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The primary objective of cooperation in cognitive radio (CR) networks is to increase the
spectrum access efficiency and improve the network performance. However, Byzantine
adversaries or unintentional erroneous conduct in cooperation can lead to destructive
behavior of CR users that can decrease their own and others’ performances. This work pre-
sents a dynamic solution for cooperation reliability in conditions with constraints typical
for a CR network. Specifically, in CR networks, the information on the success of coopera-
tion can be limited only to cases with interference; when malicious, cooperators can be
completely non-correlated and can alter behavior; and the set of available cooperators
can dynamically change in time. In order to face these challenges, each CR user autono-
mously decides with whom to cooperate by learning cooperators behavior with a
reinforcement learning (RL) algorithm. This RL algorithm determines the suitability of
the available cooperators, and selects the most appropriate ones to cooperate with the
objective to increase the efficiency of spectrum access in CR networks. The simulation
results demonstrate the learning capabilities of the proposed solution and especially its
reliable behavior under highly unreliable conditions.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Cognitive radio (CR) technology, as the core of CR net-
works, is a promising solution to deal with the problem
of spectrum scarcity and low spectrum use associated to
classical fixed spectrum assignment schemes [1]. For a
proper operation, CR networks need to perceive the behav-
ior of primary users (PUs) in their assigned frequency
bands and perform opportunistic spectrum access without
or with minimal interference to them. To this end, CR net-
works need to be capable to learn from the environment
and to dynamically adapt to environment conditions in
accordance with the heterogeneity and randomness in
PUs behavior. Besides, multiple CR networks that can be
. All rights reserved.
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vić), ian@ece.gatech.
mero).
BWN Lab, School of

itute of Technology,
een presented in [18].
contending on the same spectrum resources introduce
additional complexity in the process.

Opportunistic spectrum access procedures such as
spectrum sensing, spectrum decision, spectrum sharing
and spectrum mobility require that CR users continuously
gather and process information. Cooperation is introduced
in CR networks [2] in order to increase the efficiency of the
network (e.g. time and energy consumption for obtaining
and processing information). Despite the fact that the pur-
pose of cooperation is to improve the overall network per-
formance, it may also introduce malicious behavior and
unreliability in CR networks.

CR networks need not only to dynamically adapt to the
changes in the radio environment, but also they need to be
resistant to various types of threats and system errors.
Jammers, data falsification, or denial of service, are some
of the threats in CR networks [3–6]. Different defenses
can be developed to prevent these attacks. A first line of
security is aimed to give protection against the outside
threats (i.e., intrusions by unauthorized users). A second
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line of defense is against the so-called Byzantine threats
(i.e., traitors among cooperators). Cooperative CR networks
are especially vulnerable to Byzantine attacks, as the CR
users rely on information obtained from others. The coop-
eration reliability in CR networks may also be jeopardized
by unintentional malicious effects (i.e., from the lack of
reliability of devices or systems). The cooperation in CR
networks needs to be performed with unknown or known
cooperators that may change their behavior, in conditions
where the knowledge about the success of the cooperation
is limited. Autonomous solutions which are capable to
learn and react dynamically according to the degree of reli-
ability should be developed to deal with these issues in
real time.

This paper addresses the reliability problem in cooper-
ative CR networks [18]. It presents a solution that deter-
mines the reliability of the cooperators and selects which
are appropriate for cooperation. The cooperator evaluation
and selection in the proposed solution is based on rein-
forcement learning (RL) [7] which is a branch of machine
learning envisaged as a good candidate for dynamic control
and adaptation in CR networks [8]. Specifically, CR net-
works are likely to rely on learning, which makes the learn-
ing from false beliefs one of the threats to a CR network
(learning in erroneous or intruded conditions) [3]. There-
fore, the learned information should not be permanent,
i.e., the learned beliefs should expire in due time in order
to disable long-term malicious effects [5]. The proposed
solution uses exploratory properties of reinforcement
learning to provide the ability to relearn the changes and
react through appropriate reconfigurations.

The rest of this paper is organized as follows. In the next
section, the detailed problem formulation typical for CR net-
works is given. In Section 3, the framework for the proposed
solution is described, followed by the algorithm description
in Section 4. Section 5 contains simulation results. Finally,
the main conclusions are summarized in Section 6.
2. Problem statement

CR users are opportunistically utilizing the network re-
sources, and their incorrect actions may result in serious
network capacity degradation. Cooperation is usually
needed in these cases to ease the resources utilization. In
such a case, a CR user collects information (the advices)
from cooperators, and makes a decision about its next
actuation regarding opportunistic spectrum access. CR user
and its cooperators may be a CR base station or a CR termi-
nal operating in either centralized or ad hoc CR networks.
The constraints explained in this section are characteristic
for the cooperative spectrum sensing in CR networks,
where the cooperators provide information about spec-
trum availability and the CR user decides whether to ac-
cess a given spectrum or not.
Which 
cooperators 
are reliable? 

Fig. 1. The dilemma: Which cooperators are reliable?
2.1. Cooperation model

In the problem considered here a CR user needs to de-
cide on the following unknown hypothesis in order to
perform spectrum access: H0 (spectrum access not
possible), H1 (spectrum access possible). In a cooperative
scenario, CR user receives information messages from the
cooperators in order to make a spectrum access decision.
The communicated message can contain measured or esti-
mated values in case of ‘‘soft decision’’, or it can contain a
local advice (local decision) that each cooperator makes
(usually a binary decision 0 or 1) in case of ‘‘hard decision’’.
Hard decisions reduce the communication overhead, but
are more challenging for final decision making since they
provide only minimum information.

This paper considers the case with hard decision. This
means the cooperator i makes a local decision and for-
wards it as an advice x(i) to the CR user: advice x(i) = 1
means that local decision is H1 and x(i) = 0 means local
decision is H0. For example, if the measured signal power
from the PU is lower than a threshold, a cooperator would
send x(i) = 1 meaning that the PU is not there so spectrum
access is possible (H1). Based on combining the received
information from the cooperators, the CR user takes a glo-
bal decision X (i.e. X = 0 for H0 and X = 1 for H1).

