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Abstract—The spatial correlation of visual information re-
trieved from distributed camera sensors leads to considerable
data redundancy in wireless video sensor networks, resulting
in significant performance degradation in energy efficiency
and quality-of-service (QoS) satisfaction. In this paper, a cor-
relation-aware QoS routing algorithm (CAQR) is proposed to
efficiently deliver visual information under QoS constraints by
exploiting the correlation of visual information observed by
different camera sensors. First, a correlation-aware inter-node
differential coding scheme is designed to reduce the amount of
traffic in the network. Then, a correlation-aware load balancing
scheme is proposed to prevent network congestion by splitting the
correlated flows that cannot be reduced to different paths. Finally,
the correlation-aware schemes are integrated into an optimization
QoS routing framework with an objective to minimize energy con-
sumption subject to delay and reliability constraints. Simulation
results demonstrate that the proposed routing algorithm achieves
efficient delivery of visual information under QoS constraints in
wireless video sensor networks.

Index Terms—Quality-of-service (QoS), routing, spatial correla-
tion, video compression, wireless video sensor networks.

I. INTRODUCTION

R ECENT advances in imaging hardware and wireless
communications have fostered the use of video sensors

in various distributed sensing applications [10], [16]. By in-
tegrating imaging sensor, embedded processor, memory, and
wireless transceivers on a single device, a video sensor node is
able to retrieve, process, store, and transmit visual information
under limited power supply. Networks of interconnected video
sensor nodes are referred to as wireless video sensor networks
(WVSNs) [2], [24], in which multiple video sensors collabo-
rate with each other to provide enriched observations of the
environment. WVSNs can enhance a lot of applications such
as environmental monitoring, traffic enforcement, and remote
health care. Most of these applications require that visual infor-
mation be delivered under predefined quality-of-service (QoS)
constraints. This is a challenging task because video sensors
are constrained in battery and processing capabilities, while the
delivery of visual information is resource-demanding.
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Many recent works have been proposed for providing QoS
support at different layers of the communication stack, in-
cluding QoS routing algorithms [9], QoS MAC protocols [19],
and cross-layer QoS solutions [21]. These works, however,
only try to meet QoS requirements by properly regulating the
network traffic, while the total amount of data injected into the
network cannot be reduced. Therefore, It is still resource-de-
manding to deliver large amounts of visual information in
WVSNs. To encounter this problem, collaborative multimedia
in-network processing [2] is suggested to reduce the traffic
volume by allowing sensor nodes to filter out uninteresting
events locally or coordinate with each other to aggregate
correlated data. In WVSNs, correlation exists among the obser-
vations of video sensors with overlapped field of views (FoVs)
[6], leading to considerable data redundancy. It is highly desir-
able to remove such redundancy to improve the performance
of WVSNs [2].
To enhance energy efficiency, the joint compression/ag-

gregation and routing approach has been studied for sensor
networks that deal with scalar data. This approach can be
classified into three categories [22]: distributed source coding
(DSC), routing driven compression (RDC), and compression
driven routing (CDR). DSC aims to allocate the optimal coding
rates to minimize the total communication cost of transporting
correlated information over shortest paths. In RDC, sensors
send data along the preferred paths to the sink while allowing
for opportunistic aggregation wherever the paths overlap. In
contrast, CDR let nodes select the paths that allow for the max-
imum possible aggregation at each hop. These works cannot
provide QoS supports such as timeliness and reliability, and
thus are not applicable to WVSNs.
In this paper, we propose a correlation-aware QoS routing al-

gorithm (CAQR) for the efficient delivery of visual information
inWVSNs. First, based on the spatial correlation of visual infor-
mation in our previous work [6], a correlation-aware inter-node
differential coding scheme is proposed to reduce the amount of
traffic in the network, where differential coding is performed
between intra coded frames generated by correlated sensors.
Then, a correlation-aware load balancing scheme is proposed
to prevent network congestion by splitting the correlated flows
that cannot be reduced to different paths. By integrating these
correlation-aware schemes, an optimization QoS routing frame-
work is proposed with an objective to minimize sensors’ energy
consumption under delay and reliability constraints. It is shown
that by integrating the corrrelation-aware schemes, the proposed
algorithm can achieve energy efficient QoS communication in
WVSNs.

