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Abstract—Control channel jamming is a severe security prob-
lem in wireless networks. This results from the fact that the
attackers can effectively launch the denial of service attacks
by jamming the control channels. Traditional approaches to
combating this problem such as channel hopping sequences may
not be the secure solution against intelligent attackers because the
reliability of control channels in cognitive radio ad hoc networks
cannot be guaranteed. In this paper, we introduce a jamming-
resilient control channel (JRCC) game to model the interactions
among cognitive radio users and the attacker under the impact
of primary user activity. We propose the JRCC algorithm that
enables user cooperation to facilitate control channel allocations
and adapts to primary user activity with variable learning rates
using the Win-or-Learn-Fast principle for jamming-resilience in
hostile environments. It is shown that the optimal strategies
converge to a Nash equilibrium or the expected rewards of the
strategies converge to that of a Nash equilibrium. The results
also show that the JRCC algorithm effectively combats jamming
under the impact of primary user activity and sensing errors.
Moreover, the control channel allocation policy can be improved
by enhancing transmission and sensing capabilities. The proposed
algorithm is scalable and can be applied to multiple users.

I. INTRODUCTION

Common control channel (CCC) in cognitive radio (CR)
networks [8] is the spectrum resource specifically allocated for
control message exchange among CR users to facilitate net-
work operations. In CR ad hoc networks (CRAHNs) [1] where
no centralized control entity such as base station (BS) exists,
CR users cooperate with each other for all spectrum man-
agement functions such as cooperative spectrum sensing [2],
and thus relying even more on CCC for message exchange
and normal operations. As a result, the reliability of CCC
allocation is essential in CRAHNs. However, when a dedicated
CCC allocated out of the licensed bands is not feasible, CCC
must be dynamically allocated in licensed bands. In this case,
the in-band CCC will be interrupted by primary user (PU)
activity and needs to be efficiently reallocated and recovered
when the existing CCC is occupied by the PU [7].

Dynamic CCC allocations in licensed bands are further
complicated by jamming attacks if security issues are con-
sidered. Jamming attacks are launched by malicious users to
deliberately disrupt the communications of CR users, resulting
in denial of service (DoS) in CR networks. Although jamming
attacks can occur in any type of channels, data or control,
it is reported in [5] that jamming the broadcast channel
(BCCH) of the GSM system is several order of magnitude
more effective than targeting at all channels. For this reason,
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Fig. 1. Jamming-resilient control channel game.

any intelligent attacker may prefer control jamming attack than
other jamming methods due to its effectiveness of resulting
in DoS. Thus, as in any wireless networks, control channel
jamming is a severe security issue in CRAHNs.

The interactions between CR users and attackers are com-
monly modeled as a stochastic zero-sum game [6], [10], [11]
since CR users and jammers generally have opposite goals. In
these approaches, PU activities govern states of the game and
state transitions, and sensing errors are generally ignored for
simplicity. In [6], the Nash equilibrium strategy is obtained
for the one-stage game, while the optimal attacking strategy
is obtained for the multi-stage case. The latter is achieved by
fixing CR user’s strategy and converting the problem to the
framework of the single-player partially observable Markov
decision process (POMDP). [11] shows that CR users can
combat jamming by increasing the number of unoccupied
channels that can be observed. However, this capability is
limited by PU activity and channel availability. In [10],
minimax-Q learning is used by CR user to find the optimal
anti-jamming channel selection policy. Although the CR user’s
actions consist of separate selections of control and data
channels, the attacker in this work, like the one in [6] and [11],
does not exclusively target at jamming control channels.