The usual data fusion rule for hard decisions in the lit-
erature is ‘‘K out of M’’ rule [9]. This means that at least
K out of M received advices have to be H1 so that the global
decision X is H1 (i.e., X = 1). Otherwise global decision is H0

(i.e. X = 0):

X ¼
1;

PM
i¼1

xðiÞP K

0;
PM
i¼1

xðiÞ < K

8>>><
>>>:

: ð1Þ

Two special cases of ‘‘K out of M’’ rule are the extreme op-
tions: AND rule when K = M, and OR rule when K = 1.

It is also assumed in the paper that N cooperators are
available. However, not all of them are actually necessary
for cooperation. Then, the CR user can select only M
(M 6 N) cooperators based on their suitability to achieve
the desired goal (see Fig. 1). The suitability of cooperators
should include both aspects of reliability and accuracy. In
this paper, dynamic tracking of this suitability is carried
out by means of reinforcement learning.

Based on the above discussion, the proposed method
needs to solve the following points:

� Decide how many cooperators to use (i.e. decide the
value of M 6 N).
� Learn how to select reliable cooperators (i.e. decide

which are the most convenient M cooperators out of
the N available ones).
� Make a decision from the M collected advices (i.e. apply

‘‘K out of M’’ rule).
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2.2. Malicious behavior in cooperation

The malicious conduct in cooperation may be inten-
tional and/or unintentional:

� The intentional malicious behavior is due to the Byzan-
tine adversary that pretends to be a friend and uses its
privilege to achieve its own desired goal.
� The unintentional incorrect behavior may be from:

– Cooperators that are manipulated by other opponent
systems and are unaware of their malicious effects
(e.g., sensors in range of jammers giving impression
of spectrum occupancy).

– Technological limitations (i.e. hardware and soft-
ware errors, failures and limitations of the sensing
devices).

– Environment conditions (e.g. sensors in high shad-
owing zone).

Additional complexity in the detection of the malicious
cooperators comes from the fact that cooperators may
change their behavior in time. A reliable cooperator during
a certain period may turn into a malicious cooperator in
the future, and vice versa. Thus, a system needs to be capable
of capturing such dynamic changes. This variable behavior
may especially be present in cases when cooperators are
occasionally manipulated by another enemy system, or
when the attacker is trying to gain the trust of the victim.

2.3. Erroneous advices and decisions

Due to the malicious behavior, two types of erroneous
advices are possible in such a system: erroneous positive
advice when the spectrum access is not possible (x(i) = 1|H0)
and erroneous negative advice when the spectrum access is
possible (x(i) = 0|H1). For a cooperator i, the probabilities of
erroneous advices are:

perrðiÞ ¼ PrfxðiÞ ¼ 0jH1g; ð2Þ
qerrðiÞ ¼ PrfxðiÞ ¼ 1jH0g: ð3Þ

The probabilities of erroneous advice (2) and (3) influence
the final error probabilities of decision, i.e. the probabilities
of erroneous non-actuation (PERR) and erroneous spectrum
access (QERR), i.e. interference. In particular, for ‘‘K out of
M’’ rule, these are:

PERR ¼ PrfX ¼ 0jH1g ¼ 1�
XM

j¼K

Pr
XM

i¼1

xðiÞ
 !

¼ jjH1

( )
; ð4Þ

Q ERR ¼ PrfX ¼ 1jH0g ¼
XM

j¼K

Pr
XM

i¼1

xðiÞ
 !

¼ jjH0

( )
: ð5Þ

An optimal system will tend to minimize both PERR ? 0 and
QERR ? 0. However, note that an erroneous spectrum ac-
cess can lead to interference with primaries, which is more
destructive than an erroneous non-actuation. Therefore, it
is much more important to keep QERR within very low lim-
its than PERR to assure minimum interference.

An additional constraint in CR networks is that the
evaluation of the actuation is only possible once the spec-
trum access has actually happened (e.g., a collision occurs
after making an access when the PU is active). However, an
erroneous non-actuation (i.e. a missed opportunity of spec-
trum access) is usually not possible to detect, as the CR
user does not have a success feedback when idle. In other
words, there is no feedback when X = 0 so that it is not pos-
sible to evaluate PERR. Thus, the way to minimize PERR is to
maximize the spectrum access, i.e. to maximize Pr{X = 1}.

2.4. Summary of considered challenges

Based on the above considerations, the goal of the pro-
posed framework to deal with the problem of malicious
behavior in cooperation is to maximize Pr{X = 1}, but at
the same time preserve QERR within very low limits. The
following additional challenges are addressed in the prob-
lem considered in this paper:

1. The local decision of the cooperators is unknown and
independent in each cooperator (i.e. cooperators are
heterogeneous).

2. This paper considers a worst case scenario where prob-
abilities qerr(i) and perr(i) are unknown, uncorrelated,
and may vary dynamically and independently of each
other.

3. Probabilities Pr{H1} and Pr{H0} are unknown and may
change with time.

4. There is no knowledge on the success of decisions not to
actuate, i.e. when X = 0.

5. The number of potential cooperators N can vary with
time.

2.5. Related work

To the best of authors’ knowledge, the problem with all
the aforementioned assumptions and conditions has not
been addressed in the literature up to date. However, as
the proposed solution combines suitability evaluation,
data fusion and decision making in unreliable conditions,
some partially related studies are briefly discussed in the
following.

The classification of how good a cooperator is often re-
sults in trust evaluation, and is commonly compared with
human behavior characteristics [10]. The application of
trustworthiness for reliable path selection in ad hoc and
wireless sensor networks is present in the literature, e.g.
[11,12]. Existing studies distinguish between direct and
indirect trusts, and address the influence of reputation, re-
spect and rumors in trust construction. Similarly, the CR
user in this paper also evaluates and assigns a grade of
suitability to cooperators, reflecting their reliability.

Studies on how to use expert advices address the prob-
lem of how to use several experts to guess the unknown
hypothesis as close as possible to the best expert’s guesses
[13,14]. However, assumptions taken in the previous studies
do not consider all the constraints and limitations explained
in the previous section (challenges 1–5) at the same time.
Moreover, the behavior of the best cooperator does not guar-
antee that Pr{X = 1} is maximized and does not preserve QERR

within very low limits with higher priority.
The problem of maximizing Pr{X = 1} while QERR is pre-

served within low limits appears as a Neyman–Pearson
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detection problem in the literature [9], where the data fu-
sion from sensors should optimize the decision following
the ‘‘K out of N’’ rule. Due to their high complexity, the
methods used for solving this problem have only limited
applications in cases with small number of highly similar
sensors, e.g. [9,15]. These solutions are also not applicable
for the entire set of challenges 1–5 mentioned before.