II. RELATED WORK

Joint compression/aggregation and routing has been pro-
posed to deal with scalar data in sensor networks. In [22], the
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performances of different routing with compression schemes
are analyzed. The problem of correlated data gathering is
studied in [5] and [18], where the goal is to minimize the total
communication cost in the network. The Minimum Fusion
Steiner Tree (MFST) routing algorithm [20] is proposed for
energy efficient data gathering with aggregation, in which
both costs for data transmission and data fusion are optimized.
Although these results work well for scalar data, new solutions
are needed for the delivery of visual information which has
high bandwidth demand and QoS requirements.
Most QoS routing protocols for wireless sensor networks are

designed to support two performance metrics: timeliness and
reliability. The SPEED [13] protocol achieves end-to-end soft
real-time communication by maintaining a desired delivery
speed across the sensor network through nondeterministic
geographic forwarding. While SPEED does not consider en-
ergy consumption, a real-time power-aware routing protocol
(RPAR) [4] is designed that dynamically adjusts transmission
power and routing decisions to meet the packet deadlines.
An extension of the SPEED protocol, the MMSPEED [9]
provides probabilistic reliability guarantee through multipath
forwarding. To support the high data rate traffic of video
sensors, the directional geographical routing algorithm (DGR)
[3] constructs multiple disjoint paths for a video sensor by
adjusting the deviation angle at each hop, and the data from a
video sensor is split and forwarded through these disjoint paths.
These solutions only try to provide QoS guarantee by properly
distributing network traffic, and it is still resource-demanding
to deliver intensive visual information in WVSNs.

III. CORRELATION OF VISUAL INFORMATION

In a densely deployed WVSN, there exists correlation among
the observations from video sensors with overlapped FoV. We
first study the correlation characteristics of visual information in
WVSNs, and then discuss video in-network compression mech-
anisms for reducing traffic redundancy.

A. Correlation of Visual Information in Sensor Networks

A video sensor can only observe the objects within its FoV.
As shown in Fig. 1(a), the FoV of a video sensor is determined
by four parameters: the location of the video sensor , the
sensing radius , the sensing direction , and the offset
angle . The sensing process of a video sensor is character-
ized by projection from a 3-D scene to a 2-D image, for which
the key parameter is the sensor’s focal length . To simplify
the problem, we consider the case that all the video sensors in
a network are homogeneous (i.e., they share the same values of

, and ). For two sensors and with FoVs and
, suppose at a same time, their observed images are and
, respectively. and are correlated if and are

overlapped with each other. We introduce two metrics to char-
acterize the correlation between video sensors.
1) Overlapped Ratio of FoVs: The overlapped ratio of FoVs

for and , denoted by , is defined as

(1)

where is the overlapped area of
and [Fig. 1(b)], and is the area of . If two video

Fig. 1. (a) FoV. (b) Overlapped FoVs.

sensors have large overlapped ratio of FoVs, large portions of
the two observed images are correlated, and they are likely to
observe the same event concurrently.
2) Spatial Correlation Coefficient: We also use the spatial

correlation coefficient in our previous work [6], [27]. If two
video sensors and can both observe an area of interest

, a spatial correlation coefficient was derived as
a function of the positions and sensing directions

of the two sensors and the overlapped FoV :

(2)

This is a normalized metric ranging from 0 to 1 and it indicates
the degree of correlation between the two sensors.
One promising property of the spatial correlation coefficient

is its capability of estimating the coding efficiency among
correlated video sensors. Consider two correlated images (
and ) from sensors and . Each sensor can com-
press/encode its observed image independently, and we denote
the resulting coding rates by and . Since
and are correlated, we can take as a reference image,
and compress using as its prediction. This is referred
to as differential coding or predictive coding. For spatially cor-
related frames, differential coding could be achieved through
inter-frame prediction such as motion estimation or disparity
compensation [25] in H.264/AVC. Suppose the rate of
becomes after differential coding. We define a
differential coding efficiency as the percentage of rate saved by
differential coding compared to individual coding:

(3)

As entropy is the lower bound for coding rate, an estimation
of the differential coding efficiency can be obtained from the
entropies of the image sources. We define an estimated differ-
ential coding efficiency as

(4)

where is the mutual information between and .
It is shown in our previous work [6], [27] that is propor-
tional to both the overlapped ratio of FoVs and the spatial
correlation coefficient . We consider the case that the in-
dividual entropies are the same for all sensor nodes

. Consequently, is proportional to both and
, and will be high when both and are large.
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3) Costs for Estimating Correlation: To estimate the over-
lapped ratio of FoVs (1), we just need the four FoV parame-
ters [ , and in Fig. 1(a)]. The correlation coefficient
in (2) could also be easily calculated from the FoV parameters
and focal lengths of cameras as shown in [6]. With the corre-
lation coefficient, the differential coding efficiency (4) is easily
calculated as shown in [27]. Both the FoV parameters and the
focal lengths could be estimated through calibration methods
for distributed camera networks, such as [7]. In most cases, the
video sensors stay still, so the estimation of correlation metrics
just needs to be performed during network deployment. When
a sensor changes its position or new sensors are added to the
network, the correlation metrics can be updated by exchanging
a few parameters. Estimating the correlation metrics does not
require expensive communication or computation resources.

