter, a deterministic diffusion
channel, and a detailed chemical model of the receiver, but the
effects of an emission of molecules over time is not considered.
In [16], the capacity of an MC system in case of binary coding
is properly analyzed on the basis of the effects of the channel
memory, but without accounting for molecular noise sources.
Two different coding techniques are analyzed in [22] in terms
of achievable rates, while the diffusion channel models are re-
duced to a binary or a quadruple channel. Similarly, discrete
memoryless approximations are applied to the molecule diffu-
sion channel in [5], where the MC capacity is computed for a
binary coding scheme.
The objective of this paper is to provide a closed-formmathe-

matical expression for the information capacity of a MC system
based on free molecule diffusion. In [33], we used solutions
from statistical mechanics and equilibrium thermodynamics to
derive an MC capacity expression, but by taking a system in
equilibrium as a model, we did not account for the dynamic
effects of diffusion, in particular the channel memory. Differ-
ently, and unlike previous contributions, we provide here a ca-
pacity expression that takes into account the two main effects
of the diffusion channel, namely, the memory and the molecular
noise. For this, we decompose the molecule diffusion into two
main processes: 1) the Fick’s diffusion, which captures solely
the effects of the channel memory; and 2) the particle location
displacement, which isolates the molecular noise. The proper-
ties of these two processes allow to analyze them as a cascade
of two separate communication systems. We compute the infor-
mation capacity by assuming that the transmitter can modulate
the emission of molecules in the space according to any possible
time continuous input message, differently from previous con-
tributions where the transmitter is assumed to modulate (e.g.,
binary coding) impulses according to discrete input messages
(e.g., binary digital messages). As a consequence, our informa-
tion capacity is proposed as the theoretical upper bound of the
performance of an MC system, independent from any specific
coding scheme.
The final expression for the MC capacity is a function of the

medium diffusion coefficient, the system temperature, the dis-
tance between the transmitter and the receiver, and the band-
width of the transmitted signal. The MC capacity is also ex-

pressed as a function of the average transmitted power, which
corresponds to the thermodynamic power spent at the trans-
mitter for molecule emission. We provide numerical results to
evaluate the obtained closed-form formula for the MC capacity
in relation to several different values of its parameters.
The remainder of this paper is organized as follows. In

Section II, the schematic diagram of a diffusion-based MC
system is detailed and its components are modeled in relation
to the physical system, which defines the underlying physical
laws and parameters at the basis of the molecule diffusion
propagation. The capacity of the diffusion-based MC system
is treated in Section III. The decomposition of the molecule
diffusion into two processes is detailed in Section III-A, while
the analyses of the Fick’s diffusion system and the particle lo-
cation displacement system are performed in Sections III-B and
III-C, respectively. In Section III-D, we obtain the closed-form
expression of the MC capacity. Numerical results are provided
in Section IV. Finally, in Section V, we conclude this paper.

II. INFORMATION THEORETICAL SCHEME OF A
DIFFUSION-BASED MC SYSTEM

The schematic diagram of a diffusion-based MC system is
shown in Fig. 1, and it is composed by the classical [13] cas-
cade of information source, transmitter, channel, receiver, and
destination. The information source produces messages to be
communicated to the destination. The type of message depends
on the particular application in which the diffusion-based MC
system is deployed. In case of intelligent drug delivery appli-
cations [19], the message can be a time sequence of ON/OFF
values that trigger/stop the release of the drug molecules. In
nanomachine communication [4], the message can be any func-
tion of the time carrying data such as nanomachine states [1] or
sensory measurements [2]. The Transmitter, the Channel and
the Receiver, which are based on the molecule emission, mole-
cule diffusion and molecule reception, respectively, are within a
Physical System, whose underlying laws and parameters affect
how these components are physically realized. The Destination
is the recipient of the messages coming from the receiver. Upon
reception of a message, the destination reacts according to the
meaning and to the particular application.
The Physical System considered in this paper is sketched in

Fig. 2 and it is based on the following considerations.
1) The diffusion-based MC channel is in a three-dimensional
space indexed by the three axes , , and it has infinite
extent in all three dimensions. This space is filled with a
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Fig. 2. Sketch of the physical realization of the diffusion-based MC system.

fluidic medium having viscosity . The fluidic medium
does not have flow currents or turbulence; therefore, the
propagation of the molecules between the transmitter and
the receiver is solely realized by the Brownian motion.

2) All the molecules in the system, which are emitted by the
transmitter, are indistinguishable and equivalent to spher-
ical particles of radius andmass , where , being
the distance between the transmitter and the receiver in the
diffusion-based MC system. As a consequence, from now
on we will refer to particles when talking about molecules
in the physical system.