3. Proposed framework

In the proposed framework, N potential cooperators of-
fer advices to a CR user and it needs to determine which of
the potential cooperators to use in order to maximize its
goals. The final decision of CR used is computed as a com-
bination of decisions of several available cooperators.
Therefore, how much convenient for cooperation is a given
cooperator, depends on its grade of reliability, on the reli-
ability of other cooperators, and on the number of needed
cooperators at a certain moment. Thus, even when one
cooperator does not change its behavior, the variation of
general conditions can make it more or less appropriate
in different time instants.

The evaluation of cooperation suitability depends on the
final outcomes, QERR and PERR, when a cooperator is used. The
proper learning mechanism should assure that the malicious
cooperators are not used. A proper cooperator selection
should also reduce the signaling load of cooperation process,
as the unnecessary cooperators can be excluded from coop-
eration, while the goals are achieved with high accuracy.

3.1. Suitability list and cooperator selection

Each CR user performs its own evaluation and coopera-
tor selection based on its own experience. In order to
Fig. 2. The cooperator selection framework based on rein
perform spectrum access, a CR user makes a suitability list
for the N cooperators available to him at that moment. The
appearance and disappearance of cooperators (e.g., due to
mobility) does not affect the algorithm, as they can easily
be added or removed from the list. Each of these coopera-
tors is characterized with a learning parameter pi, which is
used to define their suitability pi.

In Fig. 2, the general framework is presented where CR
user selects M cooperators from the suitability list and starts
an application period, which is a period in which the coop-
eration is carried out with one group of M cooperators.
During this period TA decisions are made about whether to
access the spectrum or not. For each decision the resource
access depends on the current advices of the M cooperators
in use applying the ‘‘K out of M’’ rule. During one application
period the group of M cooperators does not change.

The reward is computed at the end of each application
period. This reward reflects the success of the decisions
that a CR user has made. The reward will have two compo-
nents r and q as will be explained in Section 4. Then, the RL
algorithm is executed to update the controlled parameters
(learned parameters) pi for each cooperator i used in that
period. The learned values pi are the key parameters in
defining the suitability of each cooperator. Once the pi val-
ues are updated, the suitability of each cooperator pi in the
system is computed. Based on this, a new set of coopera-
tors is selected for the cooperation in the following appli-
cation period.

An additional degree of flexibility of the algorithm can
be achieved by adapting M to CR user’s needs through
time. The change of M can be performed based on the
tracked values of erroneous access (interference) during
previous application periods. This process is independent
from the RL algorithm that maintains the suitability list.
forcement learning and cooperation suitability list.
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3.2. Cooperation communication

This work assumes that a small bandwidth control
channel is available to exchange the cooperation messages.
A CR user either invites cooperators for cooperation or lis-
tens to all cooperators and just ignores the ones denoted as
unreliable. In the first case, the invitation to cooperate is
performed only once at the beginning of each application
period, and only if there has been a change in the set of
used cooperators.

In case cooperators are invited for cooperation, the CR
user also needs to perform occasional checkup of possibly
new cooperators. This can be done only when the current
performance is not satisfactory for a long period, or when
a lot of cooperators have disappeared. Note that the CR
user can optionally set a maximum limit for the number
of cooperators in a suitability list. With this option it can
also occasionally remove highly unreliable cooperators
and replace them with the new ones.

This paper assumes direct data gathering from the
cooperators. In general, data gathering can also be indirect
(i.e. through an intermediate cooperator). However, with
indirect data gathering, the proposed solution remains un-
changed. In that case, two options would be possible:

� The intermediate cooperator makes a unique local deci-
sion from gathered data and forwards it to a CR user.
This makes only the intermediate cooperator visible in
suitability list.

� The intermediate cooperator forwards all the gathered
data. This opens the possibility to data falsification [6],
however, it would only change the original advice error
probabilities of the indirect cooperators.

4. Learning and decision processes

In this section learning mechanism and the application
policy are first described for a fixed number of used coop-
erators M. Afterwards, the framework is extended for a var-
iable value of M.

4.1. Cooperator selection

The learning capabilities of the proposed solution rely
on RL [7] algorithms to maintain the suitability parameter
of the prospective cooperators. RL is a branch of machine
learning where an agent through interaction with environ-
ment learns and decides on actions in order to maximize
some long term reward. The reward is an input that the
agent receives from the environment, which represents
the quality of the actions taken by the agent, and that
should reflect the goals and needs of the system.

This work starts from the actor-critic learning and the
REINFORCE algorithm [16]. Actor critic methods require
minimal computation in order to select actions, and use
separate data structures for control policy (the ‘‘actor’’)
and the value function (the ‘‘critic’’). The task of the ‘‘critic’’
is to ‘‘criticizes’’ the actor’s behavior, i.e. to determine after
each action whether the results have gone better or worse
than expected [7]. This is carried out based on the interac-
tion with the environment through a reward function. The
critic in this paper is performing the global reward accu-
mulate, and the comparison of the current reward value
to this accumulate. Based on the ‘‘critic’’, the ‘‘actor’’ makes
the update of the learning parameters pi that will deter-
mine the suitability, and selects the M cooperators for
the next application period. Fig. 3 presents the learning
process of the algorithm. Details of the learning algorithm
from the figure are given in continuation.