B. Video In-Network Compression

Due to the huge size of raw visual information, images
and video sequences are compressed prior to transmission. A
lot of standardized techniques can be applied for image and
video coding, such as JPEG/JPEG 2000 and H.26x/MPEG.
These standards are based on the predictive coding concept.
In contrast, distributed video coding (DVC) [11] allows for
separate encoding of correlated sources and joint decoding at
the end user. DVC is introduced to reduce the computational
complexity at the encoders, however, there is a lack of practical
implementations of DVC in sensor networks. On the other
hand, there are many studies on reducing the computational
complexity on low-power DSPs for standardized coding tech-
niques. For these reasons, we consider the standardized coding
techniques in our work.
Standardized coding techniques can be classified into intra

coding and inter coding. Intra coding reduces the redundancy
within an image, while inter coding (also called differential or
predictive coding) reduces the redundancy among multiple im-
ages. Accordingly, a compressed video sequence usually con-
sists of periodical intra coded reference (I) frames and inter
coded frames between reference frames. Inter coding has much
higher coding efficiency than intra coding, consequently, intra
coded frames have much larger sizes than inter coded frames.
Intra frames are introduced periodically to reduce the propaga-
tion of packet losses/errors or to start an independent piece of
video stream.
In aWVSN, correlated video sensors can cooperate with each

other and remove the redundancy among their observations. We
can perform differential coding on the intra coded (I) frames be-
tween correlated sensors. Since video sensors that are out of the
communication ranges of each other can still observe a common
scene [24] [Fig. 1(b)], the coding between correlated sensors
could be integrated in the network layer operations. Accord-
ingly, flows generated by video sensors could be classified into
two categories:
1) Intra flows: Flows of intra coded video frames. The amount
of traffic for an intra flow might be further reduced by dif-
ferential coding among correlated sensors.

2) Inter flows: Flows of inter coded video frames, for which
the amount of traffic can hardly be further reduced.

Both types of flows need to be forwarded to the sink effi-
ciently under QoS constraints.

C. Energy Consumption Models

The energy consumption for both video communication and
processing are not negligible. We first consider a one-hop com-
munication case. Suppose one sensor node transmits bits of
data over a distance to another node. The energy consumption
for transmission is

(5)

while the energy consumption for receiving these bits is

(6)

where is the energy needed by the transceiver circuitry
to transmit or receive one bit, is a constant for communi-
cation energy, and is the path loss exponent. The total energy
consumption for transmitting and receiving bits over a distance
is given by

(7)

The energy consumption for processing can be modeled as a
function of supply voltage. Suppose the execution of a task con-
sisting of clock cycles, the energy consumption for pro-
cessing is estimated as

(8)

The first term in (8) is the switching energy, where is
the total capacitance switched by the computation per cycle,
and is the supply voltage. The second term stands for the
leakage energy, where is the clock speed, and , and
are processor-dependent parameters [26].
The processing burden in WVSNs mainly comes from the

video encoding and decoding process. The computational com-
plexity of standardized video codecs has been studied a lot in
the literature. From the experimental results in [12] and [14],
the number of clock cycles for encoding or decoding a video
frame could be estimated. Together with the processor-depen-
dent parameters in (8), we can estimate the energy consumption
for encoding and decoding video frames.

IV. CORRELATION-AWARE QOS ROUTING

We propose a correlation-aware QoS routing algorithm
(CAQR) for the delivery of visual information in WVSNs. By
utilizing the correlation characteristics of video sensors, the
algorithm achieves energy-efficient delivery of visual informa-
tion while satisfying QoS constraints. CAQR is a distributed
routing solution for WVSNs, and its components are designed
to be implemented on each sensor node. In the following, we
explain the CAQR algorithm in detail.

A. Correlation Groups Construction

According to the analysis in Section III, video sensors with
large overlapped FoVs are likely to report the same event con-
currently, and they are likely to have high differential coding
gains. We introduce a centralized preprocessing step to cluster
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Fig. 2. Correlation-aware differential coding.

video sensors with large overlapped FoVs into correlation
groups.
Let each video sensor report its focal length and FoV param-

eters to the sink. After receiving these parameters, the sink cal-
culates the overlapped ratio of FoVs (1) between any two
video sensors. We apply the hierarchical clustering algorithm in
[15]. By using the overlapped ratio of FoVs as a similarity
metric, the hierarchical clustering algorithm groups sensors with
large overlapped ratio of FoVs together. After running the clus-
tering algorithm, the sink broadcasts the results of clustering and
assigns a group ID for each group. Each video sensor will be no-
tified its group ID and other sensors’ sensing parameters in the
same correlation group. The construction of correlation groups
just need to be performed once while deploying the network. In
the following steps of the routing algorithm, correlation-aware
operations are performed among video sensors that belong to
the same correlation groups.