3) The transmitter is considered point-wise (size equal to
zero) and at location in the 3-D space.

4) Once emitted from the transmitter, every particle moves in-
dependently from the others and according to its Brownian
motion in the fluidic medium. The Brownian motion of a
molecule is referred to as the random motion of the parti-
cles suspended in a fluid and its formulation according to
the Langevin equation [23] states that the location of
the particle at time along any of the 3-D axes , ,
obeys the following stochastic differential equation:

(1)

where is the particle mass, and are
the second and first time derivative operators, respectively,
is the viscosity of the fluid, the radius of the par-

ticle, and is a random process whose probability den-
sity function is Gaussian and has correlation function

given by

(2)

where is the average operator, is the Boltzmann
constant, is the absolute temperature of the fluid, consid-
ered homogeneous throughout the space, and is equal
to 1 if and zero otherwise; is the Dirac delta
function.

5) The receiver detects a signal which is proportional to the
concentration of the incoming particles. The receiver loca-
tion is at a distance from the transmitter.

In the following, the components included in the phys-
ical system are described in light of the aforementioned
considerations.
The Transmitter processes the messages from the information

source and produces a signal suitable for the transmission over
the channel. The transmitted signal, denoted by ,1 is here de-
fined as the number of particles emitted into the space as
a function of the time :

(3)

At the time of emission of a particle, denoted by , its location
corresponds to the location of

the transmitter :

(4)

where is the vector of the 3-D coordinates of
the transmitter. is here an index assigned to each particle on
the basis of the order in which they are emitted. This index
serves only for the mathematical formulation of their propaga-
tion through the Langevin equation in (1), while, as mentioned
above, particles are identical and indistinguishable in the phys-
ical system.
The Channel propagates the signal from the transmitter to the

receiver by means of molecule diffusion, which is the result of
the collective translation by Brownian motion of many particles
from an area in which they are more dense to an area of lower
density. This results in the propagation of the particles emitted
by the transmitter throughout the 3-D space. This propagation
can be expressed as the translation of the 3-D coordinates from
the location of the transmitter to a location at time
computed by applying (1) to each particle from the set

:

(5)

1For the information capacity analysis of this communication system, the
transmitted signal is considered as a band-limited random process whose
value at every time instant is a realization of the random variable . As a
consequence, the entropy of is found by decomposing into a band-limited
ensemble of functions, as detailed in Section III-B.
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where is the set containing all the indexes of the particles
emitted by the transmitter from time 0 to time :

(6)

The Receiver reconstructs the messages (sent by the trans-
mitter) from the received signal , which is proportional to the
concentration of incoming particles. In this paper, we assume
an ideal receiver where the received signal is defined as the
time-varying number of particles that are present inside a spher-
ical volume centered at the receiver location and with radius

, where is the distance between the transmitter and
the receiver. This choicemakes the results of this paper indepen-
dent from any specific techniques for the reception (e.g., chem-
ical ligand-binding reception [34]). As a consequence, the re-
ceived signal is expressed as the number of particles emitted
by the transmitter from time instant 0 to time instant whose
location is inside the volume :

(7)

where stands for the cardinality (number of elements) of
the set enclosed in the brackets.

III. INFORMATION CAPACITY OF A DIFFUSION-BASED
MC SYSTEM

The capacity of a communication system in bits per second
is defined as the maximum rate of transmission between the in-
formation source and the destination, where this maximum is
with respect to all possible signals produced by the transmitter
[37]. This is expressed by the general formula from Shannon
[13], which defines the capacity as the maximum mutual infor-
mation between the transmitted signal and the re-
ceived signal with respect to the probability density function

in all the possible values of the transmitted signal:

(8)

The mutual information in bits per second is defined
as

(9)

where is the entropy per second of the transmitted
signal , defined in Section III-B, is the entropy per
second of the transmitted signal given the received signal
, is the entropy per second of the received signal
given the transmitted signal , and is the joint

entropy per second of the transmitted signal and the received
signal .
In the following, we analytically compute the mutual infor-

mation of an MC system, as expressed by (8), by considering
the transmitter, the channel, and the receiver, defined through
(3), (5), and (7), when evaluating (9). From the physical system
defined in Section II, two phenomena play an important role
in the quantification of the mutual information, namely, the
channel memory and the molecular noise, as we highlight in
Section III-A. For this, we propose to divide the computation
of the mutual information into two processes, namely, the
Fick’s diffusion, treated in Section III-B, which captures solely

the effects of the channel memory, and the particle location
displacement, treated in Section III-C, which isolates the effects
of the molecular noise.