In this paper, we model the interactions among CR users,
and the attacker under the impact of PU activities as a
stochastic general-sum game, called jamming-resilient control
channel (JRCC) game. Fig. 1 illustrates the JRCC game with
the PUs, three CR users, and the attacker. The objective of the
game is to find the optimal control channel allocation strategy
for CR users to combat jamming attacks by using multiagent
reinforcement learning (MARL). The optimal control channel
allocation policy is obtained by enabling the communications
among CR users to facilitate CCC allocations and the adap-
tation to PU activity to achieve the Nash equilibrium in the
game. We demonstrate that the effectiveness of anti-jamming
CCC allocations can be improved by the cooperation of CR
users. By exploiting the advantages of Policy Hill-Climbing
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(PHC) and the Win-or-Learn-Fast (WoLF) principle [4], our
proposed JRCC algorithm effectively combats jamming under
PU activity and sensing errors, and outperforms the original
MARL algorithms. Our contribution can be summarized as
follows:

• We model the interactions among CR users and the
attacker under the impact of PU activities as a stochastic
general-sum game called JRCC game with the consider-
ation of sensing errors and limited observations of other
players actions and payoffs.

• We analyze the gradient dynamics of the JRCC game
by using the N -dimensional nonlinear dynamical system
with the gradient ascent algorithm and show the conver-
gence of the JRCC game.

• We propose the JRCC algorithm for CR users as optimal
control channel strategy that utilizes CR user cooperation
with the hill-climbing algorithm in low PU activity and
exhibits resilience to jamming using variable learning
rates in high PU activity.

The remainder of this paper is organized as follows: Section
II discusses the system model and assumptions. Section III
describes the dynamics and the proposed algorithm of the
JRCC game. Section IV evaluates the performance by various
test scenarios, and Section V concludes the paper.

II. SYSTEM MODEL

The system model consists of a primary network model, a
CRAHN model, a jamming attack model whose interactions
are described by the JRCC game.

Primary Network Model: The primary network P consists
of Np PUs who may be active or inactive on a set of Np

licensed channels, Np, available for opportunistic access by
CR users. Each licensed channel i ∈ Np is occupied by
one PU, Pi, whose activity follows the two-state birth-death
process with the birth rate rbi and the death rate rdi . The
departures and the arrivals of a PU on channel i follow
a Poisson process with exponentially distributed inter-arrival
time. Thus, each channel i has two states, PU active (ON)
state and PU inactive (OFF) state, with transition probabilities:
rbi (OFF to ON) and rdi (ON to OFF). We also assume
that PU transmission is time-slotted. As a result, CR users
need to periodically sense licensed channels according to the
schedule of the primary network. Since the sensing operations
of CR users are subject to errors, CR users need to satisfy
the detection requirements in terms of probability of false
alarm Pf and probability of miss detection Pm to limit the
interference with PUs under a tolerable level. We also assume
that the attacker needs to meet the detection requirements.

CR Ad Hoc Network Model: A group of K CR users, K,
within the jamming region of the attacker opportunistically
access Np licensed channels. Due to hardware limitations,
CR users can only sense or transmit on Ns ≤ Np licensed
channels each time. Depending on the sensing results and
channel availability, CR user k ∈ K selects a subset of
channels, Nk ⊆ Np and Nk = |Nk| ≤ Ns, as control channels
and transmits the same control messages on those selected
channels. However, not all Nk channels are valid CCCs. Due
to sensing errors and jamming attacks, these selected control
channels may not be valid allocations for successful control

transmission. In addition, a CCC must be commonly available
to all CR users in the region. Thus, valid CCC allocations
exist only when the selected channels are unoccupied by a PU,
jamming-free, and common to CR users such that CR users
can successfully exchange control messages on these channels.
That is, the number of valid CCCs is Uc = |Uc| = Nc−Jc−Pc

where Nc, Jc and Pc are the numbers of selected CCCs,
jammed CCCs, and interfering CCCs due to miss detection,
respectively, and Nc = |Nk∩Nl|, k, l ∈ K, k ̸= l. We assume
that all control messages are encrypted and are unable to be
decrypted by the eavesdropping attacker during the period of
the game. After rendezvous on these CCCs, the CR user pair
can use the in-band CCCs for transmitting data or negotiating
an available channel for data transmission.