B. Intermediate Node Selection for Correlation-Aware
Differential Coding

We introduce a correlation-aware inter-node differential
coding scheme for the routing of intra flows. As shown in
Fig. 2, sensor needs to find a route for its intra frame
to the sink. It could find another candidate sensor in the same
group that is closer to the sink to perform differential coding.
Suppose sensor is in the same group as and its distance
to the sink is closer than ). From our correlation
model, we can estimate the differential coding efficiency
in (4). If the size of the intra frame is , the saved bits from
differential coding can be estimated as . We introduce
an energy gain to evaluate the potential energy efficiency of
differential coding between and :

(9)

The numerator in the gain function is the communication en-
ergy for the bits that are saved from differential coding. It stands
for the benefits brought by differential coding. This communi-
cation energy is not only related to the number of saved bits, but
also related to the distance and number of hops from sensor
to the sink.We can estimate using the estimated number of
hops from node to the sink and the average one-hop
distance , given by

(10)

where is obtained from (7) and can be
estimated by

(11)

To estimate the average one-hop distance between nodes in
the network , node can acquire all its one-hop neigh-
bors’ positions through a few message exchanges. Also
could be estimated as the sample arithmetic mean of the dis-
tance between and all its one-hop neighbors. This estima-
tion method involves little cost. It will be representative if the
density of sensors are similar across the whole network.
The denominator in (9) is the energy costs for performing

differential coding, i.e., the processing energy of differential
coding at sensor , including the decoding of the intra frame
and the differential coding of the intra frame with respect
to the frame at . The energy for processing is related to
video frame size and hardware. This term could be estimated
from (8) using the parameters in [12] and [14].
For the routing of an intra frame generated at node in

correlation group , we intend to find the best intermediate
node in the same group so that the energy gain is maximized.
This problem can be formulated as follows.
Differential coding-based intermediate node selection

(DCIS)

(12)

(13)

A node for differential coding should satisfy two condi-
tions: 1) is closer to the sink than , which is given as

; 2) the energy gain for differential coding is larger
than 1. Among all the nodes in group that satisfy these
two conditions, the node that generates the maximum energy
gain is selected as the intermediate node.
After determines for differential coding, it sends a

request message to , and will send back a reply mes-
sage. In this way, becomes an intermediate destination for
the intra frames generated by . The intra frames from will
be forwarded to first; will further compress the frame
and then forward it to the sink.

C. QoS Guaranteed Next-Hop Selection

Each node distributively select the optimal next-hop with
the objective of minimizing energy consumption and satisfying
QoS requirements in delay and reliability. Table I lists the
relevant notations and variables for this algorithm.
Suppose node needs to forward a video frame to the desti-

nation . ( can be either an intermediate node for differential
coding or the sink.) We define the forwarding neighbor set of
node as a set of its neighbors that are closer to the sink than
itself, denoted by . The next hop node is selected from ac-
cording to the following rules.
Distributed correlation-aware QoS routing (DCR)

(14)

(15)
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TABLE I
NOTATIONS AND VARIABLES

(16)

(17)

(18)

(19)

The locally optimal next hop is the node that results in
the minimum energy consumption under local delay, local re-
liability, and correlation-aware load balancing requirements. A
channel coding rate for the link from to , is also se-
lected from a set of predefined rates .
The objective is to minimize energy consumption. As shown

in (15), the minimization term is the energy consumption for
transmitting a packet of L bits data and header with channel
coding rate over a distance of . Equations (16) and (17)
are the local delay requirements, (18) is the local reliability re-
quirement, and (19) is the constraint for correlation-aware load
balancing.
1) Local Delay Requirements: We use a geographic based

mechanism to map end-to-end delay requirements to local delay
requirements. Suppose a video flow at node needs to be de-
livered to the destination within time . The local delay
constraint, , is given as

(20)

where is the distance from node to the destination, and
is the distance from node to the destination.

We consider a contention-free MAC in our context. Under
this assumption, the delay of a hop mainly consists of the
transmission delay and the queueing delay. The transmission
delay for a packet from node to node can be calculated as

, where is the length of the packet, is the
transmission rate, and the channel coding rate. We denote
the queueing delay from node to by . Then the total delay
from node to is given by .
We provide probabilistic guarantee for one-hop delay, in

which the probability that a packet is delivered within deadline
should not be below , given by

. It can also be expressed as

(21)

We let node maintain the delays of packets in a recent pe-
riod, from which we can estimate the average queueing delay

and the variance of queueing delay . As a result, the

average single hop delay is , while the vari-
ance of single hop delay is .
According to one-sided Chebyshev’s inequality, for a random

variable with mean and variance , it satisfies

(22)

By applying the Chebyshev’s inequality on (21), we find

(23)

and

(24)

Based on (23) and (24), we have derived two constraints to
satisfy the probabilistic delay guarantee in (21), which are given
in (16) and (17). Condition (24) corresponds to constraint (16).
Comparing (23) and (21), if the condition