The global reward function r is accumulated throughout
the application period. For one application period, the re-
ward r is

r ¼ 1
TA
�
XTA

t¼1

½Xt � ðat � CG þ ð1� atÞ � CBÞ�: ð6Þ

This reward presents the sum of the rewards and penalties
accumulated during one application period. Index t corre-
sponds to each of the TA decisions made by the CR user.
Only when the decisions are to actuate (i.e. Xt = 1) the re-
ward contribution is considered for that decision. Con-
stants CG and CB define the ratio between reward increase
and penalization for correct and wrong spectrum access.
Parameter at equals:

at ¼
1; Xt ¼ 1jH1

0; Xt ¼ 1jH0

�
: ð7Þ

The reward obtained in Eq. (6) represents the overall actu-
ation performance during one application period. Addi-
tionally, the reward correction qi is also computed in
every application period for each cooperator i among the
M active cooperators:

qi ¼
1
TA

XTA

t¼1

½ð1� xtðiÞÞ � Xt �: ð8Þ

This reward represents the number of times the cooperator
i gave non-actuation advice (x(i) = 0) when decision was to
access the resource (X = 1), divided with the number of
decisions in one application period. This value helps the
learning process by penalizing the cooperators that often
advise not to access the resource when the rest M � 1
cooperators advise to do so. This is similar to the supervi-
sor that contributes to faster learning [17].

Each application period is followed by the learning pro-
cess. The update of the learning parameter for each of the
active cooperators is:

pi  pi þ b � ðr � r
^
�n � qiÞ � ð1� piÞ: ð9Þ

Here, b (0 < b 6 1) and n are positive constant parameters
and pi (0 6 pi 6 1) is the suitability of the cooperator i to
be selected for the cooperation. The values of b determine
the influence of the recent RL decisions to future RL deci-
sions, i.e. higher values b of give more influence to the more
recent decisions. Parameter n determines the strength of
the bias of the individual penalization. The value of this
parameter should be a small number (n� 1) not to have
big influence over the main reward r. The parameter r

^
is

the global reward accumulate, which is used as a reinforce-
ment baseline or reward reference in the process of the
behavior evaluation. After all the parameters pi of the active
cooperators have been updated, r

^
is also updated as:
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r
^
 c � r þ ð1� cÞ � r

^
; ð10Þ

where the parameter c is constant, 0 < c 6 1. The learning
values pi and the global reward accumulate r

^
are the only

values that need to be stored for the learning mechanism.
Note that for c = 1 the algorithm only uses the current re-
ward to evaluate cooperator set. For values of c close to 1
influence of latest rewards in the exponential averaging
of r

^
is more dominant, whereas for lower values of c their

influence is less dominant.
Finally, once the updates of parameters pi are done, the

suitability values pi are computed for all cooperators:

pi ¼
epiPN
j¼1epj

; ð11Þ

M cooperators are randomly selected for cooperation for
the following application period. Suitability value pi pre-
sents the probability with which cooperator i will be se-
lected among these M cooperators.

4.2. Application policy

The application policy defines how the advices of the M
cooperators are interpreted by the CR user in order to make
the decision X. As hard decisions are used, the policy ap-
plies the ‘‘K out of M’’ rule.

Error probabilities PERR and QERR are defined in Eqs. (4)
and (5), where it can be seen that for a given M, a value
of K closer to M decreases QERR, but increases PERR (Theorem
1 in the Appendix). As the primary objective of our solution
is to maintain QERR very low, K = M can be the safest choice
(i.e., all the cooperators have to decide x(i) = 1 in order to
have X = 1). However, this paper starts from the value
K = M � 1 as it allows one cooperator to advise x(i) = 0
and still to decide X = 1. This permits occasional explora-
tion and faster learning of the RL algorithm on the cooper-
ators that may be malicious and are among the selected M
cooperators. In any case, other values of K could also be
used, as it will be studied in Section 5.

Now, for the case K = M � 1 and M P 2, PERR and QERR

from Eqs. (4) and (5) become:

PERR ¼ 1�
YM
i¼1

ð1� perrðiÞÞ
 !

� 1þ
XM

i¼1

perrðiÞ
1� perrðiÞ

 !
; ð12Þ

Q ERR ¼
YM
i¼1

qerrðiÞ
 !

1þ
XM

i¼1

1� qerrðiÞ
qerrðiÞ

 !
; ð13Þ

where the advice error probabilities perr(i), qerr(i) are de-
fined in Eqs. (2) and (3).

4.3. Variation of M

A more adaptive system can be achieved if the number
of used cooperators M can be variable. In particular, when
QERR is high, M should be increased. In turn, when QERR is
low, M may be decreased so that the PERR may be decreased
more easily. Theorem 2 of the Appendix proves that adding
one cooperator (with whichever value qerr – 1) can reduce
QERR when necessary. In that case PERR increases for sure
(unless perr = 0 of the new cooperator), so the algorithm
relies on a proper learning mechanism to encounter the
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best M cooperators to maintain PERR value as low as possi-
ble. Similarly, in the cases when QERR is sufficiently low it is
possible to improve the value of PERR by reducing the num-
ber of cooperators M without increasing QERR too much.

To carry out the adaptation of M, CR user tracks the
amount of interferences it made over the last T application
periods as follows:

SðTÞ ¼ 1
T

1
TA

X0

s¼�T

XTA

t¼1

½Xs;t � ð1� as;tÞ�: ð14Þ

Here, s stands for the index of the application period,
whereas t is the index of the decisions in one application
period. Xs,t is the decision t made in the application period
s, as,t is the parameter defined in Eq. (7) for the decision t in
application period s, i.e. 1 � as,t = 1 when the spectrum is
not free for CR user in application period s.The average
S(T) is independently tracked for the previous TX and TY

application periods. Two threshold values are defined to
control M: DU

H and DL
HðD

L
H < DU

HÞ. M is changed as:

SðTXÞ > DU
H ! M ¼ M þ 1; ð15Þ

SðTYÞ < DL
H ! M ¼ M � 1: ð16Þ

Note that longer periods TX and TY will make more accu-
rate averaging, but lower values of TX and TY will allow a
faster reaction to change M. The proposed mechanism will
use smaller value TX than TY (TX < TY) so the change of M
due to the interference (increment of M) can be performed
after the average interference is measured over less appli-
cation periods. On the other side, adjustment of PERR is of
lower priority, so the decrement of M can be performed
based on the average over more values. Threshold param-
eters DU

H and DL
H determine the reference values for the

change of M based on interference.
Let us assume now that the number of the application

periods from the last increment of M is T�X . Then, as long
as T�X < TX , instead of using condition from Eq. (15), the
modified condition to increment M is used:

T�X < TX ! SðT�XÞ > DU
H � ðTX þ T�XÞ=2T�X ! M

¼ M þ 1: ð17Þ

Similarly, if M has been decreased before T�Y application
periods, and as long as T�Y < TY , instead of (16), the modi-
fied condition for the next decrement of M is:

T�Y < TY ! SðT�YÞ < DL
H � ð2T�Y � TY Þ=T�Y ! M

¼ M � 1: ð18Þ

The previously explained use of Conditions (17) and (18) is
done in order to disable consecutive changes of M due to
the values that already have contributed to a change of
M. Thus, the learning algorithm has time to readapt itself
to the new number of cooperators in use. Note that the
mechanism uses unitary change for M values in order to
perform a more gradual and stable adaptation, as the
learning algorithm can adapt to each newly added or
removed cooperator.

