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Abstract—This paper provides an asymptotic analysis of the transmission delay experienced by SUs for dynamic spectrum access

(DSA) networks. It is shown that DSA induces only light-tailed delay if both the busy time of PU channels and the message size of SUs

are light tailed. On the contrary, if either the busy time or the message size is heavy tailed, then the SUs’ transmission delay is heavy

tailed. For this latter case, it is proven that if one of either the busy time or the message size is light tailed and the other is regularly

varying with index �, the transmission delay is regularly varying with the same index. As a consequence, the delay has an infinite mean

provided � < 1 and an infinite variance provided � < 2. Furthermore, if both the busy time and the message size are regularly varying

with different indices, then the delay tail distribution is as heavy as the one with the smaller index. Moreover, the impact of spectrum

mobility and multiradio diversity on the delay performance of SUs is studied. It is shown that both spectrum mobility and multiradio

diversity can greatly mitigate the heavy-tailed delay by increasing the orders of its finite moments.

Index Terms—Dynamic spectrum access, heavy-tailed delay, spectrum mobility, multiradio diversity.
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1 INTRODUCTION

DYNAMIC spectrum access (DSA) enables the secondary
users (SUs) to use or share the spectrum in an

opportunistic manner [1]. Under such scheme, SUs access
the spectrum during idle periods of the primary users
(PUs), and cease transmissions when the PU channels
become occupied by the PUs. Apparently, the dynamically
changing PU activity has a nonnegligible impact on the
QoS performance of SUs. This may become more evident
when SUs demand for real-time services in order to
support multimedia applications, such as voice over IP
and online gaming.

The delay, as one of the key QoS metrics, has been
widely studied for classical communication network para-
digms the last several decades. So far, the delay with heavy-
tailed distributions has drawn high attentions in the
research community due to its significantly different
behavior from that of the light-tailed (e.g., exponential)
distribution [9]. More specifically, the heavy-tailed delay
can have infinite moments of lower orders, e.g., mean and
variance. In this case, the network can exhibit significant
performance degradations including the considerably re-
duced network throughput, queue stability, and system
scalability. Despite its importance, the tail behavior of the
SUs’ transmission delay is still an underexplored area,
partially due to the dynamic and complex network
environment. In this paper, we analyze the asymptotic tail
distribution of the transmission delay experienced by SUs
and discover the impact of DSA paradigm on the delay
performance.

We consider a cognitive radio network in which an SU
can exploit the spectrum holes of multiple stochastically
independent channels. A PU channel is modeled by an
alternating renewal process, which alternates between busy
periods fBigi�1 and idle periods fIigi�1. An SU is only
allowed to transmit during the idle periods, and avoid
transmissions when the PU channels become busy. Upon
the arrival of a message with size L > 0, the SU first splits it
into multiple packets with constant size Lp > 0, which are
then sent consecutively over PU channels. Accordingly, the
total time an SU takes to complete the transmissions of a
message is defined as the transmission delay. Apparently,
under such generic settings, the transmission delay has a
close relationship with the SU message size as well as the
PU channel availability. The distributions of the message
size and PU busy time can be either heavy tailed (HT) or
light tailed (LT), depending on the underlying communica-
tion systems and the applications the SUs and PUs demand
for. For example, in the earlier 2G voice-oriented cellular
systems, empirical measurements show that the call
holding times are light tailed, or more specifically,
exponentially distributed [11]. On the contrary, heavy-
tailed distributions have been widely observed in current
data-oriented communication networks. For example, the
file size on the Internet servers, the web access pattern, and
the scene length distribution of variable bit rate (VBR) and
MEPG video streams have shown HT statistical character-
istics [9]. Moreover, recent empirical evidence shows that
the call holding time or channel occupancy time in 3G
cellular networks also exhibits the HT nature [14], [15].

In this paper, we first investigate the delay performance
when only a single PU channel is utilized. Specifically, it is
shown that the DSA induces only light-tailed delay as long
as both the busy time of PU channels and the message size
of SUs are light tailed. On the contrary, if either the busy
time or the message size is heavy tailed, then the SUs’
transmission delay is heavy tailed. For this case, we prove
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that if one of the busy time or the message size is light tailed
and the other is regularly varying with index �, then the
transmission delay is regularly varying with the same index
�. As a consequence, the delay has an infinite variance
provided � < 2 and an infinite mean provided � < 1. This
implies that the SUs can experience extremely high delay
variations and even stochastically zero throughout when
transmitting messages with the finite mean size. Further-
more, if both the busy time and the message size are
regularly varying with index � and �, respectively, then
the tail distribution of the delay is as heavy as the one with
the smaller index.

Moreover, we investigate the benefits of exploiting the
transmission opportunities on multiple PU channels. More
specifically, we consider two multiple channel access
schemes, namely, spectrum mobility and multiradio
diversity. Under spectrum mobility, if a PU appears in a
channel currently used by an SU, the SU vacates the
channel immediately and continues its transmission in
another idle channel [1]. Under multiradio diversity, an SU
is equipped with multiple radio interfaces so that it can
simultaneously access multiple channels. We show that
compared with the case in which only a single channel is
used, both spectrum mobility and multiradio diversity can
mitigate the degree of heavy-tailed delay by increasing the
orders of its finite moments.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 introduces system
model and preliminaries. Section 4 presents the main
results regarding the delay performance of SUs. The impact
of spectrum mobility and multiradio diversity is studied in
Section 5. The simulation results are presented in Section 6.
Finally, Section 7 concludes this paper.

2 RELATED WORK

Although the delay is an important QoS metric in wireless
networks, the delay analysis for cognitive radio networks is
still scarce to the best of our knowledge. In [6] and [13], the
queuing delay of SUs in a multichannel cognitive network
was investigated with different objectives. Specifically, using
large deviation approximation, Laourine et al. [6] aimed to
analyze the stationary queue distribution of SUs under the
Markov chain-based PU traffic model. On the contrary,
Wang et al. [13] studied the moments of the SUs’ queue
length under the PU traffic model as an alternating ON/OFF
process, where the ON periods follow a general distribution
and the OFF periods are exponentially distributed. Instead of
studying the queuing delay as [6] and [13], we aim to
investigate the transmission delay of SUs. To the best of our
knowledge, little work on the analysis of such delay has been
done for cognitive radio networks. Besides the above
mentioned work, a different application that is related to
our work is file fragmentation [8]. In this problem, files are
partioned into fragments and transferred over wireless
channels. The objective is to find the optimal fragmentation
policies that minimize the mean transmission time. Different
from the file fragmentation application, in which only one
file fragment is sent each time the wireless channel is
available, SUs will keep sending packets back-to-back as
long as the PU channel is detected as idle. Moreover, in the

file fragmentation problem, the channel busy time is
assumed to be zero [8]. This assumption is not valid in
cognitive radio networks due to the existence of PU activities.
In particular, recent work, which is based on real-life
measurement data, has identified the heavy-tailed behavior
in the busy periods of PU channels [15]. This behavior was
further shown to have a significant impact on the sensing
performance of SUs. However, Wellens et al. [15] did not
answer how this heavy-tailed behavior of PU channels
affects the delay performance of SUs, which is one of the key
research problems addressed in this paper.

3 SYSTEM MODEL AND PRELIMINARIES

3.1 System Model

Consider a PU channel and an SU which transmits when
the PU channel is idle. Without loss of generality, we
assume that the PU channel is of unit capacity. This channel
is modeled by an alternating renewal process, which
alternates between busy periods fBigi�1 and idle periods
fIigi�1. fBigi�1 and fIigi�1 are mutually independent
random sequences of i.i.d. random variables with distribu-
tions FB and FI , respectively. Let L > 0 denote the size of
the messages generated by the SU, and L is a random
variable (r.v.) independent of fBigi�1 and fIigi�1. For each
message, the SU divides it into packets with constant size
Lp > 0, which are then sent over the PU channel. In each
idle period Ii, the SU attempts to transmit, and if Ii > Lp,
the SU sends packets consecutively until the remaining time
of the idle period Ii is less than the packet size Lp.
Otherwise, if Ii < Lp, the SU transmits unsuccessfully and
waits for the next idle period for retransmission. An
illustration of this model is given in Fig. 1.

Definition 1. During an idle period Ii, the transmission time Xi

of the SU is defined as

Xi :¼ supfnLp : nLp � Iig; ð1Þ

the total number of idle periods the SU occupies for
transmitting a message of size L is defined as

M :¼ inf m :
Xm
i¼1

Xi � L
( )

; ð2Þ

and the total delay T of the SU transmitting a message of size
L is defined as

T ðLÞ :¼
XM
i¼1

fIi þBig: ð3Þ
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Fig. 1. System model.