(25)

is met, the probabilistic delay guarantee inequation (21) could
be satisfied, from which constraint (17) is obtained.
2) Local Reliability Requirements: We incorporate a dy-

namic channel coding scheme in the routing algorithm to adapt
to varying wireless channel conditions. The routing algorithm
selects a proper channel coding rate for link to , from
a set of predefined channel coding rates . A
smaller channel coding rate indicates more redundancy being
added to a packet and better error resilience performance.
To evaluate reliability, we use packet delivery ratio, the per-

centage of packets successfully delivered to the destination. If
we require that each hop on a route should provide the same
level of reliability, the required packet delivery ratio from node
to node , can be estimated as

(26)

where PR is the required packet delivery ratio given by the ap-
plications, and is the estimated number hops from to the
destination if is selected as its next hop, i.e.,

(27)
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where is the projection of onto the line connecting node
with the sink.
Now we explain how to obtain the required packet delivery

ratio PR. An end-to-end video application usually cares if a
video frame can be successfully decoded or not. Therefore, we
use the probability that a video frame is successfully decoded
[28] as a metric to evaluate reliability. We denote this proba-
bility by . A video frame is packed into packets for
transmission. The frame will be decodable only when enough
packets are received correctly. We introduce frame decodable
threshold [28], denoted by DT, to represent the percentage of
packets needed to decode a frame. This threshold is dependent
on specific video coders and their error recovering capabilities.
Let PR be the packet delivery ratio of each packet. The prob-
ability that at least DT percent of the packets are successfully
delivered, denoted by , is estimated from , DT, and PR,
given by

(28)

An intra coded frame is decodable if at least DT percent of
the packets are delivered to the sink, e.g., if a video sensor
has generated an intra frame . The probability that is
successfully decoded is given as

(29)

where is the number of packets for and is the
packet delivery ratio for each packet.
In our algorithm, given a required from an applica-

tion, the number of packets for , and the frame DT, the
required packet delivery ratio is estimated and assigned
to each packet.
After correlation-aware differential coding is performed, an

intra frame becomes an inter frame, resulting in reduced packets
but more dependency among frames. Consider the differential
coding of frame using the prediction of frame . Sup-
pose becomes frame after differential coding, and the
number of packets in is reduced to . To decode frame
at the end user, DT percent of the packets needs to be suc-
cessfully decoded. More importantly, its reference frame
should also be decoded. Therefore, the probability that is
decodable is given by

(30)

where and are the number of packets for and ,
and and are their packet delivery ratios.
To maintain the quality of video frames, the decodable prob-

ability of a frame after correlation-aware differential coding has
to be consistent with that before correlation-aware differential
coding. As the decodable probability of a frame is related to
the packet delivery ratio (PR) in (28), we need to update the
required PR when correlation-aware differential coding is per-
formed. We formulate a problem as follows.

Packet delivery ratio update (PDRU) problem

(31)

(32)

(33)

(34)

If there is no correlation-aware differential coding, for two
intra frames and , suppose their required frame de-
codable probabilities are and . Given the
number of packets in these two frames, and , and the
frame DT, based on (29), the required packet delivery ratios
for these two frames and can be determined to
satisfy the requirements.
After correlation-aware coding, the two frames become the

inter frame and the intra frame . Suppose the required
packet delivery ratios for and are and ,
respectively. Based on (29) and (30), the frame decodable prob-
ability of is , and the frame decodable
probability of is .
The resulting frame decodable probabilities of these two frames
should also meet application requirements, which are given as
constraints in (33) and (34).
As introduced above, the channel coding rate of a transmis-

sion is selected based on reliability requirements and channel
condition. When the required reliability is changed, the channel
coding rate might need to be updated. Taking into account the
effect of channel coding, we introduce a metric called differen-
tial coding efficiency after channel coding as

(35)

where and are the channel coding rates of
and and are the channel coding rates of

and after correlation-aware coding, and is the packet
length. With a similar form as (3), describes the percentage
of saved bits after channel coding.
The objective of the PDRU problem is to maximize

in (32), the average value of for a range of possible SNRs.
The problem can be solved as follows. First, we find out the
possible combinations of and that satisfy con-
straints (33) and (34). For each possible combination of
and , we obtain the corresponding channel coding rates,

and . Specifically, given a certain bit error rate,
from a set of predefined channel coding rates, we select the
largest channel coding rate that satisfies the required packet de-
livery ratio . After and are estimated,
the differential coding efficiency after channel coding in (35)
could be determined for this specific bit error rate. We assume
that the distribution of possible bit error rates (denoted by ) are
known in advance, so that the average gain can be cal-
culated. The solution to this problem will be the required packet
delivery ratios and that result in the largest av-
erage gain . These solutions are then used in constraint
(18) in the CAQR algorithm.
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Fig. 3. Correlation-aware load balancing.