In order to avoid having very low values of M, the
minimum number for M is set to be 3 whenever there
are more than 3 cooperators available (N P 3). When this
is not the case (N < 3), one or two cooperators may also
be used. Note that for M = 1, it needs to be K = 1.

5. Simulation results

This section presents some simulation results to evalu-
ate the performance of the proposed approach. First the
operation of the learning process is presented in a particu-
lar example, followed by the simulation results in more
complex scenarios.

5.1. Learning and reconfiguration

The purpose of this part is to demonstrate the operation
of learning process. It is assumed that there are 10 cooper-
ators (C1–C10) available and that the error probabilities
perr(i) and qerr(i) change as given in Table 1. After every
2000 application periods some of the probabilities change.
Notation ‘‘–’’ indicates that the cooperator is unavailable in
that period. The values for perr(i) and qerr(i) are chosen to
represent different illustrative behaviors of the coopera-
tors. For this set of results, the spectrum availability is ran-
domly generated with Pr{H1} = Pr{H0} = 0.5. Statistics are
averaged over the last 200 application periods.

Table 2 summarizes the list of parameters used in sim-
ulations. Initial values for the learning mechanism are
M = 5 (when M is variable) and pi = 0. In case, new cooper-
ators appear while the algorithm is already running, pi

takes a random value from the range (min{pj}, max{pj})
from the cooperators j in the suitability list.

In Fig. 4, an example of the adaptation process is shown
for the case in which M is constant, M = 5. The probabilities
to select the cooperators (pi) change through time in accor-
dance with the variation of the error probabilities perr(i) and
qerr(i). At the beginning more than five cooperators are per-
forming well enough to be included in cooperation (e.g.
cooperators C3–C7 which have low perr(i) or qerr(i) and C8
that has low perr(i) and sufficiently low qerr(i) to maintain
low QERR when combined with any four cooperators from
C3 to C7. Afterwards, the learning mechanism is trying to
correct possible degradation of performances that can hap-
pen each time one of the used cooperators increases the er-
ror probability (either perr(i) or qerr(i)). This can be observed,
for instance, when C7 increases perr from 0.01 to 0.99 after
2000th application period and, correspondingly, the algo-
rithm decreases the probability to cooperate with it.
Appearance and disappearance of cooperators is also fol-
lowed by similar expected reaction. As it has been men-
tioned before, at the appearance of cooperators, the
learning parameter p(i) is randomly initialized. So when
C1 and C4 appear at the same time at the 18,000th applica-
tion period, the probability to use C4 is high, whereas the
probability to use C1 is low. However, the quality in the
behavior of these two cooperators is perceived and these
values are corrected fast so that the probability to use C4,
having actually a large value of perr, is progressively de-
creased, while the probability to use C1, exhibiting good
values of both perr and qerr, is progressively increased.

In order to illustrate the need for an adaptive value of M,
note that during the application periods from 6000th to
8000th there are only three cooperators with perr(i) = 0.01



Table 1
Behavior of cooperators through simulation.

Application period Cooperators

[C1 C2 C3 C4 C5 C6 C7 C8 C9 C10]

0 perr = [0.01 0.50 0.01 0.01 0.01 0.01 0.01 0.01 0.99 –]
qerr = [0.50 0.50 0.01 0.01 0.01 0.01 0.01 0.50 0.01 –]

2000 perr = [0.01 0.50 0.01 0.01 0.01 0.01 0.99 0.01 0.99 –]
qerr = [0.50 0.50 0.01 0.01 0.01 0.01 0.01 0.50 0.01 –]

4000 perr = [– 0.50 0.01 0.01 0.01 0.99 0.99 0.01 0.99 –]
qerr= [– 0.50 0.01 0.01 0.01 0.01 0.01 0.50 0.01 –]

6000 perr = [– 0.50 0.01 0.01 0.01 0.99 0.99 0.99 0.99 –]
qerr= [– 0.50 0.01 0.01 0.01 0.01 0.01 0.50 0.01 –]

8000 perr = [– 0.50 0.01 0.01 0.01 0.99 0.99 0.99 0.99 0.01]
qerr = [– 0.50 0.01 0.01 0.01 0.01 0.01 0.50 0.01 0.01]

10,000 perr = [– 0.50 0.01 0.01 0.01 0.99 0.99 0.99 0.01 0.01]
qerr = [– 0.50 0.01 0.01 0.01 0.01 0.01 0.50 0.01 0.01]

12,000 perr = [– 0.50 0.01 – 0.01 0.99 0.99 0.99 0.01 0.01]
qerr = [– 0.50 0.01 – 0.01 0.01 0.01 0.50 0.01 0.01]

14,000 perr = [– 0.50 0.01 – 0.01 0.01 0.99 0.01 0.01 0.01]
qerr = [– 0.50 0.01 – 0.01 0.50 0.50 0.50 0.50 0.01]

16,000 perr = [– 0.50 0.01 – 0.01 0.01 0.99 0.01 0.01 0.01]
qerr = [– 0.50 0.01 – 0.50 0.50 0.50 0.50 0.50 0.01]

18,000 perr = [0.01 0.50 0.01 0.99 0.01 0.01 0.99 0.01 0.01 0.01]
qerr = [0.01 0.50 0.01 0.50 0.01 0.50 0.50 0.50 0.50 0.01]

Table 2
List of parameters.