A. Molecule Diffusion as Fick’s Diffusion and Particle
Location Displacement

The Langevin equation in (1) is the most general expres-
sion of the molecule diffusion due to the Brownian motion. In
an MC system, it impacts on the communication performance
(mutual information and capacity) through the following two
phenomena.
1) Channel memory: It is the effect of the persistent pres-
ence in the 3-D space of the particles from the moment
they are emitted by the transmitter until infinite time. This
is a consequence of the fact that in the physical system
considered in this paper each emitted particle is subject to
the Brownian motion. For this, each particle wanders ran-
domly in the 3-D space without being destroyed. This is
expressed through a positive probability of having any of
the emitted particles at any time after the emission instant
inside the receiver volume:

(10)

where is given by (6), is the vector with the
location coordinates for the particle at time , and is
the set containing all the space coordinates included in the
receiver volume.

2) Molecular noise: It is the effect of the randomness of the
particle locations in the 3-D space, which results in random
fluctuations of the received signal. This is a consequence of
the random process of the particle locations expressed
in (1). This is expressed by considering the received signal
as a random variable with a generic distribution . Its

expected value is the integral of the expected particle
distribution, denoted by , integrated in the receiver
volume :

(11)

where is the particle distribution at location
and time , whose equation will be defined

in the following.
In this paper, we propose to analyze the impact of the afore-

mentioned phenomena on the mutual information (9) by sep-
arating the molecule diffusion from the Langevin equation (1)
into two processes, namely, the Fick’s diffusion and the particle
location displacement, as shown in Fig. 3. This is possible since
the molecule diffusion expressed by the stochastic differential
equation in (1) and having (3) as input and (7) as output
can be equivalently expressed by the deterministic Fick’s equa-
tion [14] followed by a stochastic process which results in the
assignment of the particle locations in the 3-D space.
The Fick’s equation is a parabolic partial differential equation

[14] in the variable , which is the particle distribution at
location and time . The expression of this
equation for the diffusion-based MC system accounts for the
transmitter as a source of particles at location . This translates



946 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 2, FEBRUARY 2013

Fig. 3. Diagram of the diffusion-based MC system with the Fick’s diffusion and the particle location displacement contributions to the molecule diffusion.

into an additional term, namely, , which corre-
sponds to the number of particles emitted into the space
as a function of the time at the location , where the Dirac
delta is nonzero. We express the Fick’s equation as
follows:

(12)

where is the time derivative operator of the particle dis-
tribution , which corresponds to the expected number of
particles at location and time , and is the Laplacian op-
erator. is the particle diffusion coefficient, whose expression
is as follows:

(13)

where is the Boltzmann constant, is the absolute temper-
ature of the system, is the viscosity of the fluid, and is the
particle radius.
The particle location displacement is expressed through the

stochastic process that randomly assigns the location to each
transmitted particle according to the particle distribution
at each time instant :

(14)

where is given by (6).
The channel memory phenomenon of the molecule diffusion

introduced above is fully captured by the Fick’s diffusion con-
tribution. This is expressed by stating that the probability that
the location of a particle is inside the receiver volume is never
zero from the time instant of the particle emission until infinite
time. This is detailed through the following relation:

(15)

where the integral is performed by spanning the set con-
taining all the space coordinates included in the receiver
volume. is the particle distribution. This is the solution
of the Fick’s equation in case the particles are emitted only at
the time instant :

(16)
The molecular noise phenomenon is isolated into the particle

location displacement contribution, since it contains the sto-
chastic process which contributes to the Langevin equation (1).
This is expressed by noting that the number of the particles

whose location is within the receiver volume at time is
a realization of the particle location displacement, as expressed
in (14).
The cascade of the Fick’s diffusion and the particle location

displacement contributions, as shown in Fig. 3, define a Markov
chain [13] in the variables , , and following the order

. This is justified by the property that and
are conditionally independent given , which is expressed as

follows:

(17)

since is function of from (3) and (12), and the distribution
of is a function of from (7) and (14). The chain rule applied
to the joint entropy of , and states the following [13]:

(18)

Since is a deterministic function of through the Fick’s equa-
tion from (12), the joint entropy per second of , and is
equal to the joint entropy per second of and :

(19)