3) Correlation-Aware Load Balancing: For flows from the
same correlation group that cannot be further compressed, the
presence of traffic congestion becomes evident in that video sen-
sors from the same correlation group tend to report the same
event and generate traffic concurrently. We introduce a correla-
tion-aware load balancing operation to split these flows to dif-
ferent paths, so that the probability of network congestion could
be reduced. As shown in Fig. 3, two sensors in a correlation
group share large overlapped FoVs; however, the differential
coding gain is low according to our correlation model. As they
are likely to generate large amounts of traffic concurrently, we
can try to split the flows from the two sensors to different paths.
To achieve correlation-aware load balancing, each node

keeps a list of source nodes and their corresponding group IDs
that it has generated or routed in a recent period. Suppose node
wants to find a next hop for a flow generated by node at
group . Its candidate neighbor, node , has a list of source
nodes of the flows that it has routed in a recent period, denoted
by . Each source node in the list is associated with
its correlation group ID . Node periodically exchanges
this list with its neighbors, so that node is aware of it. For the
current flow generated by , node can check if node has
routed flows for other nodes in the same correlation group.
We define a variable to indicate if a source node is in

the same group as , which is given by

(36)

The number of nodes in list that are in the same group
as can be expressed as . For load balancing,
the algorithm should prefer to choose a next hop node with a
smaller , which, as indicated in constraint (19),
cannot exceed a threshold . The threshold can be set to a
certain percentage of the average correlation group size of a
network. In this way, for flows from the same correlation groups
that cannot be further compressed, we can penalize the case that
they share the same forwarding node concurrently (e.g., node
in Fig. 3), thereby reducing the possibility of congestion.

D. Protocol Operation

The CAQR algorithm is summarized as follows. When a
WVSN is deployed, correlation groups are first constructed as
shown in Section IV-A. After that, if a sensor has a video
frame to transmit, it encounters two scenarios: 1) If is
an inter frame, will send to the sink. 2) If is an intra
frame, selects the optimal intermediate node by solving

the DCIS problem in Section IV-B. The QoS constraints for
frames and are set by solving the PDRU problem in
Section IV-C2. Otherwise, if no such intermediate node can be
found, will send to the sink node. In both scenarios,
next-hop nodes are selected using Algorithm 1 that solves the
DCR problem in Section IV-C.
Algorithm 1 is performed as follows. A sensor first finds out

all the next hop candidate nodes that satisfy the load balancing
constraint in (19). For each candidate node, the largest channel
coding rate from is found such that the reli-
ability constraint (18) can be satisfied. Using this largest channel
coding rate, the sensor checks if the local delay constraints (16)
and (17) are met. If so, the corresponding energy consumption
(15) for this candidate node can be obtained. The candidate node
that results in the smallest energy consumption is selected as the
next hop node. In cases that no candidate nodes can satisfy all
the four constraints, the load balancing constraint (19) could be
relaxed by increasing the threshold by a small amount, so that
more nodes in the neighbor set could be considered as next hop
candidates.

Algorithm 1: QoS Guaranteed Next-hop Selection

1:
2: for do
3:
4: if then
5: Find

6: s.t.

7:
8: end if
9: end for
10:

E. Discussion

We now study the resource requirements and complexity for
each component of the CAQR algorithm. The correlation groups
construction operation is performed just once during the initial
deployment of the network; therefore, it does not require any
cost during the operation of a network.
For intermediate node selection, a sensor node solves the

DCIS problem. Suppose the number of sensor nodes in a cor-
relation group is . A sensor finds one node with the largest
gain in the group, so the computational complexity is .
The sensor then sends a short message notifying the interme-
diate node, resulting in message complexity.
Each sensor solves the distributed next-hop selection

problem in Algorithm 1. From a group of forwarding neigh-
bors, it chooses one node as the next hop and also finds the
channel coding rate. Suppose the maximum degree of nodes
in the network is , and the total number of channel coding
rates is . The worst case computational complexity for this
problem is . A node makes decision of the next hop
using only local information. Each node periodically broadcast
a message to its neighbors, which contains the mean and vari-
ance of delay and the estimated channel status on its link. The
message complexity is . This type of message exchange
is natural for distributed routing protocols for sensor networks.
Several representative routing protocols such as [13] and [9]
also involve similar communication cost. We estimate that the
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Fig. 4. Estimation of differential coding efficiency.

message exchange complexity of the proposed algorithm is in
the same scale as that in [9].

V. PERFORMANCE EVALUATION

We first evaluate the validity of coding efficiency prediction.
Then, we test the performance of the proposed routing algorithm
through extensive simulations.