RL parameters Parameters for adaptive M

b n c CG CB TA DU
H DL

H
TY TX

0.4 0.05 0.4 1 �10 20 0.001 10�5 100 10
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and one with perr(i) = 0.5, whereas the rest of them have
perr(i) = 0.99. Then, there is no combination of M = 5 coop-
erators that can give lower PERR than 0.5 (see Eq. (12)). Sim-
ilarly, for the application periods between 16,000th and
18,000th, the combination of available qerr(i) values does
not permit QERR values as low as DU

H for M = 5 (see Eq.
(13)). So, in this period average QERR is EðQ ERRÞ > 2DU

H

Fig. 4. (a and b) Suitability of different cooperators (probabil
(Fig. 4c). Consequently, in these cases it is appropriate to
modify the value of M.

In Fig. 5a, the performances (PERR and QERR) are also pre-
sented for the case M = 4. Now, PERR is significantly lower
between the 6000–8000th application periods. However,
as expected, having one cooperator less can be a limitation
for QERR. So, between the 16,000th and 18,000th applica-
tion periods, the average value of QERR is even higher,
EðQ ERRÞ � 6DU

H (as indicated in Fig. 5a).
Finally, in Fig. 5b and c the performance results are gi-

ven for variable M. Now, the variation of M allows lowering
of PERR in periods in which QERR is not close to the threshold
(between 6000th and 8000th application periods). In the
periods from 16,000th to 18,000th, the values of PERR are
higher than in both simulations with fixed M. Nevertheless,
ity to cooperate) and (c) performance results for M = 5.



Fig. 5. (a) Performance results for M = 4; (b) performance results when M is variable and (c) corresponding M value.

Fig. 6. Evolution of: (a) PERR in scenario 1 and (b) QERR in scenario 2.
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this tradeoff is done so the average value of QERR is now be-
low the DU

H , i.e. EðQERRÞ � 0:9DU
H .

As it is presented in Section 2, the primary objective was
to maintain QERR very low and then to minimize PERR as much
as possible. The presented results show how the mechanism
maintains QERR low even in transitional periods (i.e., simula-
tion initialization and preference changes when conditions
worsen). At the same time, fast convergence of the RL algo-
rithm lowers PERR relatively fast (e.g., after only	300 appli-
cation periods, even for M = 5, average PERR is below 0.05
without any previous knowledge - at session initialization).

5.2. RL convergence

In order to analyze convergence, simulations in specific
and controlled scenarios have been performed. In particu-
lar, the test has been done with N = 6 cooperators and two
different scenarios:

Scenario 1: There are N1 cooperators that perform spec-
trum access blocking, i.e. perr = 1, qerr = 0. The rest of the
cooperators are ideal.

Scenario 2: There are N2 cooperators that are stuck to
state H0 (spectrum free) and lead to interference, i.e.
perr = 0, qerr = 1. The rest of the cooperators are ideal.

In both scenarios the algorithm is considered to converge
when the average values PERR ? 0 and QERR ? 0. Fig. 6a pre-
sents the evolution of PERR in scenario 1 (note that in this sce-
nario QERR = 0) for different values N1, whereas Fig. 6b
presents the evolution of QERR in scenario 2 (note that in this
scenario PERR = 0) for different values N2. The figure shows
that the convergence of PERR towards very small values (be-
low 0.01) for scenario 1 can last between 300 and 400 appli-
cation periods depending on the value N1. However, the
convergence of the QERR which is defined as more critical is
significantly faster in the mechanism. It requires less than
100–200 application periods for QERR to reach values below
0.01 and some 200–350 application periods to reach values
below 0.001 depending on N2 (except for the case N2 = 4
which is somewhat slower).

The algorithm uses K = M � 1, which in scenario 1
makes the system completely immune to the case with
one bad cooperator (i.e. PERR = 0 for N1 = 1). On the other
side, in scenario 2, the system is completely immune to
having one bad cooperator as well (i.e. QERR = 0 for N2 = 1)
due to having K = M � 1 and the fact that the minimum va-
lue used for M is 3.

Note that scenarios 1 and 2 are the worst case scenarios
for PERR and QERR, respectively, in the sense that in each
application period whenever the wrong set of cooperators
is used the probabilities PERR and QERR for that application
period will be 1. Additionally, the CR user has no knowl-
edge of the suitability of any of the N cooperators at the
beginning.

5.3. Comparison with ‘‘K out of N’’

In the following the analysis of the performances is
done of the proposed algorithm under a completely
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random and unknown behavior of the different coopera-
tors. In the second set of results, number of cooperators
is N = 15, and the aim is to compare the performance of
the proposed approach that adaptively varies M contribu-
tors with the ‘‘K out of N’’ data fusion dynamic highly hos-
tile conditions.

Spectrum availability is simulated as two states of expo-
nentially distributed length with mean of 1/k = 500 applica-
tion periods. The spectrum access is randomly available
with probabilities Pr{H1} = 0.2 and Pr{H1} = 0.8 in the two
states. The simulation length is 2 
 105 application periods.

All cooperators change their behavior independently for
perr(i) and qerr(i) after separately generated number of appli-
cation periods with mean 1/kp for perr and 1/kq for qerr, 1/
kp = 1/kq = 2000. The new value perr is uniformly selected
within a specific interval IP and value perr is uniformly se-
lected within a specific interval IQ. In order to simulate dif-
ferent types of cooperators three behavior types are
considered, defined by the following intervals: I1P =
I1Q = [0–0.05], I2P = I2Q = [0.05–0.75], I3P = I3Q = [0.75–1.00].
I1P and I1Q present relatively good behavior, whereas other
behavior types are for less reliable or malicious cooperators.
Then, when cooperator i wants to change perr(i) or qerr(i), it
first randomly selects the range interval: I1P (or I1Q for qerr)
with probability P1 (or Q1 for qerr), I2P (I2Q) with probability
P2 (Q2) and I3P (I3Q) with probability P3 (Q3). Afterwards,
the error rate perr(i) or qerr(i) is uniformly selected from the
chosen interval.

Probability values for eight case studies (a–h) consid-
ered in this section are given in Table 3. The values in the
presented case studies are chosen arbitrarily to present the
performance of the proposed solution with different grade
of malicious behavior. This is because the behavior of the
cooperators is assumed to be completely random and un-
known in worst case scenarios with malicious users.