3.2 Preliminaries

In this paper, we use the following notations. For any two real

functions aðtÞ and bðtÞ, we let aðtÞ � bðtÞ denote limt!1 aðtÞ=
bðtÞ ¼ 1. We say that aðtÞ <� bðtÞ if lim supt!1 aðtÞ=bðtÞ � 1,

and aðtÞ >� bðtÞ if lim inft!1 aðtÞ=bðtÞ � 1. Furthermore, we

say that aðtÞ ¼ oðbðtÞÞ if limt!1 aðtÞ= bðtÞ ¼ 0. In addition, for

any two nonnegative r.v.s X and Y , we say that X �a:s: Y if

X � Y almost surely, and X �s:t: Y if X is stochastically

dominated by Y , i.e., P ðX > tÞ � P ðY > tÞ for all t � 0. We

say X ¼d Y if X and Y are equal in distribution. Also, let

F ðxÞ ¼ P ðX � xÞ denote the cumulative distribution func-

tion (cdf) of a nonnegative r.v. X. Let F ðxÞ ¼ P ðX > xÞ
denote its tail distribution function.

Definition 2. A r.v. X is heavy tailed if for all � > 0

lim
x!1

e�xF ðxÞ ¼ 1; ð4Þ

or, equivalently, if for all z > 0

E½ezX� ¼ 1: ð5Þ

Definition 3. A r.v.X is light tailed if there exists � > 0 such that

lim
x!1

e�xF ðxÞ ¼ 0; ð6Þ

or, equivalently, if there exists z > 0 such that

E½ezX� <1: ð7Þ

Remark 1. Generally speaking, a r.v. is HT if its tail

distribution decreases slower than exponentially. Some

typical HT distributions include Pareto, log-normal, Bur,

and Weibull (with shape parameter less than 1) distribu-

tions. On the contrary, a r.v. is LT if its tail distribution

decreases exponentially or faster. Some typical LT

distributions cover exponential, Gamma, and Weibull

(with shape parameter larger than 1) distributions. A key

characteristic that distinguishes HT r.v.s from LT ones is

that the moment generating function of any HT r.v. X is

infinite, i.e., EðezXÞ ¼ 1; 8 z > 0.

An important subclass of HT distributions is the class of

regularly varying distributions [2]. Its definition involves

the slowly varying function which is defined as follows.

Definition 4. A measurable positive function LðxÞ defined in

some interval ½a;1Þ is called slowly varying if for all y > 0

lim
x!1

LðyxÞ
LðxÞ ¼ 1: ð8Þ

For example, a constant and a logarithmic function are

both slowly varying functions.

Lemma 1 (Properties of Slowly Varying Function [2]).

1. If LðxÞ varies slowly, limx!0 logðLðxÞÞ=logx ¼ 0.
2. If LðxÞ varies slowly, so does ðLðxÞÞa for every a 2 IR.
3. If L1ðxÞ and L2ðxÞ vary slowly, so do L1ðxÞ þ L2ðxÞ

and L1ðxÞL2ðxÞ.

Definition 5. A r.v. X is called regularly varying with index

� > 0, denoted by X 2 RVð�Þ, if

F ðxÞ � x��LðxÞ; ð9Þ

where LðxÞ is a slowly varying function.

Remark 2. Regularly varying distributions are a general-

ization of power law distributions. The index �

indicates how heavy the tail distribution is, where

smaller values of � imply heavier tail. Moreover, for a

r.v. X 2 RVð�Þ, the exact values of � determine whether

the moments of X are bounded or not. This is explained

in the following lemma.

Lemma 2. For any r.v. X 2 RVð�Þ, the moments of order m > �

is unbounded, i.e.,

E½Xm� ¼ 1; 8m > �: ð10Þ

Remark 3. In particular, for any r.v. X 2 RVð�Þ, if � < 1, X

has an infinite mean. If 1 < � < 2, X has a finite mean

but an infinite variance.

The following preliminary Lemmas regarding regularly

varying and light-tailed distributions are also useful in this

paper. We first state the Lemmas, followed by their proofs

in Section 3.3.

Lemma 3. Let X 2 RVð�Þ and Y 2 RVð�Þ. If � > �, then

P ðX > atÞ ¼ oðP ðY > btÞÞ;

with a > 0 and b > 0.

Lemma 4. Let X and Y be nonnegative random variables. If

X 2 RVð�Þ and P ðY > tÞ ¼ P ðX > btÞ with b > 0, then

Y 2 RVð�Þ.
Lemma 5. Let X be LT and Y 2 RVð�Þ. Then,

P ðX > atÞ ¼ oðP ðY > btÞÞ;

with a > 0 and b > 0.

Lemma 6. Let X and Y be nonnegative random variables. If

P ðY > tÞ¼P ðX > aðtþ bÞÞ with 0<a<1 and 0<b<1,

then Y is LT provided X is LT.

Let fYigi�1 be nonnegative i.i.d. random variables

independent of the nonnegative random variable N . Define

SN :¼
PN

i¼1 Yi. We have following Lemmas 7 [5] and 8.

Lemma 7.

1. Assume Y1 2 RVð�Þ, E½N � <1, and P ðN > tÞ ¼
oðP ðY1 > tÞÞ. Then,

P ðSN > tÞ � E½N�P ðY1 > tÞ:

2. Assume N 2 RVð�Þ, E½Y1� <1, and P ðY1 > tÞ ¼
oðP ðN > tÞÞ. Moreover, assume that E½N � <1 if
� ¼ 1. Then,

P ðSN > tÞ � P ðN > ðE½Y1�Þ�1tÞ:
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Lemma 8. Assume N; Y1 2 RVð�Þ with E½N� <1. Let P ðN >

tÞ ¼ t��L1ðtÞ and P ðY1 > tÞ ¼ t��L2ðtÞ. Then,

P ðSN > tÞ � E½N�P ðY1 > tÞ þ ðE½Y1�Þ�P ðN > tÞ: ð11Þ

Lemma 9 (Properties of LT Distributions [8]).

1. If X and Y are nonnegative LT random variables, then
X þ Y is LT.

2. Let fXigi�1 be i.i.d. LT random variables, and N

be integer LT random variable. Then, the random sumPN
i¼1 Xi is LT.

3. Let L be a nonnegative random variable and fXigi�1

be nonnegative i.i.d. random variables independent of
L and satisfying P ðXi > 0Þ > 0. If L is LT, so is
inffn :

Pn
i¼1 Xi � Lg.

3.3 Proofs of the Preliminary Lemmas

Proof of Lemma 3 to 6. The proof follows easily from the

definitions of LT and HT r.v.s. tu
Proof of Lemma 8. We use techniques similar to those used

in [5] to prove that the lower and upper bounds in (11)

asymptotically coincide. For every fixed n0, we obtain

P ðSN > tÞ ¼
Xn0

n¼1

P ðN ¼ nÞP ðSn > tÞ

þ
X1
n¼n0

P ðN ¼ nÞP ðSn > tÞ:

Since Y1 2 RVð�Þ, Y1 is subexponentially distributed. By
the subexponentiality of Y1 and the independence of N
and Y1, we obtain

Xn0

n¼1

P ðN ¼ nÞP ðSn > tÞ �
Xn0

n¼1

P ðN ¼ nÞnP ðY1 > tÞ

� E½N �P ðY1 > tÞ; n0 !1:

For any 1 > � > 0, we obtain for large enough t

X1
n¼n0þ1

P ðN ¼ nÞP ðSn > tÞ ¼
Xtð1��Þ=E½Y1�

n¼n0þ1

þ
X1

n¼tð1��Þ=E½Y1�

0@ 1A
P ðN ¼ nÞP ðSn > tÞ :¼ I þ II:

For Term II, we obtain

II ¼
Xtð1þ�Þ=E½Y1�

n¼tð1��Þ=E½Y1�
þ

X1
n¼tð1þ�Þ=E½Y1�

0@ 1AP ðN ¼ nÞP ðSn > tÞ

:¼ J1 þ J2:

ð12Þ

By the law of large numbers and letting � # 0, we obtain

J1 �
Xtð1þ�Þ=E½Y1�

n¼tð1��Þ=E½Y1�
P ðN ¼ nÞP

Xtð1þ�Þ=E½Y1�

i¼1

Yi > t

 ! !

� P N >
tð1� �Þ
E½Y1�

� �
� P N >

tð1þ �Þ
E½Y1�

� �
¼ oð1Þ:

For J2, we have

J2 �
X1

n¼tð1þ�Þ=E½Y1�
P ðN ¼ nÞ � P N >

1þ �
E½Y1�

t

� �
; ð13Þ

and by the law of large numbers

J2 �
X1

n¼tð1þ�Þ=E½Y1�
P ðN ¼ nÞP

Xtð1þ�Þ=E½Y1�

i¼1

Yi > t

 !