A. Coding Efficiency Prediction
We deploy two cameras in a field and record their FoV param-

eters. The cameras’ sensing radius is 30 meters and the offset
angle is 60 degrees. By varying the locations and sensing direc-
tions of the two cameras, different degrees of correlation can be
obtained, resulting in different values of the estimated coding
efficiency in (4). Each camera captures one image at each
deployment. We employ the H.264 Multi-View Coding (MVC)
scheme (JMVC 2.5 [1]) to perform differential coding on the
two correlated images, and from the resulting rate the actual
coding efficiency is obtained. Comparisons of and
values are shown in Fig. 4. Different values of estimated dif-
ferential coding efficiency are obtained, and for each , 3
different groups of images are used for differential coding. The
coding rates are obtained under two quantization steps (
and 40).
According to the data points in Fig. 4, if given the same pre-

diction of , we find that a larger quantization step results in
larger values of actual coding efficiency. Since larger quanti-
zation steps allow for more distortion, they may have more bit
savings for differential coding. When the quantization step is
fixed, the actual coding efficiency is approximately propor-
tional to the predicted coding efficiency . Therefore, the ac-
tual differential coding efficiency can be predicted by a linear
function of , given by

(37)

where is a ratio that depends on the performance of specific
encoding parameters (e.g., quantization step). By performing
linear regression, we find that for and

for . The average absolute error for this predic-
tion method is 0.01 and the worst case error is 0.03. This linear
relationship between the predicted results and experimental per-
formance validates the applicability of the proposed coding ef-
ficiency prediction method.

B. Coding Efficiency in QoS Routing
We now evaluate the gain of correlation-aware coding when

it is implemented in the QoS routing algorithm. We find so-
lutions to the packet delivery ratio update (PDRU) problem
in Section IV-C, and then we test the best average differential
coding efficiency after channel coding in (35).
The parameters in the PDRU problem (32) are determined as

follows. The average size of an intra frame is determined from
the statistics of the video traces in [23]. The payload length of a
packet is set to 50 Bytes. The number of packets in a frame can
then be estimated from the average size of the frame and the
packet length. We use a series of block codes with structures

[17] for dynamic channel coding. The block length is
set to 127, and the number of correctable bits varies from 1 to
31. A single hop scenario with BPSK modulation is considered,
where the received SNR is assumed to be uniformly distributed
between dB and 15 dB.
The required frame decodable probability is assigned

by specific applications. We set to three different values
here: 0.7, 0.8, and 0.9. The frame decodable threshold DT is
related to the error recovering capability of video decoders. Here
DT is set to 0.75 and 0.9. We let the original differential coding
efficiency vary from 0 to 0.5, and for each combination of
, DT, and , the PDRU problem is solved and the average

differential coding efficiency after channel coding is
obtained.
Figs. 5 and 6 show as a function of . In both fig-

ures, a dotted line is plotted as a benchmark line that corre-
sponds to , which can represent the case of error-free
channels. The other lines show the average differential coding
efficiency in lossy channel conditions. For different combina-
tions of and DT, the average differential coding efficiency
after channel coding is close to the benchmark line. As there is
only a little fluctuation of the lossy-channel case compared to
the benchmark line, the efficiency of differential coding after
channel coding could still be approximated by the original
differential coding efficiency .

C. Correlation-Aware QoS Routing Algorithm

The performance of the proposed routing algorithm is then
evaluated using a distributed network simulator in Java. In a
field of 100 m 100 m, 49 video sensors are deployed in a grid
structure, and a sink node is placed in a corner of the field. The
sensing directions of the video sensors are uniformly chosen so
as to ensure full coverage of the field, and the sensing parameters
of the sensors are given in Table I.
The traffic for the video sensors is generated based on the

features ofWVSN applications. We let a target move in the field
according to the Random Waypoint Mobility model where the
pause time is set to 0. A video sensor is triggered to capture
an image when it detects the target in its FoV. By launching the
target from 10 different locations, we can generate 10 sequences
of events representing different traffic scenarios. The captured
video frames are in QCIF format (176 144), while the size of
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Fig. 5. Differential coding efficiency after channel coding .

Fig. 6. Differential coding efficiency after channel coding .

an encoded video frame is obtained based on the video traces
provided in [23]. If correlation-aware coding is performed, the
size of a frame is updated based on the actual coding efficiency
in (37).
We use the TDMA scheduling algorithm in [8] as the MAC

layer solution. Table II presents the TDMA slot length, trans-
mission range, and rate of each sensor. The parameters for es-
timating communication and processing energy are also pre-
sented. The number of clock cycles for encoding and
decoding one QCIF frame is obtained from the results in [12]
and [14]. Together with the other parameters in (7) and (8), the
communication and processing energy is estimated.
We evaluate the performance of the CAQR algorithm under

varying traffic load and QoS requirements. A representative
QoS routing algorithmMMSPEED [9] is implemented. We also
take the shortest path routing with opportunistic aggregation
(SPRO) in [22] as a representative algorithm for bandwidth

TABLE II
PARAMETERS

Fig. 7. Average delay.