Jamming Attack Model: For jamming attacks, we assume
that the attacker has similar hardware capability as CR users
do and can sense and jam up to Ns ≤ Np licensed channels
each time. According to the sensing results, the attacker selects
Nj channels to jam and transmits the interference signal on
those selected channels. Due to sensing errors, the attacker
may select the PU-occupied channels to jam and cause the
interference with PUs. Since the objective of the attacker is
to disrupt CR transmission, we assume that the attacker will
make efforts to avoid interfering with PUs to save its energy
and avoid being exposed to PUs unless it is caused by the
sensing hardware limitations. Thus, the attacker appears to
PUs as a CR user. Moreover, we assume that the attacker
does not behave like a PU by occupying the channels and
forcing CR users to use other channels because this does
not successfully jam control channels. We also assume that
the attacker is unable to detect the control traffic and launch
the jamming attack after the CCCs are established since such
attacks require knowledge about CR users and the in-band
CCCs are also used for data transmission. For these reasons,
we do not consider other types of security attacks such as
PU emulation attacks and node capture attacks (Byzantine
failures) in our model. Assume that the attacker selects a
subset of channels, Nj ⊆ Np and Nj = |Nj | ≤ Ns for
jamming. The number of valid jammed control channels is
then Jc = |Jc| = Nj − Uj − Pj where Uj and Pj are
the number of jammed non-CCC channels and PU-occupied
channels caused by miss detection, respectively. For effective
control channel jamming, Jc = Uc ̸= ∅.

III. JAMMING-RESILIENT CONTROL CHANNEL GAME

In this section, we introduce the JRCC game that models
the interactions among PUs, CR users, and the attacker. We
analyze the game by using the gradient dynamics and then
introduce the JRCC algorithm for finding the optimal control
channel allocation strategy for CR users.

A. States, Actions, Transition probabilities, and Rewards
In the JRCC game, the primary network P affects the states

of the game with PU activity on a set of Np licensed channels.
For a set of Np licensed channels, there are 2Np states in the
game. The state of the game at stage index n is denoted by
sn = {sn1 , . . . , snNp

} where sni is the state of channel i at
stage index n. The state of channel sni is determined by PU
Pi’s activity. That is, sni = 1 if Pi occupies channel i at stage
n, and sni = 0 otherwise.
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The sets of actions are denoted by Ak, k = 0, . . . ,K for the
attacker and K CR users, respectively. The number of actions
available to each player depends on the maximum number of
channels that can be sensed. For sensing up to Ns channels,
the number of actions is NAk

=
∑Ns

i=1

(
Ns

i

)
. If PU activity

and jamming are not considered and all actions are equally
likely, the probability of selecting m CCCs is given by

Pr{Nc = m} =

∑Ns

i=m

(
Np

i

)(
i
m

)[∑Nlim

j=0

(
Np−i

j

)]K−1[∑Ns

i=1

(
Np

i

)]K (1)

where Nlim = min(Np− i,Ns−m) is the limitation on other
CR user’s remaining channel selections. The denominator is
the number of all joint action combinations among K CR
users. To find the probability of m selected CCCs, each CR
user needs to select at least m channels. The first binomial
coefficient

(
Np

i

)
in the numerator is the number of choices

of one CR user selecting i out of total Np channels. The
second binomial coefficient

(
i
m

)
says that which m out of the

selected i channels are common to all CR users. The bracket
in the numerator is the number of other CR user’s choices
of selecting non-CCC channels from the remaining Np − i
channels not selected by the first CR user. For the attacker,
the probability of selecting m channels to jam is given by
Pr{Nj = m} =

(
Np

m

)
/
[∑Ns

i=1

(
Np

i

)]
. The probability of at

least one successful CCC allocation is then

Pr{Uc>0}=
∑Ns

m=1Pr{Nc=m}Pr{Jc≤m− 1|Nc=m}(2)

where

Pr{Jc≤m− 1|Nc=m}=
∑m−1

i=0

(
m
i

)[∑Ns−i
j=0

(
Np−m

j

)]∑Ns

i=1

(
Np

i

) (3)

The numerator in (3) is the combinations of the attacker
jamming i out of m up to m−1 CCCs plus other Ns− i non-
CCC channels selected from the remaining Np −m channels.