By applying (18) and (19) to the third expression in (9), we
obtain that the mutual information of the transmitted
signal and the received signal as the sum of the mutual in-
formation of a communication system which includes only the
Fick’s diffusion (mutual information of the transmitted
signal and the particle distribution) and the mutual information
of a system which includes only the particle location displace-
ment (mutual information of the received signal and the
particle distribution), respectively, with the subtraction of the
entropy per second of the particle distribution:

(20)

where we applied the first two definitions of mutual information
from (9) to obtain the last expression.
We provide closed-form solutions to the mutual information

of the Fick’s diffusion and to the mutual information of the par-
ticle location displacement in Sections III-B and III-C, respec-
tively. In Section III-D, we apply (8) and (20) to the results of
the previous sections to obtain a closed-form expression of the
mutual information of the diffusion-based MC system and, ul-
timately, to obtain its capacity.
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B. Fick’s Diffusion Mutual Information

The closed-form expression for the mutual information
in bits per second of the Fick’s diffusion is computed

by applying the following relation:

(21)

where is the entropy per second of the transmitted signal
and is the conditional entropy per second of the

transmitted signal given the particle distribution .
The entropy per second of the transmitted signal is

computed as the entropymeasured in bits per symbol, multiplied
by twice the bandwidth , which corresponds here to the rate
of the symbol transmission in symbols per second. This results
from considering the transmitted signal defined in (3) as a
band-limited ensemble of functions [37] within a bandwidth .
The ensemble has the following expression:

(22)

where the bandwidth is here defined as the maximum
frequency contained in the time-continuous signal (3),
which corresponds to the number of emitted particles as func-
tion of the time . The Shannon–Hartley theorem [13] assures
the equivalence of the expressions in (22) and (3), respectively.
As proven in [37], we can express the entropy per second

of the transmitted signal as the entropy of the en-
semble per degree of freedom in bits per sample multiplied by
twice the bandwidth in samples per second. The entropy of
the ensemble per degree of freedom corresponds to the entropy

of a sample of the time-continuous signal
:

(23)

The distribution of the stochastic process model for the sampled
signal , which allows to compute the capacity through (8),
is assigned in Section III-D as the distribution leading to the
maximum possible mutual information for the MC system con-
strained by the average power consumption for particle emis-
sion at the transmitter.
The conditional entropy per second of the trans-

mitted signal given the particle distribution is computed
as a result of the two following properties of the Fick’s diffu-
sion from (12).
1) Its linearity, which allows to interpret the Fick’s diffusion
block in Fig. 3 as a linear filter having the transmitted signal
as input and the particle distribution as output. As a

consequence, the formula of the entropy loss in linear fil-
ters [9] can be applied to compute the entropy per second

of the particle distribution as the sum of the entropy
per second of the transmitted signal and the inte-
gral of the transfer function Fourier transform [15] of the
Green’s function [24] of the Fick’s diffusion in the portion

of its frequency spectrum that is excited by the trans-
mitted signal :

(24)

2) Its deterministic nature, since (12), in contrast to the ex-
pression in (1), does not contain any stochastic term. For
this, given the transmitted signal as the input of the
Fick’s diffusion, the output particle distribution is com-
pletely known. As a consequence, the conditional entropy
per second of the particle distribution given the
transmitted signal is equal to zero:

(25)

Given the aforementioned properties, the conditional entropy
per second of the transmitted signal given the par-
ticle distribution is computed by applying (24) and (25) to the
following relation [13]:

(26)

which results in the following expression:

(27)

where is the transfer function Fourier transform [15] as
function of the frequency of the Green’s function [24] of the
Fick’s diffusion, expressed by (12). is the bandwidth of the
transmitted signal , which corresponds to the portion of the
frequency spectrum of the transfer function that is ex-
cited by the transmitted signal .
The transfer function Fourier transform [15] as function of the

frequency of the Green’s function [24] of the Fick’s diffusion
from (12) has the following expression:

(28)

where is the distance between the transmitter and the receiver
and is the diffusion coefficient expressed by (13). By applying
(28) to (27), we obtain the closed-form expression of the condi-
tional entropy per second of the transmitted signal
given the particle distribution :

(29)

The closed-form expression for the mutual information
of the Fick’s diffusion is finally computed by sub-

tracting the conditional entropy per second of the
transmitted signal (29) given the particle distribution from
the entropy per second (23) of the transmitted signal .
This results in the following expression:

(30)

where is the entropy of a time sample of .
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C. Particle Location Displacement Mutual Information

The mutual information in bits per second of the par-
ticle location displacement is computed from the following ex-
pression:

(31)

where is the entropy per second of the particle distribu-
tion and is the conditional entropy per second of the
particle distribution given the received signal .
The entropy per second of the particle distribution

is computed from (24) by substituting the expression for the
entropy per second of the transmitted signal from (23)
and by applying (27) and (29) as the solution of the integral in
(24). As a result, the entropy per second of the particle
distribution has the following expression:

(32)

The conditional entropy per second of the particle
distribution given the received signal is computed similarly
to (23) in Section III-B. Under the assumption that the realiza-
tions of the stochastic process are independent [29] for dif-
ferent time instants, and band limited within a bandwidth ,
we express the entropy per second as the entropy of

in bits, where is the received signal per time sample,
multiplied by the maximum time sample rate in 1/sec given
by the Shannon–Hartley theorem [15]:

(33)

The received signal per time sample is defined as

(34)

where is the number of independent measures of the
number of particles inside the receiver volume that can be per-
formed within a time sample, for which we consider a quasi-
constant particle distribution. is the bandwidth of the trans-
mitted signal . We assume independent measures when they
are taken at time instants spaced by an interval , as we consid-
ered in [32]. The time interval is equal to the squared linear
dimension of the receiver volume divided by the diffusion
coefficient [32]:

(35)

The conditional entropy of the particle distribution
given the received signal per time sample is defined as

(36)
where is the entropy of the particle distribution
given a value for the received signal per time sample ,

is the probability density of the received signal per time
sample and is the average value operator with respect to
the probability density of the value .
The entropy is based on the probability density

of the possible values of the particle distribution

at the receiver given a value for the received signal per time
sample through the formula:

(37)

With the goal of having a closed-form expression for this proba-
bility density, we use the following assumptions, with reference
to our previous work on the diffusion noise in MC systems [32].
1) The actual number of particles inside the receiver
volume for every measurement is a random process whose
average value is the average particle distribution at the
receiver within a time sample multiplied by the size

of the receiver volume:

(38)

Since the particle distribution is the output of the Fick’s
diffusion, whose input is the stationary stochastic process
of the number of the emitted particles for every time
sample, by applying the theory of the random processes
through linear filters [29], we obtain

(39)

where is from (28) and is the average operator.
2) It is unlikely to have two particles occupying the same
location in space at the same time instant. In other words,
the probability of having a distance equal to zero between
two particles is zero:

(40)

where is given by (6), is the Euclidian distance
operator, and and are two particles previously emitted
by the transmitter, which are subject to the Brownian mo-
tion. This assumption is justified by the independence of
the Brownian components in the movement of different
particles in the space.

3) An event concerning a particle which occupies a location
in space is independent from any event of the same kind
occurring at any other space location. This assumption is
justified by the property of the Wiener process [14] under-
lying the particle Brownian motion of having independent
realizations. This implies that the location of a particle is
independent from the location of any other particle. As a
consequence, the events concerning the location of parti-
cles in the space have the property of memorylessness.

4) The occurrence rate of particle locations in the space is pro-
portional to the particle distribution at the receiver location
.

Under these assumptions, the resulting single measurement ,
which corresponds to the number of particles inside the receiver
volume, is a volumetric Poisson counting process [29], whose
rate of occurrence corresponds to the average value of the par-
ticle distribution within a time sample:

(41)

According to the theory of Bayesian inference [20], the esti-
mator of the rate of occurrence of a Poisson counting process
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given a series of measurements of the output of the process,
which corresponds to a value of the received signal per time
sample defined in (34), follows a Gamma distribution with
parameters and :

(42)

where is the bandwidth of the transmitted signal and
is the time interval in which we consider a quasi-constant par-
ticle distribution. The probability density of the estimator cor-
responds to the probability density of the possible
values of the particle distribution at the receiver given a
value for the received signal in a time sample [20]:

(43)

where is the gamma function [25], defined as follows:

(44)

The entropy of the particle distribution given a
value for the received signal per time sample corresponds to
the computation of the formula in (37) by using the expression
of the probability density from (43), thus obtaining
the following expression [20]:

(45)

where is the digamma function.
For the final computation of the conditional entropy ,

expressed in (36), we apply a formulation of the Jensen’s in-
equality [29], which is based on the consideration that
is a concave function of , since its expression in (45) is a sum

of concave or linear components.
1) The first term is linear.
2) The second term is concave in since the gamma
function has the property of being log-concave [25].