saving along routing paths. The SPRO algorithm is customized
to deliver video traffic: video sensors send their data along
paths chosen by shortest path routing, and if a relay node finds
that a frame is eligible for compression based on (9), differ-
ential coding is performed to save bandwidth. To evaluate the
performance of correlation-aware operations, we also compare
the CAQR algorithm with QoSR, which is the QoS routing
algorithm in Section IV-C without any correlation-aware
operations.
We change the amount of traffic injected in the network by

varying the source coding rates of the video frames, which is
achieved by varying the quantization steps (QP) in the encoder.
The range of quantization steps in our simulation is determined
by the video quality metric PSNR. Typical values for the PSNR
in lossy image and video compression are between 30 and 50
dB. Based on the video traces for QCIF frames in [23], when
the PSNR ranges between 30 and 50 dB, the QP ranges be-
tween around 16 to 40, and it corresponds to average size of
intra frames between and bits. We also found
from the traces [23] that in average the size of an encoded P
frame is around 0.2–0.25 times that of an encoded I frame. These
statistics are used to set the coding rates in the simulation. For
each rate, experiments on the aforementioned 10 different se-
quences of events are launched, and we measure the average
performance of the 10 sequences of events.
Fig. 7 shows the average delay under different source coding

rates, with deadline set to 1 s and 0.5 s. In both cases we
only consider the delay of packets that are received within
the deadline. By exploiting the correlation of video sensors,
CAQR reduces the transmission and queueing delays in the
network. Therefore, it is seen in Fig. 7 that CAQR results in less
average delay than QoSR, the QoS routing algorithm without
correlation-aware operations. SPRO introduces shortest path
routing and opportunistic compression mechanisms, and it
produces similar average delay as that of QoSR. MMSPEED
leads to the largest delay among the four algorithms. This is
because MMSPEED finds multiple non-shortest paths as long
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Fig. 8. Average energy consumption per node.

as the delay deadline is met and multi-path transmission brings
extra traffic in the network which increases queue lengths.
Next we evaluate the energy efficiency of the proposed al-

gorithm. The total energy consumption consists of the energy
for sending and receiving packets and that for processing the
video frames. Given the same event, the processing energy for
sensing video frames and encoding local video frames will be
the same for different routing algorithms, whereas differential
coding along routing paths will introduce extra processing en-
ergy. Therefore, we just consider the communication energy
and the processing energy for differential coding along routing
paths. Fig. 8 shows the average energy consumption for one
received frame. The proposed algorithm is designed to reduce
energy consumption by reducing the transmission of redundant
information and selecting energy-efficient next hops. Specifi-
cally, through correlation-aware differential coding, CAQR re-
duces energy consumption by 15% compared to QoSR. And the
energy consumption of QoSR is lower than the other two algo-
rithms, which is brought by minimizing energy consumption in
next hop selection. SPRO partially reduces the transmission of
redundant information in the network, resulting in fewer energy
consumption than MMSPEED which does not consider energy
consumption in routing decisions.
We now evaluate the quality of received visual information

under different reliability requirements. We set the deadline to
1 s, and vary the probability that a video frame is successfully
decoded, , to 0.7 and 0.85. For each reported image frame,
we count the number of received packets within the deadline.
If the percentage of received packets for a frame is above the
frame decodable threshold (DT), we deem that it is successfully
decoded at the sink. Based on the number of decoded frames,
we can obtain the percentage of successfully decoded video
frames (frame delivery ratio). Fig. 9 shows the average frame
delivery ratio for the 10 sequences of events under different
source coding rates. MMSPEED utilizes multi-path forwarding
to guarantee reliability. When there is less traffic in the network,
MMSPEED produces very good reliability with 100% frame de-
livery ratio. However, as the traffic in the network increases,
MMSPEED suffers from a lot of degradation in frame delivery
ratio, in which case the redundancy introduced by multi-path
routing is prone to cause congestion in the network. The av-
erage frame delivery ratios of SPRO and QoSR are similar.
By introducing correlation-aware operations in QoSR, the pro-
posed CAQR algorithm increases the frame delivery ratio by
16% compared to QoSR.
In Figs. 8 and 9, when video frame sizes become larger, i.e.,

more traffic are injected into the network, there is more gain of

Fig. 9. Frame delivery ratio.

the proposed algorithm over the other algorithms in terms of
energy consumption and frame delivery ratio. We conclude that
exploiting correlation in a video sensor network can enhance
network performance, especially when the traffic load is heavy.
By incorporating correlation-aware differential coding and load
balancing in the routing process, the CAQR algorithm provides
an effective way to improve the quality of visual information
received at the sink.

VI. CONCLUSION

We have proposed a correlation-aware QoS routing algorithm
for wireless video sensor networks. Based on the correlation
characteristics of visual information in sensor networks, we
introduce a correlation-aware inter-node differential coding
scheme and a correlation-aware load balancing mechanism.
These correlation-aware operations are integrated in a dis-
tributed routing framework. The whole routing algorithm
minimizes energy consumption under delay and reliability
constraints. The performance of the algorithm is evaluated
in terms of energy efficiency, delay performance, and frame
delivery ratio. Evaluation results show that, by integrating cor-
relation-aware operations in the routing process, the proposed
algorithm achieves efficient delivery of visual information in
wireless video sensor networks.
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