� P N >
1þ �
E½Y1�

t

� �
:

ð14Þ

Combining (13) and (14) and letting � # 0, we have

J2 � P N >
t

E½Y1�

� �
� ðE½Y1�Þ�P ðN > tÞ: ð15Þ

For Term I, we have

I ¼
Xtð1��Þ=E½Y1�

n¼n0þ1

P ðN ¼ nÞP ðSn � nE½Y1� > t� nE½Y1�Þ:

Since n < tð1� �Þ=E½Y1�, we obtain that y :¼ t� nE½Y1� >
nE½Y1�ðð1� �Þ�1 � 1Þ. By large deviations theory [3], [7],
it follows that for any " > 0

lim
n!1

sup
y>"n

P ðSn � nE½Y1� > yÞ
nP ðY1 > yÞ � 1

���� ���� ¼ 0;

which implies that there exists some positive constant C
such that

lim
n0!1

lim sup
t!1

I � lim
n0!1

C
X1

n¼n0þ1

P ðN ¼ nÞnP ðY1 > yÞ ¼ 0:

This, in conjunction with (12), (13), and (15), completes
the proof. tu

4 ASYMPTOTIC ANALYSIS OF THE TRANSMISSION

DELAY

In this section, we study the tail asymptotics for the
transmission delay experienced by SUs with PU idle times
fIigi�1 following LT distribution.

Theorem 1. If the message size L is heavy tailed, then the number
M of idle periods for sending such file is heavy tailed.

Theorem 2. If either the busy period Bi or the message size L is
heavy tailed, then the transmission delay T ðLÞ is heavy tailed.

Theorem 3. If both the busy period Bi and the message size L are
light tailed, then the transmission delay T ðLÞ is light tailed.

Remark 4. From these results, we see that under the DSA
paradigm, SUs can experience light-tailed transmission
delay if and only if both the message size of SUs and the
busy time of PUs are light tailed. In other words, the
heavy-tailed delay originates not only from the heavy-
tailed file size, but also from the heavy-tailed busy time. In
this case, the SUs’ transmission delay probably has infinite
moments of certain orders, e.g., mean and variance, and
definitely has an infinite moment generating function, i.e.,
infinite exponential moments of all orders.
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Proof of Theorem 1. From (2), we have

P ðM > tÞ ¼ P L >
Xt
i¼1

Xi

 !
: ð16Þ

Let � :¼ E½X1�. For " 2 ð0; �Þ, by the law of large
numbers, we obtain

P ðM > tÞ

¼ P L >
Xt
i¼1

Xi

 !

� P L >
Xt
i¼1

Xi ^ tð�� "Þ <
Xt
i¼1

Xi < tð�þ "Þ
 !

� P ðL > tð�þ "ÞÞP tð�� "Þ <
Xt
i¼1

Xi < tð�þ "Þ
 !

� P ðL > tð�þ "ÞÞ:

Letting " # 0 yields P ðM > tÞ >� P ðL > �tÞ. Let t0 ¼ �t.
For any � > 0,

lim
t!1

e�tP ðM > tÞ � lim
t!1

e�tP ðL > �tÞ

¼ lim
t0!1

e
�
�t
0
P ðL > t0Þ

¼ 1:

The last equation holds since L is HT. Thus, M is HT by
the Definition 2. tu

Proof of Theorem 2. We first consider the case where L is
HT. For any � > 0, we have

P ðT ðLÞ > tÞ ¼ P
XM
i¼1

Ii þBi > t

 !

� P M � tð1þ �Þ
E½X1�

� �
� P

XM
i¼1

Ii < t ^M � tð1þ �Þ
E½X1�

 !

� P M � tð1þ �Þ
E½X1�

� �
� P

Xtð1þ�Þ=E½X1�

i¼1

Ii < t

 !
:

Let eIi :¼ E½I1� � Ii. Since Ii is LT, then eIi is LT. Thus, by
applying Chernoff bound, we can argue that there exists
a positive constant � such that for large enough t

P
Xtð1þ�Þ=E½X1�

i¼1

Ii < t

 !
¼ P

Xtð1þ�Þ=E½X1�

i¼1

eIi > �t

 !
< e��t:

Since L is HT, then M is HT by Theorem 2. Thus, for any
0 < � < �

lim
t!1

e�tP ðT ðtÞ > tÞ ¼ 1: ð17Þ

For any � > �, there always exists a constant 0 < e� < �

such that

lim
t!1

e�tP ðT ðtÞ > tÞ > lim
t!1

e
e�tP ðT ðtÞ > tÞ ¼ 1: ð18Þ

Combining (17) and (18), we have for any � > 0,

lim
t!1

e�tP ðT ðtÞ > tÞ ¼ 1: ð19Þ

This implies that T ðLÞ is HT by Definition 2.
We will next consider the case where Bi is HT. Since

we prove in the previous case that if L is HT, then T ðLÞ is
HT, we assume that L is LT. It is easy to see

P ðT ðLÞ > tÞ ¼ P
XM
i¼1

Ii þBi > t

 !
� P

XM
i¼1

Bi > t

 !
: ð20Þ

Which implies T ðLÞ is HT provided one can prove Z :¼PM
i¼1 Bi is HT. Toward this, by the independence

between M and Bi, we obtain the moment generating
function MZðxÞ of Z, i.e.,

MZðxÞ ¼ E
h
ex
PM

i¼1
Bi

i
¼ E

�
ðE½eB1 �ÞxM

�
:

Since function fðyÞ ¼ ay is convex and B1 is HT, by
Jensen’s inequality [10], for all x > 0

MZðxÞ ¼ E
��
E
�
eB1
��xM� � �E�eB1

��xE½M� ¼ 1:
Thus, it follows that T ðLÞ is HT by the Definition. tu

Proof of Theorem 3. By Definition 1, we have Xi ¼ NiLp
with Ni as a positive integer random variable, where

Ni ¼ sup n :
Xn
i¼1

nLp � Ii

( )
: ð21Þ

It is easy to see

P ðNi > nÞ ¼ P ðIi � ðnþ 1ÞLpÞ: ð22Þ

This implies that Ni is LT by Lemma 6. Accordingly, it
follows easily from Definition 3 that Xi ¼ NiLp is LT.
Therefore, invoking Lemma 9(3), we obtain that M is LT.
Since Ii þBi is LT by Lemma 9(1), we finally obtain that
T ðLÞ is LT using Lemma 9(2). tu
The above theorems state the conditions under which the

SUs’ transmission delay exhibits heavy-tailed behavior. The
following theorems present the exact asymptotic results for
this delay under the regularly varying busy time of PUs and
message size of SUs.

Theorem 4. If L 2 RVð�Þ, then M 2 RVð�Þ and

P M > tð Þ � P ðL > E½X1�tÞ: ð23Þ

Remark 5. Comparing with Theorem 1, Theorem 4 provides
more refined results regarding the total number of idle
periods an SU occupies to transmit a message. Specifi-
cally, if the message size is regularly varying, then the
number of idle periods for transmitting such message is
also regularly varying with the same index. This implies
that if the message size has infinite mean and variance,
so does the number of idle periods occupied by SUs.

Theorem 5. IfL 2 RVð�Þ andBi is LT, then T ðLÞ 2 RVð�Þ and

P ðT ðLÞ > tÞ � P L >
E½X1�

E½I1� þ E½B1�
t

� �
: ð24Þ
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Theorem 6. IfBi 2 RVð�Þ andL is LT, then T ðLÞ 2 RVð�Þ and

P ðT ðLÞ > tÞ � E½M�P ðB1 > tÞ: ð25Þ

Remark 6. The preceding results establish the relationship
between the tail asymptotics of L, Bi, and T ðLÞ.
Specifically, if one of either the busy time or message
size is light tailed and the other is regularly varying, then
the tail distribution of the transmission delay is
asymptotically proportional to the one with regularly
varying distribution. This result implies that the SUs can
experience extremely high delay variance and stochasti-
cally zero throughput even when the transmitting
messages are of finite mean size. For example, if the
message size is LT, then its mean is finite. In this case, by
Theorem 6, when 2 > � > 1, the transmission delay does
not have finite variance, and when 1 > � > 0, it does not
have finite mean, which implies approximately zero
throughput on the average.