Since the state transitions are governed by PU activity and
all channels are independent, the state transition probability is
given by Pr{Sn+1 | Sn} =

∏Np

i=1 Pr{sn+1
i = j | sni = k},

j, k ∈ {0, 1} where Pr{sn+1
i | sni } is the probability of state

transitions from state sni to sn+1
i on channel i depending on

the PU ON/OFF status of the given state.
CR users are rewarded for the selections of un-jammed and

PU-free CCCs. Thus, CR user k’s immediate reward for stage
n is defined as:

rnk =

{
1/(Nc−Jc−Pc) if Uc = Nc−Jc−Pc ≥ 0,
0 if Uc = 0 or Nk = Jc.

(4)

The maximum CR user’s reward is unity when the selected
channels are all PU-free CCCs and only one of them is not
jammed. That is, Nc −Pc = Nk and Nk > Jc. The reward of
the attacker is evaluated based on whether the CCCs of CR
users are all jammed. As a result, the attacker J’s immediate
reward for stage n is

rnj =

{
1/(1 + (Nj − Jc)) if Uc = 0 and Nj > 0,
0 if Uc > 0 or Nj = 0.

(5)

Although CR users and the attacker generally have the op-
posite goal, it can be seen from (4) and (5) that, unlike the
zero-sum game, the reward of the attacker is not the negative
of that of CR users in the JRCC game.

B. Gradient Dynamics Analysis
In the JRCC game, the interactions among all players can

be modeled as an N -dimensional non-linear dynamical system
in which the dynamics of changes are the gradient of the joint
strategy in RN . Similar to [4], [9], we examine the dynamics
of the JRCC game using the gradient ascent and show that
the players’ strategies or expected payoffs will converge. We
focus on the dynamics of an N -player JRCC game with K
CR users and one attacker (N = K + 1). We assume perfect
sensing and full observations of PU states.

In this game, player k ∈ {0, . . . ,K} chooses action
ak,i ∈ Ak, i = 1, . . . , NAk

, indicating that player k selects the
i-th subset of PU-free channels for CCC allocation (k > 0) or
jamming (k = 0). Let xk = {xk,i ∈ [0, 1] :

∑NAk
i=1 xk,i = 1}

be player k’s action selection strategy. According to the
strategy, the probability of choosing action ak,i is xk,i. In each
stage, player k receives reward rk,j for the j-th joint action
(a0, . . . , aK)j selected by the joint strategy (x0, . . . , xK).
Then the expected reward Rk can be expressed as the function
of the joint strategy (x0, . . . , xK) and rewards rk,j , j =

1, . . . ,
∏K

k=0 NAk
.

Since the goal of each player is to find the optimal strat-
egy to maximize their expected rewards, the gradient ascent
algorithm provides the mechanism for a player to achieve
the optimal solution by iteratively adjusting its strategy with
a sufficiently small step size. In the gradient ascent using
variable learning rates [4], the changes in expected rewards
can be expressed as iterative strategy update rules as follows:

xn+1
k = xn

k + αnδnk
∂Rk(x

n
0 , . . . , x

n
K)

∂xn
k

, k = 0, . . . ,K (6)

where δnk > 0 are the learning rates and αnδnk are the step
sizes for updating strategy xn

k in stage n. ∂Rk/∂x
n
k represent

the changes in player k’s expected reward in response to the
changes in the strategy xk in the direction of the gradient. They
are obtained by taking the partial derivatives of each player’s
expected reward with respect to its strategy. As a result, the
dynamics of the strategy changes can be formulated as an N -
dimensional constrained non-linear affine dynamical system
with differential equations defined as