3) The third term is concave in when the value
of is sufficiently high . This can be proven
from the decomposition of the digamma function as fol-
lows [10]:

(46)

By taking the limit of as , we obtain

(47)

which is a concave function of .
For the aforementioned considerations, the Jensen’s in-
equality [29] applied to (36) states that the average value

of the entropy as function of
the value for the received signal per time sample is less or
equal than the entropy as function of the average
value of the received signal per time sample :

(48)

As a consequence, by substituting the left-hand side of (48)
for the computation (36) of the conditional entropy of
the particle distribution given the received signal per time
sample with the right-hand side of (48), we provide a higher
bound to the real value of . This results in a higher
bound to the conditional entropy of the particle distri-
bution given the received signal in (33) and, consequently,
in a lower bound to the mutual information of the trans-
mitted signal and the particle distribution in (31). Since the ca-
pacity is the maximum mutual information between
the transmitted signal and the received signal , as expressed
in (8), the substitution of with its lower bound in the
computation of the mutual information expressed in
(20) results in a lower bound to the capacity of anMC system.
We consider this in agreement with the purpose of this paper,
since it allows expressing achievable performance of an MC
system with a closed-form mathematical expression, even if it
is an underestimate of the theoretical capacity .
The average value of the received signal per time

sample is given by (38) and (39). Since the distribution of
particles is a deterministic function of the transmitted signal
, whose average value per time sample is , the value

of becomes

(49)

As stated previously, the expression for the conditional en-
tropy can be approximated with the right-hand side of
(48), whose expression is found by applying the average value

of the received signal per time sample to (45):

(50)

The final approximated expression for the conditional entropy
is found by substituting the expression in (49). This

becomes

(51)

where is the bandwidth of the transmitted signal , is the
time interval in which we consider a quasi-constant particle dis-
tribution, is the digamma function, is the diffusion coef-
ficient, is the distance between the transmitter and the receiver,
and is the radius of the spherical receiver volume .
The closed-form expression for the mutual information

of the particle location displacement is finally com-
puted by subtracting the conditional entropy of the
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particle distribution given the received signal per time
sample from (51) multiplied by two times the bandwidth
of the transmitted signal from the entropy (32) of the
particle distribution . This results in the following expression:

(52)

D. Capacity of the Diffusion-Based MC System

The capacity of the diffusion-based MC system is computed
from (8), by maximizing the mutual information , ex-
pressed in Section III-D1 with respect to the probability density
function of the transmitted signal . It is common in
information theory [37] to compute the maximum probability
density function subject to a constraint on the average
power of the transmitted signal defined in (3). As explained in
Section III-D2, the expression for this average power is here re-
lated to the thermodynamic energy spent for the emission of par-
ticles in the MC signal transmission. Finally, in Section III-D3,
we obtain the closed-form capacity expression.
1) Mutual Information: The expression for the mutual infor-

mation of the diffusion-based MC system is obtained
by applying the expression of the mutual information of
the Fick’s diffusion from (30), the mutual information
of the particle location displacement from (52) and the entropy

of the particle distribution from (32) to the formula in
(20). We obtain the following expression:

(53)

where is the bandwidth of the transmitted signal , is
the time interval in which we consider a quasi-constant particle
distribution, is the digamma function, is the diffusion
coefficient, is the distance between the transmitter and the
receiver, and is the radius of the spherical receiver volume
.
2) Average Thermodynamic Power: Given the physical

system from Section II considered in this paper, the average
power necessary for signal transmission corresponds to the en-
ergy necessary to emit the average number of particles
per time sample, divided by the duration of a time sample. In
thermodynamics, this energy is defined as enthalpy.

Definition 3.1: The enthalpy [40] is the energy necessary
to emit particles in the physical system and to heat these par-
ticles up to a temperature when the system has the pressure
and the volume . The considerations detailed in Section II

of having spherical particles with radius independently
and randomly moving in the space are in agreement with the
approximation of the system as an ideal gas. According to the
ideal gas theory [17], the enthalpy is expressed through the fol-
lowing formula:

(54)

where and are the pressure and the volume, and is the ab-
solute temperature of the physical system, is the Boltzmann
constant.
When associated with the transmitter of the MC system, the

enthalpy is the energy necessary for communication if parti-
cles are emitted into the space.
In this paper, we define the average thermodynamic power
as the enthalpy variation in a time sample divided by

the time sample duration . As a consequence, the av-
erage thermodynamic power quantifies the energy neces-
sary to emit particles per time sample divided by the
time sample duration , at a temperature . This is given
by the following expression:

(55)

where the enthalpy variation is computed from (55) by
taking into account that no variations in the pressure and the
volume occur in the physical system, and the absolute tem-
perature is considered a constant parameter with respect to
the time .
As a consequence, a constraint on the average thermody-

namic power spent by the transmitter corresponds to a con-
straint in the average number of emitted particles ac-
cording to the following expression:

(56)

3) Capacity: In the expression of (53), only the
term depends on the probability density function

. Therefore, the capacity is achieved (8) for a proba-
bility density function leading to the maximum entropy

.
The distribution with the maximum possible entropy

in the number of emitted particles per time sample
constrained on its average value , as expressed in (56),
is the exponential distribution [13] whose rate corresponds
to :

(57)

The entropy of the number of emitted particles per time
sample is, therefore, [13]

(58)
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Fig. 4. Capacity in relation to the bandwidth and for different values of the transmitter–receiver distance .