Theorem 7. Assume that B 2 RVð�bÞ, L 2 RVð�lÞ, and
E½L� <1. Then, we have

1. If �b < �l, then T ðLÞ 2 RVð�bÞ and

P ðT ðLÞ > tÞ � E½M�P ðB1 > tÞ: ð26Þ

2. If �b � �l,

lim
t!1

log P ðT ðLÞ > tÞ½ �
log t

¼ ��l: ð27Þ

Corollary 1. If B 2 RVð�bÞ, L 2 RVð�lÞ, and E½L� <1, then

lim
t!1

log P ðT ðLÞ > tÞ½ �
log t

¼ �minð�b; �lÞ;

and accordingly, the moments of orders m > minð�b; �lÞ is
unbounded, i.e.,

E½T ðLÞm� ¼ 1:

Remark 7. Comparing the Theorem 7 and Theorems 4 to 6,
we observe that the exact asymptotic tail for the
transmission delay is not available in the case of
�b � �l. Instead, Corollary 1 states that if both the busy
time and the message size are regularly varying, then the
tail heaviness of the transmission delay is asymptotically
equivalent to the one with smaller index. In this case, it
follows directly from in [4, Theorem 2] that the
transmission delay still has infinite moments of orders
larger than the index minð�b; �lÞ, even through this delay
does not strictly follow regular varying distributions.

The proof of Theorem 4 relies on Lemma 10, which we
state and prove first.

Lemma 10. Let eT ðLÞ ¼PM
i¼1 Ii. If L 2 RVð�Þ, then

P ð eT ðLÞ > tÞ � P ðL > �tÞ; ð28Þ

where � ¼ E½X1�=E½I1�.

The proof of Lemma 10 relies on Theorem 8 [5]. This
technique is similar to the one used in the proof for optimal
file fragmentation [8].

Theorem 8 ([5]). Let L 2 RVð�Þ. Let RðtÞ be a nonnegative,
almost surely nondecreasing random process independent of L.
If RðtÞ satisfies following conditions:

1. RðtÞ=t! � almost surely as t goes to infinity, with
0 < � < 1.

2. There exists a positive and finite constant K such that
P ðRðtÞ=t < KÞ ¼ oðP ðL > tÞÞ.

Then, P ðL > RðtÞÞ � P ðL > �tÞ.
Proof of Lemma 10. We define Nt :¼ supfn :

Pn
i¼1 Ii < tg

and RðtÞ :¼
PNt

i¼1 Xi. It is easy to see that P ð eT ðLÞ > tÞ ¼
P ðL > RðtÞÞ. Thus, to prove Lemma 10, it is sufficient to

prove Conditions 1 and 2 of Theorem 8 are satisfied. By

renewal theory, we have

lim
t!1

RðtÞ
t
¼ E½X1�
E½I1�

¼ �; ð29Þ

almost surely. Since X1 �a:s: I1, we conclude E½X1� <
E½I1� and 0 < � < 1, implying that Condition 1 of
Theorem 8 is satisfied. Next, we will prove that
Condition 2 of Theorem 8 is also satisfied. Let K ¼
ð1� �ÞE½X1�=ðð1þ �ÞE½I1�Þ. Then, for any 1 > � > 0, we
have

P ðRðtÞ < KtÞ � P Nt <
tð1� �Þ
E½I1�

� �
þ P

XNt

i¼1

Xi < Kt ^Nt >
tð1� �Þ
E½I1�

 !
:¼ J1 þ J2:

For J1, since Ii is LT, by Chernoff bound, there exists
�1 > 0 such that

J1 � P
Xtð1��Þ=E½I1�

i¼1

Ii > t

 !
� e��1t: ð30Þ

For J2, let eXi ¼ EðXiÞ �Xi, we obtain

J2 < P
Xtð1��Þ=E½I1�

i¼1

Xi < Kt

 !

¼ P
Xtð1��Þ=E½I1�

i¼1

eXi >
�ð1� �ÞE½X1�
ð1þ �ÞEðI1Þ

t

 !
:

Since Xi is LT, by Chernoff bound, we can always find
�2 > 0 such that

J2 � e��2t: ð31Þ

By (30) and (31), we conclude

P ðRðtÞ < KtÞ � e��1t þ e��2t: ð32Þ

Since L 2 RVð�Þ, we have

lim sup
t!1

P ðRðtÞ < KtÞ
P ðL > tÞ � lim sup

t!1

e��1t þ e��2t

t��LðtÞ ¼ 0: ð33Þ
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The last equality holds since regularly varying distribu-
tions are a subclass of HT distributions. Accordingly,
for any � > 0, limt!1ðe�tt��LðtÞÞ ¼ 1. By (33), we
conclude P ðRðtÞ < KtÞ ¼ oðP ðL > tÞÞ. Therefore, both
Conditions 1 and 2 of Theorem 8 are satisfied. This
completes the proof. tu

Proof of Theorem 4. Let eT ðLÞ ¼PM
i¼1 Ii. By Lemma 10, (23)

follows provided one can show that

P ð eT ðLÞ > tÞ � P M >
t

E½I1�

� �
: ð34Þ

For all 1 > � > 0, we obtain

P ð eT ðLÞ > tÞ � P M � tð1� �Þ
E½I1�

� �
þ P

XM
i¼1

Ii > t ^M � tð1� �Þ
E½I1�

 !

� P M � tð1� �Þ
E½I1�

� �
þ P

Xtð1��Þ=E½X1�

i¼1

Ii > t

 !

� P M � tð1� �Þ
E½I1�

� �
:

ð35Þ

The last step follows from Chernoff bounds. Letting
� # 0, this proves the upper bound in (34). As to the lower
bound, for all � > 0, letting eIi :¼ E½I1� � Ii yeilds

P ð eT ðLÞ > tÞ � P M � tð1þ �Þ
E½I1�

� �
� P

XM
i¼1

Ii < t ^M � tð1þ �Þ
E½I1�

 !

� P M � tð1þ �Þ
E½I1�

� �
� P

Xtð1þ�Þ=E½X1�

i¼1

eIi > �t

 !

� P M � tð1þ �Þ
E½I1�

� �
:

ð36Þ

Letting � # 0, this proves the lower bound in (34). By (35)
and (36), we obtain

P M >
t

E½I1�

� �
� P ð eT ðLÞ > tÞ � P L >

E½X1�
E½I1�

t

� �
;

which implies P ðM > tÞ � P ðL > E½X1�tÞ. This com-
pletes the proof of (23) and implies M 2 RVð�Þ by
Lemma 4. tu

Proof of Theorem 5. The proof follows easily by the similar
arguments used in proving Lemma 10. tu

To facilitate the proofs of Theorems 6 and 7, we define
TI :¼

PM
i¼1 Ii and TB :¼

PM
i¼1 Bi. This implies T ðLÞ ¼

TI þ TB.

Proof of Theorem 6. To prove Theorem 6, we first show
that TI is LT and P ðTB > tÞ � E½M�P ðB1 > tÞ. First, we
argue that TI is LT. Since L is LT, from Lemma 9(3),
we conclude that M is LT. This implies that TI :¼

PM
i¼1 Ii

is LT using Lemma 9(2).

We now show that P ðTB > tÞ � E½M�P ðB1 > tÞ. Since
M is independent of Bi and Bi 2 RVð�Þ, it follows that
P ðM > tÞ ¼ oðP ðBi > tÞÞ invoking Lemma 5. From
Lemma 7(1), we see that

P ðTB > tÞ � E½M�P ðB1 > tÞ ð37Þ

which, in turn, implies TB 2 RVð�lÞ by invoking

Lemma 1(3).
We are now ready to prove the upper bound in (25).

For any 0 < � < 1

P ðT ðLÞ > tÞ ¼ P ðTI þ TB > tÞ
� P ðTB > ð1� �ÞtÞ þ P ðTI > �tÞ
� P ðTB > ð1� �ÞtÞ:

The last step follows since P ðTI > �tÞ ¼ oðP ðTB > ð1�
�ÞtÞÞ using Lemma 5. Letting � # 0, this proves the upper

bound in (25). As to the lower bound, it is easy to see

P ðT ðLÞ > tÞ ¼ P ðTI þ TB > tÞ � P ðTB > tÞ;

which, combining with the upper bound, completes the

proof of (25). Moreover, (25) implies T ðLÞ 2 RVð�Þ using

Lemma 1(3). This completes the proof. tu
Proof of Theorem 7. We first consider the case where

�b < �l. Since L 2 RVð�lÞ and E½M� <1, using Theo-

rem 4, we obtain that M 2 RVð�lÞ and E½M� <1. This,

combining with �b < �l, implies that P ðM > tÞ ¼
oðP ðB1 > tÞÞ using Lemma 3. Invoking Lemma 7(1), we

conclude that

P ðTB ¼
XM
i¼1

Bi > tÞ � E½M�P ðB1 > tÞ;

which in turn implies that TB 2 RVð�bÞ by Lemma 4.

By Lemma 10, we can see that TI 2 RVð�lÞ since

L 2 RVð�lÞ.
We are now ready to prove the upper bound in (26).