ẋ = ∆(Ax+ b(x) + c) (7)

subject to the unit-hypercube constraints:

xk ∈ [0, 1]NAk , k = 0, . . . ,K. (8)

where x = [x0 . . . xK ]T , δ = [δ0 . . . δK ]T , ∆ = δT IN ,
AN×N and cN×NAk

are matrices whose elements are the
functions of rewards rk,j , and b(x)N×NAk

contains higher-
order products of x0, . . . , xK . The constraints limit the strate-
gies inside the unit hypercube because the strategy N -tuple
are probability distributions.

The system can be linearized at a fixed point x∗ if it has a
solution x∗ [3]. If we let r = ∥x− x∗∥2, b(x)/r approach 0
faster than r as r → 0. Combined with the change of variable
y = x− x∗, we obtain the homogeneous linear system:

ẏ = ∆Jy (9)

where J = JF |(x∗
0 ,...,x

∗
K) and JF is the Jacobian matrix of

X(x) = Ax+b(x)+c. The phase portraits of the non-linear
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system and its linearized system are considered qualitatively
equivalent in the neighborhood of x∗. Based on the analysis of
gradient dynamics, we conclude with the following theorem.

Theorem 1 (Convergence Theorem of JRCC Game): For
the N -player iterated general-sum JRCC game, if the players
follow the gradient ascent algorithm with variable learning
rates and a sufficiently small step size, the strategy N -tuple
(x1, . . . , xN ) will converge to a Nash equilibrium or the
expected rewards of the players will converge to the expected
rewards of a Nash equilibrium in the limit.

Proof: We examine the coefficient matrix J of the linear
dynamical system (9) with the constraints (8), and show that
the strategy will either converge to the fixed points of the
system inside the unit hypercube or the expected rewards of the
strategy will converge to that of a Nash point on the boundary
of the hypercube. Since the variable learning rates in ∆ have
no effect on the direction of the gradient, we focus on the
eigenanalysis of J in the following two cases.

1) J is singular: In this case, the system is neutrally
stable and the trajectories in the phase portrait exhibit periodic
patterns and the strategy N -tuple are periodic functions of
time. Since this periodicity in the strategy can be predictable
and is not desired by either CR users or the attacker in the
JRCC game, CR users and the attacker will enforce the system
to stay away from neutrally stable states in order to make their
strategies unpredictable.

2) J is nonsingular: In this case, J is invertible and all
the eigenvalues of J have nonzero real part. The system
has hyperbolic fixed points: the phase portraits of the non-
linear system and its linearization are qualitatively equivalent
in the neighborhood of the fix points. Let nu and ns be
the number of eigenvalues with positive or negative real
part, respectively. These eigenvalues are associated with the
corresponding unstable eigenspaces V u ∈ Rnu and stable
eigenspaces V s ∈ Rns of eJt, respectively. Trajectories in the
phase portrait are moving away from the fixed point in V u

and approaching the fixed point in V s as t increases. Since
nu+ns = N , we have the following subcases: nu = 0, . . . , N .
For nu = 0, the fixed point is an attracting node and the
strategy converges to this Nash point. For nu > 0 and nu < N ,
trajectories are saddle points pointing inwards with a focus in
V s and outwards along V u. For nu = N , the fixed point is
an N -dimensional star node pointing outwards.

Due to the constraints (8), points on the trajectories away
from the fixed point will initially reach a point on the boundary
of the unit hypercube. Without loss of generality, we assume
that the point is on one of the n-faces, n ≤ N . If the
projection of the gradient is zero at that point, the trajectory
will stay on the point. It is a Nash point of the game since no
single user can improve its payoff by changing the strategy
unilaterally. If the projected gradient is nonzero, the trajectory
moves toward one of the (n−1)-faces of the hypercube in the
direction depending on the sign of the projected gradient and
reaches a point on the (n − 1)-faces. The process will stop
at any point where the projected gradient is zero or continue
to move toward lower dimensional faces until the trajectory
reaches one of the vertices of the hypercube (n = 1). Thus,
(x1, . . . , xN ) converges to a Nash equilibrium or its expected
rewards converge to the expected rewards of a Nash point.