The proposed algorithm is compared with fixed ‘‘K out
of N’’ solution for every K, K = 1, . . . , N, denoted by QERR(K/
N) and PERR(K/N). Results for eight case studies (a–h) from
Table 3 are presented in Fig. 7. In each graph, horizontal
dashed lines represent the values PERR obtained with the
proposed solution based on RL, denoted by PERR(RL). In
turn, the value QERR(RL) is not plotted since it is in all the
cases below 0.001.

The case studies (a–h) grade from less hostile to more
hostile conditions. In case study (a) there are more values
K for which both PERR and QERR can be preserved low with
‘‘K put of N’’. From cases (b)–(d) the zone with both low
PERR and QERR is becoming tighter. Finally, for case studies
after (e) the tradeoff between setting low PERR or QERR by
Table 3
Case studies.

Case Q1 Q2 Q3 P1 P2 P3

(a) 0.9 0.1 0 0.9 0.1 0
(b) 0.6 0.2 0.2 0.8 0.1 0.1
(c) 0.8 0.1 0.1 0.7 0 0.3
(d) 0.6 0.2 0.2 0.6 0.2 0.2
(e) 0.6 0 0.4 0.6 0 0.4
(f) 0.5 0 0.5 0.7 0 0.3
(g) 0.8 0 0.2 0.3 0 0.7
(h) 0.4 0.3 0.3 0.4 0.3 0.3
choosing K becomes obvious. When smaller PERR is desired,
lower K is preferable; however, when smaller QERR is de-
sired, higher K is preferable. It can also be observed how
PERR and QERR can take different values depending on the
case condition, e.g. QERR is low with much smaller K in case
(g) than (f), whereas PERR is low with much higher K in case
(f) than (g).

Fig. 8 compares values PERR obtained with the proposed
solution, for eight case studies, with ‘‘K out of N’’ for the K
that has the lowest PERR while assuring that
QERR < DU

H ¼ 0:001. This is denoted as Best ‘‘K out of N’’
solution in the figure. Depending on the case conditions
best K can be different K, e.g. K = 8 for cases (c) and (g),
and K = 13 for case (h).

The proposed solution expresses higher robustness to
malicious behavior and also maintains very low error prob-
ability values for PERR and QERR in less hostile conditions. In
the case (a), PERR = 0.004 for the proposed algorithm due to
the exploration needed for reinforcement learning. For the
cases (b) and (c) there still exists K in ‘‘K out of N’’ with
slightly lower PERR. As the conditions become more hostile,
the proposed solution outperforms all ‘‘K out of N’’ solu-
tions (d–h).

5.4. Performance in the presence of perfect cooperators

In this study, only two behavior types are considered,
defined with following error probabilities I1P = I1Q = [0–0
.05] and I2P = I 2Q = [0.95–1.00] for perr(i) and qerr(i). These
behavior types are selected by the users with probabilities
P1 = Q1 and P2 = Q2 (P2 = 1 � P1 = Q2 = 1 � Q1). As in the pre-
vious scenario, from Section 5.3, behavior intervals are
changed independently for perr(i) and qerr(i). Once a behav-
ior type is assigned, values for perr(i) and qerr(i) are uni-
formly chosen from the corresponding interval. Two
cases are compared now:

� Case 1: All 15 cooperators assign random values to perr(i)
and qerr(i).
� Case 2: There are two perfect cooperators, that have

constantly perr(i) = qerr(i) = 0, whereas other 13 coopera-
tors behave as in case 1.

The results for PERR when P2 = Q2 is incrementing are
presented in Fig. 9. For illustrative purposes best ‘‘K out
of N’’ solution, as defined in previous study (lowest PERR

for QERR < 0.001), is compared with the results obtained
with proposed algorithm. The result obtained with the best
fix K for the ‘‘K out of N’’ is taken independently for each
simulated point. The results demonstrate that best ‘‘K out
of N’’ obtains lower PERR in the presence of two perfect
cooperators. However, it does not perform cooperator
selection, so the final decision still needs to be made
through combining with other 13 imperfect cooperators.

Results show that in the case with two perfect cooper-
ators the proposed solution reduces PERR to almost 0. As ex-
pected from Section 4, the learning mechanism manages to
identify the good cooperators and achieves very good per-
formances with very low number of cooperators. There-
fore, a reduction of M through cooperation leads to a
significant improvement of performances.



Fig. 7. Error probabilities PERR(K/N) and QERR(K/N) for ‘‘K out of N’’ fusion (K = 1, . . . , N) and PERR(RL) for proposed algorithm in eight case studies: (a–h).

Fig. 8. PERR in different case studies, the best K values for ‘‘K out of N’’
solutions are indicated next to the corresponding PERR values.

Fig. 9. PERR as a function of P2 = Q2.

Fig. 10. Results for variable K: (a) PERR, (b) QERR and (c) average M.
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5.5. Variation of K

Different values K of the decision rule ‘‘K out of M’’ in the
proposed solution are tested in this section. The scenario
case 1 from Section 5.4 is considered. Fig. 10a and b compare
PERR and QERR for cases where K = M to K = M � 4. As the
results show, K = M is the case that has the worst perfor-
mances in terms of PERR, but, as expected, is the safest choice
in terms of QERR. For K = M � 2, the results are very similar to
the case K = M � 1. Values K (K < M � 2) give similar results
in terms of PERR, but increment QERR in more hostile condi-
tions, i.e. when P2 = Q2 increases.

Finally, Fig. 10c compares the average value M in the
considered tests. As it has been seen, K = M � 2 achieved
the same results as K = M � 1 in terms of PERR and QERR.
However, K = M � 1 achieved this with lower M, which
enables reduction of communication load necessary for
cooperation.