For any 1 > � > 0, we obtain that

P ðT ðLÞ > tÞ � P ðTB > ð1� �ÞtÞ þ P ðTI > �tÞ: ð38Þ

Since TI 2 RVð�lÞ, TB 2 RVð�bÞ, and �b < �l, using

Lemma 3, we obtain that P ðTI > �tÞ ¼ oðP ðTB >
ð1� �ÞtÞÞ. This implies that P ðT ðLÞ>tÞ<�P ðTB>ð1��ÞtÞ
from (38). Letting � # 0, we verify the upper bound in

(26). As to the lower bound, it is easy to see that

P ðT ðLÞ > tÞ � P ðTB > tÞ. Since the lower and upper

bounds coincide, this completes the proof of (26).
We will next consider the case where �b � �l. Since

L 2 RVð�lÞ, from Lemma 10 and regular variations, we
obtain that

P ðTI > tÞ � E½I1�
E½X1�

� ��l
P ðL > tÞ: ð39Þ

From Theorem 4, we conclude that M 2 RVð�lÞ and

P ðM > tÞ ¼ P L > E½X1�tð Þ:

If �b > �l, it follows that P ðBi > tÞ ¼ oðP ðM > tÞÞ. This

implies, using Lemma 7(2), that
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P ðTB > tÞ � E½B1�
E½X1�

� ��l
P ðL > tÞ: ð40Þ

If �b ¼ �l, using Lemma 8, we obtain that

P ðTB > tÞ � E½M�P ðB1 > tÞ þ ðE½B1�Þ�lP ðL > tÞ: ð41Þ

Combining (38), (39), (40), and (41), we obtain that

lim sup
t!1

log½P ðT ðLÞ > tÞ�
log t

� ��l;

which, in conjunction with

lim inf
t!1

log½P ðT ðLÞ > tÞ�
log t

� lim inf
t!1

log½P ðTI > tÞ�
log t

� ��l;

completes the proof. tu
All the above theorems consider the case where the idle

periods fIigi�1 are LT r.v.s. The following theorem
computes the logarithmic asymptotics for the delay under
regularly varying idle periods, i.e., fIigi�1 2 RVð�IÞ.
Theorem 9. Assume that Bi 2 RVð�bÞ. If L 2 LT or L 2
RVð�lÞ with �b < �l, we have

lim
t!1

log P ðT ðLÞ > tÞ½ �
log t

¼ ��b: ð42Þ

Assume that L 2 RVð�lÞ and E½L� <1. If Bi 2 LT or Bi 2
RVð�lÞ with �l � �b, we have

lim
t!1

log P ðT ðLÞ > tÞ½ �
log t

¼ ��l: ð43Þ

Remark 8. From the above results, we can see that the tail
heaviness (i.e., logarithmic decaying rate) of the delay
distribution only depends on either the message size or
the busy period, whichever has the heavier tail distribu-
tion or the smaller decaying rate, i.e., minð�l; �bÞ. This is
consistent with the conclusions made in the case where
idle periods are LT r.v.s. This implies that the tail
behavior of the idle period distribution has no impact on
the tail heaviness of the delay distribution.

Proof of Theorem 9. The proof follows the similar
arguments used in proving the asymptotic results under
the case where idle periods are LT r.v.s. tu

5 IMPACT OF SPECTRUM MOBILITY AND

MULTIRADIO DIVERSITY

In this section, we study the impact of spectrum mobility
and multiradio diversity on the delay performance of SUs.
By spectrum mobility, we mean that if a PU appears in a
channel currently used by an SU, the SU should vacate the
channel immediately and continue its transmission in
another idle channel. By multiradio diversity, we mean
that an SU is equipped with multiple radio interfaces so that
it can simultaneously access multiple channels.

5.1 System Model

Assume that there exist K � 1 PU channels, which are

modeled byK independent alternating renewal processes as

defined in Section 2. Each channel K � j � 1 is denoted by

CHj ¼ fðBðjÞi ; I
ðjÞ
i ÞgÞi�1 and channels fCHjgK�j�1 are hetero-

genous, i.e., fBðjÞ1 gK�j�1 (or/and fIðjÞ1 gK�j�1) are not identi-

cally distributed. To simplify the analysis, we assume that

the idle periods are light tailed.

5.2 Spectrum Mobility

By spectrum mobility, an SU can switch to the idle channels

when its current operating channel is occupied by a PU. As

a consequence, the SU sees K channels as a single virtual

channel, which stays idle if one of K channels is idle and

stays busy if all K channels are busy. This virtual channel

can be modeled by a random process that alternates

between busy fBs
igi�1 and idle fIsi gi�1 periods. (Note that

neither fBs
igi�1 nor idle fIsi gi�1 are necessarily i.i.d. random

sequences.) The idle period Isi of the virtual channel is

formed through a sequence of idle periods fIðc1Þ
n1
;

Iðc2Þ
n2
; . . . ; IðckÞnl

g from multiple channels fc1; c2; . . . ; ckg. The

actual idle time A
ðjÞ
i an SU can utilize from a particular idle

period I
ðjÞ
i of channel j depends on channel switching

policies, which specify whether and when the SU should

switch to channel j if the current channel becomes busy.

Obviously, we have 0 � AðjÞi � I
ðjÞ
i and fAðjÞi gi�1 are

independent, but not necessarily equally distributed. The

delay under spectrum mobility is defined as follows.

Definition 6 (Spectrum Mobility). Consider a channel 1 �
j � K with busy periods fBðjÞi gi�1, idle periods fIðjÞi gi�1,

and the corresponding actual idle times fAðjÞi gi�1. During each

A
ðjÞ
i , we define the transmission time Y

ðjÞ
i as

Y
ðjÞ
i :¼ sup

	
nLp : nLp � AðjÞi



: ð44Þ

Furthermore, we define

N ðjÞs ðtÞ :¼ sup nj :
Xnj
i¼1

�
I
ðjÞ
i þB

ðjÞ
i

�
< t

( )
; ð45Þ

and the total delay TsðLÞ under the spectrum mobility is
defined as

TsðLÞ :¼ inf t :
XK
j¼1

XNðjÞs ðtÞ
i¼1

Y
ðjÞ
i > L

8<:
9=;: ð46Þ

5.3 Multiradio Diversity

By multiradio diversity, an SU is equipped with K radio
interfaces with each one operating on a different channel.
With this feature, there exist two transmission policies:
static multiradio diversity and dynamic multiradio diversity.
Under the static policy, before transmitting a message, the
SU divides it into K fragments with each fragment
segmented into packets and sent over a preassigned
interface. The total transmission delay is the time for the
SU to finish sending all fragments. On the contrary, under
the dynamic policy, without fragmenting the message before
transmission, the SU directly divides the message into
packets and dynamically assigns each packet to an interface
whenever the channel associated with this interface is idle.
The total transmission delay is the time for the SU to finish
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sending all the packets over multiple interfaces. The
transmission delay under the two policies is defined,
respectively, as follows.

Definition 7 (Static Multiradio Diversity). Consider a

message of size L, which is divided into fragments of sizes

friLgK�i�1 such that 0 � ri � 1 and
PK

i¼1 ri ¼ 1. Let

TiðriLÞ be the delay of sending a fragment of size riL over

interface i. Then, the total delay TsmðLÞ under static multi-

radio diversity is defined as

TsmðLÞ :¼ max
K�i�1

TiðriLÞ: ð47Þ

Definition 8 (Dynamic Multiradio Diversity). Given a

channel 1 � j � K with busy periods fBðjÞi gi�1 and idle

periods fIðjÞi gi�1. During an idle period I
ðjÞ
i of the channel j,

we define the transmission time X
ðjÞ
i as

X
ðjÞ
i :¼ supfnLp : nLp � IðjÞi g: ð48Þ

Furthermore, we define

NðjÞm ðtÞ :¼ sup nj :
Xnj
i¼1

�
I
ðjÞ
i þB

ðjÞ
i

�
< t

( )
; ð49Þ

and the total delay TdmðLÞ under dynamic multiradio diversity
is defined as

TdmðLÞ :¼ inf t :
XK
j¼1

XNðjÞm ðtÞ
i¼1

X
ðjÞ
i > L

8<:
9=;: ð50Þ

5.4 Asymptotic Delay Analysis

Theorem 10. GivenK channels, where fBðjÞ1 gK�j�1 are regularly
varying random variables with indices �1; �2; . . . ; �K , respec-
tively. Define �� :¼

P
j�K �j, �� :¼ minK�j�1�j, and

�þ :¼ maxK�j�1�j.