C. JRCC Algorithm

The gradient ascent algorithm in Section III-B requires the
knowledge of rewards for all combinations of joint actions
and the distributions of other players’ actions available to each
player. However, obtaining such knowledge in the JRCC game
is infeasible. Due to the limitation of sensing capability, the
actions of the players are only partially observable by other
players. As a result, not all rewards can be obtained for all joint
actions. More importantly, CR users and the attacker will not
reveal their own action selection strategy. For these reasons,
we propose the JRCC algorithm capable of selecting actions
based on limited observations, updating strategy similar to
gradient ascent, and obtaining the best response for each CR
user individually.

The JRCC algorithm enables the cooperation between CR
users with low control message overhead to facilitate CCC
allocations, and adapts to PU and jamming activity by using
the variable learning rates based on the win-or-learn-fast
(WoLF) principle [4] in extremely hostile environment. When
PU activity is low, the JRCC algorithm behaves like a rational
hill-climbing algorithm that converges to a greedy strategy to
maximize the payoffs. The performance is further improved by
the cooperation and the exchange of a few parameters between
CR users on the established CCCs since their strategies for
CCC selections become similar. When PU activity is high, the
available CCCs under jamming attacks are very limited, which
makes the cooperation less effective. In this case, the WoLF
principle can adjust the learning rates such that the players
learn slowly to delay the strategy change of the opponent
(“winning”) or learn fast when they are outperformed by the
opponent (“losing”).

The JRCC algorithm is listed in Algorithm 1. In each stage,
each CR user selects an action that maps to a set of selected
channels as CCCs for transmission, and obtains its own reward
by observing the conditions of selected CCCs. (lines 3-5).
For cooperation, each CR user broadcasts the control message
with the parameters recorded in previous stage, and updates its
strategy with the parameters received from neighbors (lines 6-
10). After the PU changes the state of the game, CR users
observe the next state s′ by sensing the channels, and update
their Q values for current state s and action ai (lines 11-12).
By selecting the proper learning rate δ (lines 13-17), CR users
update their own strategy (line 18). The value of δ is set to the
maximum for greedy strategy and a variable value from the
WoLF principle. The parameters s̃, ãi, and δ̃i for the current
greedy strategy are recorded for broadcast in the next stage
(line 19). For PHC strategy updates, the probability of the best
action is increased while the probabilities of other actions are
evenly decreased (lines 22-30). For variable learning rates, the
slow learning rate δw is selected for the “winning” case if the
average Q value of the best action a′ based on current policy
π is larger than that based on average policy π̄, and the fast
learning rate δl is selected otherwise (lines 31-39).

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm in the JRCC game. We show that both increasing
the transmission capability of CR users and enabling the
cooperation between CR users can improve the performance
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Algorithm 1 : JRCC for CR User i ∈ K
1: Initialize: α, γ, ϵ, δi ∈ (0, 1], Q(s, a)← 0, π(s, a)← 1

|Ai|
2: for each stage n do
3: Select ai ∈ Ai in state s per π(s) with w.p. 1− ϵ
4: Transmit on channels: {Ch : ai 7→ Ni}
5: Observe Uc, Jc, Pc, Pj and calculate reward ri
6: if (Uc > 0 and ∃ãi) then
7: BroadcastToNeighbors(s̃, ãi, δ̃i)
8: ReceiveFromNeighbors(s̃, ãm, δm,m ∈ K,m ̸= i)
9: StrategyUpdate(π(s̃, a), ãm, δ̃m)