By applying (56) and (58) to the expression of the mutual
information from (53), we obtain the expression of the
capacity of the diffusion-based MC system:

(59)

where is the average thermodynamic power spent by the
transmitter, is the Boltzmann constant, is the absolute
temperature of the system, is the bandwidth of the trans-
mitted signal , is the time interval in which we consider a
quasi-constant particle distribution, is the digamma func-
tion, is the diffusion coefficient, is the distance between the
transmitter and the receiver, and is the radius of the spher-
ical receiver volume .

IV. NUMERICAL RESULTS

In this section, we provide a numerical evaluation of the
closed-form expression for the diffusion-based MC capacity
obtained in Section III-D. All the results are computed for
a common set of parameters, whose values are assigned as
follows. The radius of the receiver volume , which
we assume to be spherical, is set to 10 nm. The temperature
of the system is set to a standard room temperature of 25
and the diffusion coefficient is set [31] to . The
Boltzmann constant [21] is .

A. Capacity Versus Bandwidth

The capacity of a diffusion-based MC system is shown in
Fig. 4 in relation to the bandwidth and different values of
the transmitter–receiver distance . We evaluate the capacity in
bits per second for a bandwidth ranging from 20 to 40 Hz
and different lines refer to different distance values, from 50
to 500 . The choice of the values for the bandwidth can be
justified from a biological viewpoint, since, according to bio-
chemical studies [28], the neurons in our brain communicate
through the exchange of molecules (and their diffusion between
the synapses) at a frequency of around 20 Hz for the processing
of general information and around 60 Hz for the processing of
visual images. We restricted our range to a maximum of 40 Hz
in order to visualize better the intersection of the curves around
26 Hz. The average transmitter power is set to ,
equivalent to 1 pW. This value should not be compared to the
transmitted power values used for electrical devices, since the
average transmitted power is a thermodynamic quantity. Note
also that this is only a reference value, since so far we do not
know how much average thermodynamic power a transmitter
nanomachine will be able to provide. According to the obtained
results, the capacity of an MC system with the chosen parame-
ters can achieve a value close to 3 kilobits per second at a dis-
tance of 500 and for a bandwidth of 40 Hz. This is a theoret-
ically achievable maximum value, which reveals the maximum
potential of MC. Further investigation on information coding
schemes is required in order to provide achievable bit rates re-
lated to specific MC implementations.
Fig. 4 shows the trend of the MC capacity, which is mono-

tonically increasing as the bandwidth increases from 20 to 40
Hz for all the given values of the transmitter–receiver distance
. The capacity values range from 1.2 to 2.4 kilobits per second
for a distance of 50 and between a few bits per second
and 3 kilobits per second for a distance of 500 . For a
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Fig. 5. Capacity in relation to the transmitter–receiver distance and for different values of the bandwidth .

bandwidth value within 20 and 26 Hz, the MC capacity values
corresponding to the lowest transmitter–receiver distance are
higher than the values corresponding to other transmitter–re-
ceiver distances and, as this distance increases, the MC capacity
values decrease monotonically. For a bandwidth value higher
than 26 Hz, higher MC capacity values correspond to higher
transmitter–receiver distances . This behavior, which is appar-
ently counterintuitive, can be explained as a consequence of the
interactions between the channel memory and the molecular
noise contributions in the second and third term of the first line
and in the second, third, and fourth lines of (59), respectively.
For low bandwidth values (lower than 26 Hz), the channel
memory terms tend to outperform the molecular noise terms
and the MC capacity values tend to be proportional to the
transmitter–receiver distance (higher MC capacity when lower
transmitter–receiver distance). For high bandwidth values
(higher than 26 Hz), the molecular noise terms outperform the
channel memory terms and the MC capacity values become in-
versely proportional to the transmitter–receiver distance (higher
MC capacity when higher transmitter–receiver distance).