1. Under spectrum mobility, there exists a channel
switching policy such that if L 2 LT, then

lim
t!1

log½P ðTsðLÞ > tÞ�
log t

� ��þ: ð51Þ

If L 2 RVð�lÞ and E½L� <1, then

lim
t!1

log½P ðTsðLÞ > tÞ�
log t

� �minð�þ; �lÞ: ð52Þ

2. Under static multiradio diversity, if L 2 LT, then

lim
t!1

log½P
�
TsmðLÞ > t

�
�

log t
¼ ���: ð53Þ

If L 2 RVð�lÞ and E½L� <1, then

lim
t!1

log½P
�
TsmðLÞ > t

�
�

log t
¼ �minð��; �lÞ: ð54Þ

3. Under dynamic multiradio diversity, if L 2 LT,

lim
t!1

log½P
�
TdmðLÞ > t

�
�

log t
¼ ���: ð55Þ

If L 2 RVð�lÞ and E½L� <1, then

lim
t!1

log½P
�
TdmðLÞ > t

�
�

log t
¼ �minð��; �lÞ: ð56Þ

Remark 9. From the above results, we see that both the
spectrum mobility and the dynamic multiradio diversity
can greatly improve the delay performance of SUs, while
static multiradio diversity can deteriorate it. Particularly,
Theorem 10(3) implies that under dynamic multiradio
diversity, the delay distribution decays at a rate equal to
the sum of the indices of all channels, i.e., �� :¼

P
i�K �i.

This rate is much higher than the one under the single
channel case, which, as implied by Theorem 6 and
Corollary 1, is equal to the index �i of a particular
channel i. On the other hand, Theorem 10(1) implies that
the decaying rate of the delay distribution under
spectrum mobility is lower bounded by that of the best
channels, which have the largest index �j among all
channels. On the contrary, Theorem 10(2) indicates that
the delay distribution under static multiradio diversity
decays as faster as that of the worst channels, which have
the smallest index �j among all channels. As a
consequence, compared with the single channel case,
spectrum mobility and dynamic multiradio diversity can
mitigate the heavy-tailed delay by increasing the orders
of its finite moments at least to maxK�j�1�j and exactly
to �� :¼

P
i�K �i, respectively, while static multiradio

diversity can aggravate it by decreasing the orders of its
finite moments to minK�j�1�j.

Corollary 2. If L 2 RVð�lÞ and �� � �l, then we have

lim
t!1

log½P
�
TdmðLÞ > t

�
�

log t
¼ ��l:

Remark 10. This corollary directly follows from Theo-
rem 10(3) and implies that as the number of channels
increases, dynamic multiradio diversity can achieve the
optimum delay performance by maximizing the orders
of finite moments. In other words, dynamic multiradio
diversity can guarantee the delay with finite moments
up to order �l, which is the highest order that we can
expect when transmitting heavy-tailed messages of
index �l by using any multiple channel schemes.

Corollary 2 characterizes the logarithmic asymptotics of
the delay distribution for dynamic multiradio diversity. The
following Theorem 11 computes the exact asymptotic
results under some confined conditions.

Theorem 11. Given K channels, where fBðjÞ1 gK�j�1 are

regularly varying r.v.s with indices �1; �2; . . . ; �K , respec-

tively. Define 	 ¼
PK

j¼1 E½I
ðjÞ
1 �=ðE½I

ðjÞ
1 þB

ðjÞ
1 �Þ and �� :¼P

j�K:�j>1ð�j � 1Þ. Assume that L 2 RVð�lÞ. If 	 < 1 and

�� > �l, then

P ðTdmðLÞ > tÞ � P L >
XK
j¼1

E
�
X
ðjÞ
1

�
E
�
I
ðjÞ
1 þB

ðjÞ
1

� t !
:
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Remark 11. The preceding result indicates that as more

channels are employed, the tail distribution of the delay

under dynamic multiradio diversity is asymptotically

equivalent to that of the message size L scaled by a

constant, i.e., ð
PK

j¼1 E½X
ðjÞ
1 �=E½I

ðjÞ
1 þB

ðjÞ
1 �Þ

��l .

Proof of Theorem 10. Define TjðLÞ as the total delay of

sending a message of size L over a particular channel

K � j � 1. By Definition 1, we have TjðLÞ :¼
PMj

i¼1fI
ðjÞ
i þ

B
ðjÞ
i g, where Mj :¼ inffm :

Pm
i¼1 X

ðjÞ
i � Lg and X

ðjÞ
i :¼

supfnLp : nLp � IðjÞi g. To prove (51) and (52), we consider

a priority-based channel switching policy, where if the

currently used channel becomes busy, an SU always

switches to the channel jþ with the maximum index �þ ¼
maxK�j�1�j provided that this channel is idle. This implies

from (44) that A
ðjÞ
i ¼ I

ðjÞ
i . Since the SU cannot perform

channel switching in the middle of a packet being

transmitted, it follows from (44) that Z
ðjÞ
i � Y

ðjÞ
i � X

ðjÞ
i ,

where Z
ðjÞ
i :¼ ðXðjÞi � LpÞ1ðI

ðjÞ
i > LpÞ, from which it fol-

lows that TsðLÞ �a:s: TjþðLÞ, where TjþðLÞ :¼
PM 0j

i¼1fI
ðjÞ
i þ

B
ðjÞ
i g and M 0

j :¼ inffm :
Pm

i¼1 Z
ðjÞ
i � Lg. This implies that

P ðTsðLÞ > tÞ � P TjþðLÞ > t
� �

: ð57Þ

If L 2 LT, using Theorem 6, we obtain TjþðLÞ 2 RVð�þÞ.
This implies from (57)

lim
t!1

log½P ðTsðLÞ > tÞ�
log t

� ��þ:

which completes the proof of (51).
If L 2 RVð�lÞ, from Corollary 1, we conclude

lim
t!1

log½P ðTjþðLÞ > tÞ�
log t

¼ �minð�l; �þÞ;

which implies from (57) that

lim
t!1

log½P ðTsðLÞ > tÞ�
log t

� �minð�l; �þÞ:

This completes the proof of (52).
We will next prove Theorem 10(2). By the definition of

TsmðLÞ, we obtain

P ðTsmðLÞ > tÞ ¼ P
[K
i¼1

TiðriLÞ > t

 !
:

This, using the union bound, implies

P ðTjðrjLÞ > tÞ � P ðTsmðLÞ > tÞ �
XK
j¼1

P ðTjðrjLÞ > tÞ: ð58Þ

If L is LT, by Theorem 6, we have TjðrjLÞ 2 RVð�jÞ. If
�j > �i, using Lemma 3, we obtain P ðTjðrjLÞ > tÞ ¼
oðP ðTiðriLÞ > tÞ. This implies from (58) that

� min
K�j�1

�j � lim
t!1

log½P
�
TsmðLÞ > t

�
�

log t
� � min

K�j�1
�j;

which completes the proof of (53).

If L 2 RVð�lÞ, from Corollary 1, we have

lim
t!1

log½P ðTjðrjLÞ > tÞ�
log t

¼ �minð�l; �iÞ;

which implies from (58) that

lim
t!1

log½P ðTsmðLÞ > tÞ�
log t

¼ � min
K�i�1

minð�l; �iÞ:

This completes the proof of (54).

We will now prove Theorem 10(3). Let

T ðjÞm ðLÞ :¼ inf t :
XNðjÞm ðtÞ
i¼1

X
ðjÞ
i > L

8<:
9=;; ð59Þ

which, combining (48) and (49), defines the total delay of

sending a message of size L over a single channel

K � j � 1. This implies that T ðjÞm ðLÞ ¼
d
TjðLÞ. Since

TdmðLÞ �a:s: T ðjÞm ðLÞ 81 � j � K, letting SðjÞn :¼
Pn

i¼1 I
ðjÞ
i þ

B
ðjÞ
i and Mþ :¼ max1�j�KMj, we have

P ðTdmðLÞ > tÞ � P min
1�j�K

T ðjÞm ðLÞ > t

� �
¼ P

\K
j¼1

XMj

i¼1

ðIðjÞi þB
ðjÞ
i Þ > t

( ) !

�
Xn0

n¼1

P ðMþ ¼ nÞP
\K
j¼1

SðjÞn > t

 !

þ
X1

n¼n0þ1

P ðMþ ¼ nÞP
\K
j¼1

SðjÞn > t

 !
:¼ I þ II:

For Term I, by Lemma 7 (1), we have

I ¼
Xn0

n¼1

P ðMþ ¼ nÞ
YK
j¼1

P
�
SðjÞn > t

�
� E½ðMþÞK �

YK
j¼1

P
�
B
ðjÞ
1 > t

�
; n0 !1:

ð60Þ

For Term II, for any 0 < � < 1, we obtain

II �
X1

n¼n0þ1

P ðMþ ¼ nÞP
�
SðjÞn > t

�
¼

X�t
n¼n0þ1

þ
X1
n¼�t

 !
P ðMþ ¼ nÞP

�
SðjÞn > t

�
:¼ J1 þ J2:

ð61Þ

If �j � 1, let � :¼ 0. Otherwise, let � :¼ E½IðjÞ1 � þ E½B
ðjÞ
1 �.