10: end if
11: Observe next state s′ ← SensingChannels(Ns,i)
12: Q(s, ai)← (1− α)Q(s, ai) + α

[
ri + γmaxb Q(s′, b)

]
13: if ri ≥ rth then
14: δi = δmax

15: else
16: δi = WoLF(C(s), π(s, a), π̄(s, a), Q(s, a))
17: end if
18: StrategyUpdate(π(s, a), a′ = argmaxb Q(s, b), δi)
19: if (Uc > 0) then s̃← s, ãi ← a′, δ̃i ← δi end if
20: UpdateParameters(α, γ, δi), s← s′

21: end for
22: procedure StrategyUpdate(π(s, a), a′, δ)
23: δsa = min

(
π(s, a), δ

|Ai|−1

)
24: if a ̸= a′ then
25: ∆sa = −δsa
26: else
27: ∆sa =

∑
a′ ̸=a δsa′

28: end if
29: π(s, a)← π(s, a) + ∆sa

30: end procedure
31: procedure WoLF(C(s), π(s, a), π̄(s, a), Q(s, a))
32: C(s)← C(s) + 1
33: π̄(s, a)← π̄(s, a) + 1

C(s)

(
π(s, a)− π̄(s, a)

)
, ∀a′ ∈ |Ai|

34: if
∑

a′ π(s, a
′)Q(s, a′) >

∑
a′ π̄(s, a

′)Q(s, a′) then
35: δi = δwi

36: else
37: δi = δli
38: end if
39: end procedure

of combating the attacker. We also show that the JRCC
algorithm effectively combats jamming under the impact of
PU activities and sensing errors. In the test scenarios, JRCC
is compared to PHC and WoLF-PHC algorithms [4]. PHC is a
greedy algorithm that improves the policy by selecting actions
according to maximum Q values. WoLF-PHC is based on PHC
with variable learning rates determined by the WoLF principle.
In the simulation environment, we set N = 3, Np = 6,
and Ns = 3. For reinforcement learning parameters, we set
αn = 1/(1+n/500), δnw = 1/(1+n/10) where n is step/stage
index, δl = 4δw, γ = 0.9, ϵ = 0.1, δmax = 0.9, and rth = 0.5
unless otherwise specified.

A. Convergence of JRCC Game

Fig. 2 plots the expected rewards of CR users and the
attacker for 10 exemplary runs when PUs are not present. The
group on the top is CR users’ rewards while the bottom group
is the attacker’s. The figure clearly shows the convergence
of JRCC game for CR users and the attacker. In this case,
the convergence is faster than the runs with state changes.
However, the expected rewards from the runs with state
changes exhibit similar convergence behavior. This shows that
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the strategy of the players converges to a Nash equilibrium or
the rewards converge to the reward of a Nash point.

B. Transmission Capability
Owing to power constraints or hardware limitation, CR

users and the attacker are limited to transmitting on a maxi-
mum number of channels Ns ≤ Np simultaneously. To save
energy, CR users may select a smaller number of channels
Nk ≤ Ns as control channels at the higher risk of being
all jammed by the attacker. Similarly, the attacker may select
Nj ≤ Ns channels for jamming with potential loss of jamming
performance. Hence, transmission capability has the effect
on the performance of CCC allocation or jamming strategy
of the players. For fairness, we assume that CR users and
the attacker have the same transmission capability. Fig. 3
shows the expected payoffs of PHC, WoLF-PHC, and JRCC
algorithms for different number of Ns given no PU activity
and Np = 6. As Ns increases, the expected payoffs of JRCC
CR users increase monotonically. The performance gain of
JRCC over PHC is mainly obtained from the cooperation
of CR users. The attacker’s payoffs drop as Ns increases
from 1 to 3 and slightly increase as Ns increases to 5. Note
that the increases in CR users’ payoffs are monotonically
decreasing as Ns varies from 1 to 5. This is because the
attacker’s transmission capability is also increased. This shows
that transmitting on all channels is not necessarily the best
strategy for CR users if the attacker has the same capability.