5.6. Variation of TA

This section compares performances for the different
number of decisions per application period TA. Values



Fig. 11. Results for different number of decisions in one application
period TA: (a) PERR and (b) QERR.
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PERR and QERR obtained for the case 1 from Section 5.4 are
compared in Fig. 11. In terms of QERR most difference is
achieved when TA = 10 and TA = 20. This reveals that
when interference probability is critical, higher number
of decisions per application can be preferred. However,
note that there is no need to take TA > 50, as the number
of decisions TA higher than 50 is not decreasing QERR (be-
low approximately 0.0005), whereas PERR is increased.
6. Conclusions

This paper had addressed the reliability issue for
cooperative cognitive radio networks, trying to maximize
opportunistic radio access, with minimal interference to
primary users, when cooperators advising on resource
access can be unreliable or malicious. This paper has pre-
sented a solution that by means of reinforcement learn-
ing maintains a list of cooperators and their suitability,
and selects the appropriate ones to in order to maximize
correct resource access. The results demonstrate the
capability of the proposed solution to successfully learn
and act in dynamic hostile environments. The proposed
solution offers robustness to highly erroneous coopera-
tion conditions that could be due to either lowered reli-
ability or possible Byzantine attacks. Additionally, the
proposed solution adapts the number of used coopera-
tors in accordance with their performances. When there
are few highly accurate cooperators, the proposed solu-
tion successfully encounters them and bases the spec-
trum access decision only on their advices to achieve
very high performances.
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Appendix A

In this section, some additional expressions that illus-
trate the dependence of PERR and QERR on M and K are de-
rived. For the general case PERR (Eq. (4)) and QERR (Eq. (5))
can be presented as functions of M and K:

PERRðM;KÞ ¼ 1�
XM

j¼K

WðM; jÞ; ð19Þ

Q ERRðM;KÞ ¼
XM

j¼K

FðM; jÞ; ð20Þ

where

WðM; jÞ ¼ Pr
XM

i¼1

xðiÞ
 !

¼ jjH1

( )
; ð21Þ

FðM; jÞ ¼ Pr
XM

i¼1

xðiÞ
 !

¼ jjH0

( )
: ð22Þ

As the values W(M, j) and F(M, j) are probabilities, it stands:
0 6W(M, j) 6 1 and 0 6 F(M, j) 6 1.

Theorem 1. For a given number of cooperators M, for a
hard decision with ‘‘K out of M’’ rule, case using K00 > K will
have higher or equal error probability PERR but will have
lower or equal error probability QERR, than the case using K.
Proof. From Eqs. (19) and (20) it can be observed that if
instead of K, K00 = K + 1 cooperators are used in the ‘‘K out
of M’’ rule, the following expressions can be obtained:

PERRðM;K þ 1Þ ¼ 1�
XM

j¼Kþ1

WðM; jÞ

¼ PERRðM;KÞ þWðM;KÞ; ð23Þ

Q ERRðM;K þ 1Þ ¼
XM

j¼Kþ1

FðM; jÞ ¼ QERRðM;KÞ � FðM; jÞ: ð24Þ

It is clear from the previous equations that:

PERRðM;K 00ÞP PERRðM;KÞ; K 00 > K; ð25Þ
Q ERRðM;K 00Þ 6 Q ERRðM;KÞ; K 00 > K: � ð26Þ
Theorem 2. For a number of cooperators M and a fixed dif-
ference D = M � K (K = M � D) in the ‘‘K out of M’’ rule, the
error probabilities are PERR(M, K) and QERR(M, K). Then, if
one additional cooperator is added, i.e. M is incremented
(M00 = M + 1), then, the new error probabilities will be
P�ERR P PERRðM;KÞ and Q �ERR 6 Q ERRðM;KÞ, independently of
the erroneous probability advices of the new cooperator
p�err and q�err .
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Proof. If number of cooperators M is incremented, then K
is also incremented M = M + 1 ? K = K + 1. So the new error
probabilities become:

P�ERR ¼ PERRðM þ 1;K þ 1Þ

¼ 1�
XMþ1

j¼Kþ1

Pr
XMþ1

i¼1

xðiÞ
 !

¼ jjH1

( )
; ð27Þ

Q �ERR ¼ Q ERRðM þ 1;K þ 1Þ

¼
XMþ1

j¼Kþ1

Pr
XMþ1

i¼1

xðiÞ
 !

¼ jjH0

( )
: ð28Þ

If the cases when the new cooperator’s advice is 1 (with
probabilities 1 � p�err and q�errÞ and 0 (with probabilities
p�err and 1� q�errÞ are separated, the previous equations
become:

P�ERR ¼ 1� ð1� p�errÞ
XMþ1

j¼Kþ1

Pr
XM

i¼1

xðiÞ
 !

¼ ðj� 1ÞjH1

( ) 

þp�err

XMþ1

j¼Kþ1

Pr
XM

i¼1

xðiÞ
 !

¼ jjH1

( )!
; ð29Þ
Q �ERR ¼ q�err

XMþ1

j¼Kþ1

Pr
XM

i¼1

xðiÞ
 !

¼ ðj� 1ÞjH0

( ) 

þð1� q�errÞ
XMþ1

j¼Kþ1

Pr
XM

i¼1

xðiÞ
 !

¼ jjH0

( )!
: ð30Þ

Taking into account:

Pr
XM

i¼1

xðiÞ
 !

¼ M þ 1jH1

( )
¼ 0; i:e:WðM;M þ 1Þ ¼ 0;

ð31Þ
Pr
XM

i¼1

xðiÞ
 !

¼ M þ 1jH0

( )
¼ 0; i:e:FðM;M þ 1Þ ¼ 0:

ð32Þ

Using Expressions (21) and (22), Expressions (29) and (30)
become:

P�ERR ¼ 1� ð1� p�errÞ
XM

j¼K

WðM; jÞ þ p�err

XM

j¼Kþ1

WðM; jÞ
" #

; ð33Þ

Q �ERR ¼ q�err

XM

j¼K

FðM; jÞ þ ð1� q�errÞ
XM

j¼Kþ1

FðM; jÞ: ð34Þ

Finally, from the last expressions and Eqs. (19) and (20) it
can be obtained:

P�ERR ¼ PERRðM;KÞ þ p�errWðM;KÞ; ð35Þ
Q �ERR ¼ Q ERRðM;KÞ � ð1� q�errÞFðM;KÞ: ð36Þ

It is clear from the last equations that:

PERRðM þ 1;K þ 1ÞP PERRðM;KÞ; 8p�err; ð37Þ
Q ERRðM þ 1;K þ 1Þ 6 Q ERRðM;KÞ; 8q�err : � ð38Þ
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