For n < �t, we have y :¼ t� n� > nð��1 � �Þ. Letting

Y
ðjÞ

1 :¼ IðjÞ1 þB
ðjÞ
1 , it follows from large deviations [3], [7]

theory that for any " > 0

lim
n!1

sup
y>"n

P ðSðjÞn � n� > yÞ
nP ðY ðjÞ1 > yÞ

� 1

�����
����� ¼ 0:

WANG AND AKYILDIZ: ON THE ORIGINS OF HEAVY-TAILED DELAY IN DYNAMIC SPECTRUM ACCESS NETWORKS 213



This implies that there exists C > 0 such that as n0 !1

lim sup
t!1

J1� lim
n0!1

C
X1

n¼n0þ1

P ðMþ¼ nÞnP
�
Y
ðjÞ

1 > y
�
¼ 0: ð62Þ

For term J2, by the union bound, we have

J2 � P ðMþ > �tÞ �
XK
i¼1

P ðMj > �tÞ:

This, combining with (60), (61), and (62), proves the

upper bound of TdmðLÞ, i.e.,

P
�
TdmðLÞ > t

�
<� c1

YK
j¼1

P
�
B
ðjÞ
1 > t

�
þ
XK
i¼1

P ðMj > �tÞ;

where c1 :¼ E½ðMþÞK �. If L 2 LT , by Lemma 9(3), it

follows that Mj 2 LT , which implies

lim
t!1

log½P
�
TdmðLÞ > t

�
�

log t
� �

XK
j¼1

�j: ð63Þ

If L 2 RVð�lÞ, it follows from Theorem 4 that

Mj 2 RVð�lÞ, which implies that

lim
t!1

log½P
�
TdmðLÞ > t

�
�

log t
� �min �l;

XK
j¼1

�j

 !
: ð64Þ

As to the lower bound, by the similar arguments as the

proof of upper bound, we have

P ðTdmðLÞ > tÞ � P
\K
j¼1

Tj
L

K

� �
> t

� � !

>� c2

YK
j¼1

P
�
B
ðjÞ
1 > t

�
;

ð65Þ

where c2 is a constant. Given K channels, we have

TdmðLÞ > L=K surely, which implies that P ðTdmðLÞ > tÞ >
P ðL=K > tÞ. This, combining with (65), proves the lower

bound of (55) and (56). This, in conjunction with the

upper bound (63) and (64), completes the proof. tu
The proof of Theorem 11 relies on Lemma 11, which

corresponds to the of [7, Corollaries 1.6 and 1.8].

Lemma 11. Let X1; X2; . . . ; Xn be independent random variables

with E½Xi� ¼ 0, for i ¼ 1; 2; . . . ; n and define Aþt :¼Pn
i¼1

R
u�0 u

tdP ðXi < uÞ.

1. If 1 � t � 2 andAþt <1, then for yt � 4Aþt and x > y

P
Xn
i¼1

Xi � x
 !

�
Xn
i¼1

P ðXi > yÞ þ e2Aþt
xyt�1

� �x=2y

:

2. If t � 2 and Aþt <1, then

P
Xn
i¼1

Xi � x
 !

� cð1Þt Aþt x
�t þ exp �c

ð2Þ
t x2

B2
n

( )
;

where c
ð1Þ
t ¼ ð1þ 2=tÞt, c

ð2Þ
t ¼ 2ðtþ 2Þ�2e�t, and

B2
n ¼

Pn
i¼1 E½ðXiÞ2�.

Proof of Theorem 11. By the definition of TdmðLÞ in (50),
we have

P
�
TdmðLÞ > t

�
¼ P

XK
j¼1

XMjðtÞ

i¼1

X
ðjÞ
i � L

 !
:

Define RðtÞ :¼
PK

j¼1

PMjðtÞ
i¼1 X

ðjÞ
i . Using renewal theory,

we obtain limt!1RðtÞ=t ¼ �, where � ¼
PK

j¼1 E½X
ðjÞ
1 �=

ðE½Ij1 þB
ðjÞ
1 �Þ. To prove Theorem 11, it is sufficient to

show that the conditions of Theorem 8 are satisfied.

Since X
ðjÞ
1 <a:s:; I

ðjÞ
1 , this implies that E½Xj

1� < E½Ij1�. It

follows from the assumption
PK

j¼1 E½I
ðjÞ
1 =ðE½Ij1 þ

B
ðjÞ
1 �Þ� < 1 that � < 1, which verifies the first condition

of Theorem 8. To verify the second condition, we define

jþ ¼ arg max
1�j�K

�
E
�
I
ðjÞ
1 þB

ðjÞ
1

��
;

j� ¼ arg max
1�j�K

E
�
X
ðjÞ
1

�
:

8><>: ð66Þ

Let " :¼ ð1� �ÞE½Xðj
�Þ

1 �=ðð1þ �ÞðE½Iðj
þÞ

1 þBðj
þÞ

1 �ÞÞ and 
 :¼
ð1� �Þ=E½Iðj

þÞ
1 þBðj

þÞ
1 �. Then, for any 0 < � < 1, we obtain

P ðRðtÞ < "tÞ � P max
1�j�K

	
NðjÞm ðtÞ



� 
t

� �

þ P
 XK

j¼1

XNðjÞm ðtÞ
i¼1

X
ðjÞ
i � "t ^ max

1�j�N

	
N ðjÞm ðtÞ



> 
t

!
:¼ J1 þ J2:

ð67Þ

For term J1, it follows from the independence of
fNðjÞm ðtÞg

N
j¼1 that

J1 ¼ P
\K
j¼1

NðjÞm ðtÞ � 
t
 !

¼
YK
j¼1

P
�
N ðjÞm ðtÞ � 
t

�
: ð68Þ

For any B
ðjÞ
i with �j > 1, let Z

ðjÞ
i :¼ IðjÞi þB

ðjÞ
i �

E½IðjÞi þB
ðjÞ
i �. By (49), we obtain the following upper

bound under the condition �j > 1, i.e.,

P ðN ðjÞm ðtÞ � 
tÞ ¼ P
X
t
i¼1

�
I
ðjÞ
i þB

ðjÞ
i

�
> t

 !

¼ P
X
t
i¼1

Z
ðjÞ
i > t�

ð1� �Þ
�
E
�
I
ðjÞ
i þB

ðjÞ
i

��
E
�
I
ðjþÞ
1 þBðj

þÞ
1

� t

 !

� P
X
t
i¼1

Z
ðjÞ
i > �t

 !
:

Since I
ðjÞ
1 2 LT and B

ðjÞ
1 2 RVð�jÞ, an argument similar

to the proof of Theorem 6 yields P ðZðjÞi >tÞ � P ðBðjÞi >tÞ.
This implies Z

ðjÞ
i 2 RVð�jÞ. Let ��

j :¼ �j ��. For an

arbitrary small �>0, we have E½ðZðjÞi Þ
��
j �<1. If

1 � �j � 2, letting y ¼ �t=2, an application of Lem-

ma 11(1) and Markov inequality yields

P
X
t
i¼1

Z
ðjÞ
i � �t

 !
�

2�
�
j 
E

��
Z
ðjÞ
i

���
j
�

��
�
j t�

�
j �1

þ

e2E

��
Z
ðjÞ
i

���
j
�

��
�
j 21���

j t�
�
j �1

� Cð1Þj t�ð�
�
j �1Þ;

ð69Þ
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where C
ð1Þ
j is a constant. If �j > 2, by Lemma 11 (2),

we obtain

P
X
t
i¼1

Z
ðjÞ
i > �t

 !
�

c
ð1Þ
t E

��
Z
ðjÞ
i

���
j
�

��
�
j t�

�
j �1

þ exp �cð2Þt ð�tÞ
2


tE
��
Z
ðjÞ
i

�2�
( )

� Cð2Þj t�ð�
�
j �1Þ;

ð70Þ

where C
ð2Þ
j is a constant, c

ð1Þ
t ¼ ð1þ 2=��

j Þ
��
j , and c

ð2Þ
t ¼

2ð��
j þ 2Þ�2e��

�
j . Combining (68), (69), and (70) yields

J1 ¼ O t
�
P

i�K:�i>1
ð�i�1Þ

� �
¼ Oðt��� Þ: ð71Þ

For J2, using the union bound, we obtain

J2 � P
XK
j¼1

XNðjÞm ðtÞ
i¼1

X
ðjÞ
i � "t

^ [K
l¼1

NðlÞm ðtÞ > 
t

( )0@ 1A
� P

[K
l¼1

XK
j¼1

XN ðjÞm ðtÞ
i¼1

X
ðjÞ
i � "t ^NðlÞm ðtÞ > 
t

8<:
9=;

0@ 1A
�
XK
l¼1

P
X
t
i¼1

X
ðlÞ
i � "t

 !
:

Let eXðlÞi ¼ E½XðlÞi � �XðlÞi . By Chernoff bound, we can
always find � > 0 such that

P
X
t
i¼1

X
ðlÞ
i � "t

 !
� P

X
t
i¼1

eXðlÞi >
�
E

�
X
ðlÞ
i

�
ð1þ �Þ t

 !
� e��t;

ð72Þ

which, combining with (71), implies from (67) that

P ðRðtÞ < "tÞ ¼ Oðt��� Þ. As a consequence, if �� > �l,

we obtain P ðRðtÞ < "tÞ ¼ oðP ðL > tÞÞ which verifies the

second condition of Theorem 8 and completes the

proof. tu

6 SIMULATION RESULTS

In this section, we use simulations to illustrate our

theoretical results. As presented in the preceding theorems,

the SUs’ HT delay is attributed to the HT message size as

well as the HT PU busy time. To verify this result, we

choose Pareto and exponential distributions to represent

HT and LT distributions, respectively. We say that a

random variable X 2 PARð�; xmÞ if X follows a Pareto

distribution with parameter � and xm, i.e., P ðX > tÞ ¼
ðxm=xÞ�. We say that a random variable X 2 EXPð�Þ if X
follows an exponential distribution with parameter �, i.e.,
P ðX > tÞ ¼ e��t. Without loss of generality, we let packet
size Lp ¼ 10.