B. Capacity Versus Distance

In Fig. 5, we show the capacity in relation to the distance
between the transmitter and the receiver locations and different
values of the bandwidth . We evaluate the capacity in bits per
second for a distance ranging from 1 to 500 . The different
lines refer to different bandwidth values, from 30 to 39 Hz.
We restricted these numerical results to this narrow bandwidth
interval in order to better visualize the differences in the MC
capacity for the considered values of the distance between the
transmitter and the receiver. The average transmitted power
is set to 1 pW.
The curves in Fig. 5 show a monotonically increasing trend

of the capacity as function of the transmitter–receiver distance

ranging from 1 to 50 , while they show a monotonically de-
creasing value for a distance ranging from 50 to 500 . The ca-
pacity values range from a value around 1.9 kilobits per second
and a 1.85 bits/s for a bandwidth of 30 Hz and between 2.45
and 2.3 kilobits per second for a bandwidth of 39 Hz. The dif-
ferent behavior when the distance ranges from 1 to 50 with
respect to when the distance ranges from 50 to 500 can
be explained as a consequence of the interactions between the
channel memory and the molecular noise contributions, simi-
larly to Fig. 4: as the distance increases from 1 to 50 , the
contribution coming from the channel memory gets lower and
the capacity values tend to increase, until reaching a distance
of 50 , where the contribution coming from the molecular
noise becomes relevant and decreases the capacity values as the
distance is further increased.

C. Capacity and Average Transmitted Power

In Fig. 6, we show the capacity as a function of the band-
width ranging from 30 to 40 Hz and the average transmitted
power . Similarly to Fig. 5, we restricted these numerical
results to this narrow bandwidth interval in order to better vi-
sualize the differences in the MC capacity for the values of the
average transmitter power. Different lines refer to different av-
erage transmitted power values, from 1 to 10 pW. The trans-
mitter–receiver distance is here set to 50 .
Fig. 6 shows for all the curves a monotonic increasing trend

as the bandwidth increases from 30 to 40 Hz. The capacity
values range from a value between 1.92 and around 2.5 kilo-
bits per second for an average transmitted power of 1 pW and
between 2.05 and 3.7 kilobits per second for an average trans-
mitted power of 10 pW. The MC capacity values are higher for
higher values of the average transmitted power. Even if the av-
erage transmitted power is applied with constant increments of
1 pW from a value of 1 to 10 pW, the increment in the values of
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Fig. 6. Capacity in relation to the bandwidth and for different values of the average transmitted power .

the capacity is not constant and it is higher for lower values of
the average transmitted power. This behavior can be explained
through the dependency of the molecular noise terms in the
second, third, and fourth lines of (59) with respect to the average
transmitted power. As the average transmitted power increases,
we have an increase in the first positive term in the first line of
(59), but, at the same time, we have an increase in the aforemen-
tioned molecular noise terms.

V. CONCLUSION

MC is a promising paradigm for communication in nanonet-
works [1], where the applicability of classical communication
technologies is limited by the constraints posed by the nan-
odomain. The objective of this paper is to provide a closed-form
mathematical expression for the information capacity of an MC
system based on free molecule diffusion (diffusion-based MC).
Unlike previous contributions from the literature, the provided
information capacity expression takes into account the twomain
effects of the molecule diffusion channel, namely, the memory
and the molecular noise. The capacity analysis in this paper is
also independent from any specific coding scheme by assuming
that the transmitter can send in general any continuous time
signal which complies to a constraint on the average transmitted
power.
The closed-form diffusion-based MC capacity is obtained

here by combining two separate contributions, namely, the
Fick’s diffusion and the particle location displacement, which
separately capture the effects of the channel memory and the
molecular noise, respectively. The obtained capacity expres-
sion is a function of the medium diffusion coefficient, the
system temperature, the distance between the transmitter and
the receiver, and the bandwidth of the transmitted signal. The
MC capacity is also expressed as a function of the average

transmitted power, which corresponds to the thermodynamic
power spent at the transmitter for molecule emission. Nu-
merical results show interesting properties of the relationship
between diffusion-based MC capacity and parameters such as
the distance, the bandwidth, and the average thermodynamic
power.
The numerical results have the validity of an upper bound

to the communication performance of a diffusion-based MC
system. Further investigation will be carried out in the future on
finding more stringent upper bounds to the performance (e.g.,
using a given coding scheme at the transmitter). According to
the provided results, capacity values of a few kilobits per second
can be reached within a distance of tenth of micrometer between
the transmitter and the receiver and for an average transmitted
power around 1 pW (Note that this power value should not be
compared to the transmitted power values used for electrical de-
vices, since the transmitted power in an MC system is a thermo-
dynamic quantity).
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