C. Impact of the PU Activity
PU activity is one of the major impacting factors of JRCC

performance since the available channels for CCC allocations
may be significantly reduced. Fig. 4(a) shows the expected
payoffs of JRCC, PHC, and WoLF-PHC versus the probability
of an active PU, Pon, in each channel. We assume that Pon

is the same for all PUs and both CR users and the attacker
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Fig. 4. Expected payoffs vs. PU activity (Pon) with (a) perfect sensing, (b) false alarm Pf = 0.1, and (c) miss detection Pm = 0.1.

perform perfect sensing with no sensing errors. Since there is
a PU in each channel, the case of Pon = 0.5 is approximately
equivalent to the case that half of the channels are occupied by
PUs on the average. Hence, the expected payoffs of CR users
are reduced considerably while the payoffs of the attacker
increase to the maximum from no PU activity to Pon = 0.5.
For high PU activity Pon > 0.6 where CCCs are less available
for jamming, the payoffs of the attacker also decrease and
approach zero as PU becomes mostly active on all channels.
PU activity has the greatest impact on PHC and the least
on WoLF-PHC in terms of decreasing rate of the expected
payoffs. The proposed JRCC maintains the highest payoffs
under low to medium PU activity due to CR user cooperation.
For medium to high PU activity where CCCs are less available
for cooperation, JRCC adopts the variable rates to combat
jamming as WoLF-PHC. Hence, the performance of JRCC
is comparable to that of WoLF-PHC in high PU activity
cases. This scenario shows that JRCC adapts to PU activity by
combining CR user cooperation and variable learning rates to
maximize the payoffs for jamming-resilient CCC allocations.

D. Effects of Sensing Errors

In addition to PU activity, sensing errors such as false alarm
and miss detection can have the major impacts on the JRCC
performance. In the false alarm cases, CR users are mistakenly
forced to allocate CCCs in the smaller subset of available chan-
nels. This increases the probability of two CR users selecting
exclusive subsets of channels as CCCs. Hence, the effect of
false alarms on CCC allocations can be significant even if
only one CR user experiences the false alarm. Moreover, CR
users may observe different states due to false alarms and
thus making the cooperation less effective. As a result, false
alarms, on top of existing PU activity, further reduce channel
availability for CCC allocations. Fig. 4(b) shows the expected
rewards versus PU activity with Pf = 0.1 for CR users and
the attacker. As expected, CR users are greatly affected by
false alarms. The cooperative gain in JRCC is also reduced
compared to the perfect sensing scenario. JRCC still performs
the best in low to medium PU activity cases and approaches
WoLF-PHC when PU activity is high. Similarly, the attacker’s
performance is affected by false alarms with maximum payoffs
in medium PU activity. Unlike false alarms, the effect of
miss detection on CCCs requires both CR users incorrectly
detecting the presence of the PU. Hence, the probability of
both CR users having miss detection is much smaller and

the impacts on CR users are less noticeable. Fig. 4(c) shows
the expected rewards versus PU activity with Pm = 0.1.
Compared to Figs. 4(a) and 4(b), the performance of CR users
and the attacker is slightly affected.

V. CONCLUSIONS

In this paper, we tackle the control channel jamming
problem in CRAHNs by modeling the interactions among
CR users and the attacker under the impact of PU activities
as a stochastic general-sum game called JRCC game. We
analyze the gradient ascent dynamics of the game and show its
convergence. We also propose the JRCC algorithm for optimal
CCC allocation strategy by enabling CR user cooperation
and adapting to PU activity with variable learning rates. The
results demonstrate that the JRCC algorithm effectively com-
bats jamming under the impact of primary user activity and
sensing errors. The CCC allocation policy can be improved by
enhancing transmission and sensing capabilities. The proposed
algorithm is scalable and can be applied to multiple CR users.
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