We first study the delay with both the busy time and the
message size being LT. Specifically, we let fL; Iig 2
EXPð0:02Þ and Bi 2 EXPð0:01Þ. It is shown in Fig. 2 that
the delay tail distribution is a straight line on a y-log scale,
implying that the delay is LT, specifically, exponentially
distributed. Next, we investigate the cases with the HT SU
message size and/or the HT PU busy periods. All the
following simulation results are plotted on log-log coordi-
nates, by which regularly varying HT distribution can
manifest itself as a straight line.

We next investigate the cases where either the message
size or the PU busy time is HT. We first let fBi; Iig 2
EXPð0:02Þ and L 2 PARð1:5; 20Þ. It is seen in Fig. 3 that
the tail distribution of the transmission delay exhibits
itself as a straight line, which is parallel to that of the
message size and overlapped with the theoretical delay
tail distribution indicated by Theorem 5. This means that
the transmission delay is HT and its tail distribution is as
heavy as that of the message size. On the contrary, if busy
time is HT while message size is LT, as indicated by
Theorem 6, SUs can experience the transmission delay
which has a tail distribution as heavy as that of the PU
channel busy time. To verify this, we let fL; Iig 2
EXPð0:02Þ and Bi 2 PARð1:2; 10Þ. It is seen in Fig. 4 that
the straight line that represents the tail distribution of the
transmission delay is parallel to that of the PU busy time
and coincident with the theoretical one stated by Theorem
6. This indicates that the delay tail distribution is as heavy
as that of the PU busy time. In sum, Figs. 3 and 4 verify
Theorems 5 and 6 by showing that if one of the busy time
or message size is light tailed and the other is regularly
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Fig. 2. Delay under LT message size and LT busy time.
Fig. 3. Delay under HT message size and LT PU busy time.

Fig. 4. Delay under LT message size and HT PU busy time.



varying, then the tail of the transmission delay is
asymptotically proportional to the one with regularly
varying distribution.

We now study the case where both message size and PU
busy time are HT. In this case, Theorem 7 states that the
delay performance is determined by either the busy time or
the message size whichever has the heavier tail. Fig. 5
shows the case, where �l > �b by letting L 2 PARð2; 20Þ,
Bi 2 PARð1:2; 10Þ, and Ii 2 EXPð0:02Þ, while Fig. 6 illus-
trates the case, where �l � �b by letting L 2 PARð1:2; 20Þ,
Bi 2 PARð2; 10Þ, and Ii 2 EXPð0:02Þ. It is shown in Figs. 5
and 6 that the tail distribution of the delay is parallel to that
of either the message size or the busy time whichever has
the heavier tail or smaller index, which is consistent with
Theorem 7. Moreover, Fig. 5 also verifies the exact
asymptotic result stated in Theorem 7(1) by showing its
consistence with the empirical one.

To show the impact of the HT idle time on the delay
performance, we also plot the delay tail distribution with
Ii 2 PARð1:2; 10Þ in Figs. 3, 4, 5, and 6, respectively. It can
be seen that the delay tail distribution with HT idle time is
parallel to the one with LT idle time in each figure. This is as
expected since as indicated by Theorem 9, HT idle time has
no impact on the tail heaviness of the delay.

We now evaluate the impact of spectrum mobility and
static multiradio diversity on the delay performance of
cognitive radio users. As indicated by Theorem 10(1) and
10(2), the delay under spectrum mobility is determined by
the best channel which has the busy time with the lightest
tail, while the delay under static multiradio diversity is
determined by the worst channel with the busy time
having the heaviest tail. To verify this, we consider the
scenario where there exists three PU channels with LT idle
times, i.e., fIð1Þi ; I

ð2Þ
i ; I

ð3Þ
i g 2 EXPð0:01Þ, and HT busy times,

i.e., B
ð1Þ
i 2 PARð1; 10Þ, B

ð2Þ
i 2 PARð0:6; 10Þ, and B

ð3Þ
i 2

PARð0:4; 10Þ. We evaluate the delay under the case with
HT message size as well as with LT message size by letting

L 2 PARð2; 10Þ and L 2 EXPð0:01Þ, respectively. As
shown in Fig. 7, by taking advantage of spectrum mobility,
the delay tail distribution decays faster than that of the best
channel, which has the lightest tail or largest index �1 ¼ 1.
This implies the existence of bounded average delay. This
is in sharp contrast to the delay performance of static
multiradio diversity illustrated in Fig. 8, where the delay
tail distribution decays as fast as the worst channel with
the heaviest tail or smallest index �3 ¼ 0:4. This implies
that the SU will experience unbounded delay even when
transmitting messages with finite mean.

We finally investigate the delay performance under

dynamic multiradio diversity. We first consider the case

where there exists three PU channels with LT idle times, i.e.,

fIð1Þi ; I
ð2Þ
i ; I

ð3Þ
i g 2 EXPð0:01Þ, and HT busy times, i.e., B

ð1Þ
i 2

PARð0:4; 10Þ; Bð2Þi 2PARð0:5; 10Þ, and B
ð3Þ
i 2PARð0:6; 10Þ.

Fig. 9 shows the delay of sending messages with LT size,

i.e., L 2 EXPð0:05Þ, and messages with HT size, i.e.,

L 2 PARð2; 30Þ, respectively. It can be seen that the delay

tail distribution, as expected from Theorem 10(3), matches

the baseline one which has the index of 1.5, i.e., the sum of

the indices (�1 ¼ 0:4; �2 ¼ 0:5; �3 ¼ 0:6) of the three chan-

nels. This implies that the SU will have finite average delay,

even through the average delay is unbounded if the

message is transmitted on each individual channel alone.
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Fig. 7. Delay under spectrum mobility.

Fig. 8. Delay under static multiradio diversity.

Fig. 5. Delay under HT message size and HT PU busy time with �b < �l.

Fig. 6. Delay under HT message size and HT PU busy time with �b � �l.

Fig. 9. Delay under dynamic multiradio diversity with �l > ��.



Moreover, Fig. 10 shows that as the sum of indices increases

and becomes larger than 2, which is the index of message size,

the tail heaviness of the delay is asymptotically equivalent

to that of the message size. In addition, when the sum of

the indices satisfies the condition
P3

i¼1ð�i�1Þ>�l, e.g.,P3
i¼1 �i ¼ 5:1 , by Theorem 11, we can obtain the exact

asymptotic result of the delay tail distribution, which, as

shown in Fig. 10, is consistent with the empirical one.

7 CONCLUSIONS

This paper provides an asymptotic analysis of the transmis-

sion delay experienced by SUs. It is shown that SUs can

have light-tailed delay if and only if both the busy time of

PU channels and the message size of SUs are light tailed. In

other words, the heavy-tailed transmission delay can

originate from either the heavy-tailed busy time or the

heavy-tailed message size. In this case, it is proven that if

one of the busy time or the message size is light tailed and

the other is regularly varying, then the transmission delay

is regularly varying with the same index. Furthermore, if

both the busy time and the message size are regularly

varying with different indices, then the tail distribution of

the delay is as heavy as the one with the smaller index.

Moreover, to exploit benefits of multiple PU channels,

spectrum mobility and multiradio diversity are considered.

It is shown that both spectrum mobility and dynamic

multiradio diversity can greatly mitigate the heavy-tailed

delay by maximizing the orders of its finite moments, while

by doing the opposite, static multiradio diversity can

aggravate the heavy-tailed delay.
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Fig. 10. Delay under dynamic multiradio diversity with �l � ��.


