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Abstract—Diffusion-based communications refers to the trans-
fer of information using particles as message carriers whose
propagation is based on the law of particle diffusion. Though still
at an early stage, there have been growing interests and research
efforts dedicated to this communication technology. It has been
identified that diffusion-based communications is one of the most
promising approaches for end-to-end communication between
nanoscale devices in the near future. In this paper, the design
of a binary digital communication system is proposed based on
particle diffusion. Stochastic signaling through On-Off Keying
(OOK) for random particle emission and a diffusion channel with
memory is considered. The diffusion is considered in the cases of
one, two, and three dimensions. The receiver detection problem
is formulated by using an information-theoretic approach. The
optimal decision threshold for the receiver detection is derived
through mutual information maximization for two cases, namely,
when the a priori probability of bit transmission is fixed and
known to the receiver and when this probability is unknown
to the receiver. Numerical results indicate that in the case
of diffusion in one or two dimensions, the information of a
priori probability plays a key role in optimizing the system
performance, while it does not when considering the diffusion
in three dimensions.

Index Terms—Digital communications, Diffusion process, On-
off keying, Neyman-Pearson criterion, Mutual information,
Channel capacity

I. INTRODUCTION

In recent years, there has been dramatic progress made in
the development of nanotechnology, which is defined as the
technology involving components in a scale of 1 nm to 100 nm
[1]. A nanomachine is a device which is envisioned to perform
a specific task, e.g., processing, sensing and actuation, and can
be considered as the most basic unit [2]. The functionality
and capability of one nanomachine alone are quite limited.
The idea of interconnecting several nanomachines to form a
nanonetwork has been proposed and recently studied in [3].

Four different communication mechanisms for nanoma-
chines have been considered and proposed so far, i.e., mechan-
ical, acoustic, electromagnetic, and molecular communications
[1]. However, due to the constraints of size, power, and
complexity associated with the nanoscale regime, many of the
options listed above have been identified as not directly appli-
cable. Amongst others, molecular communication, defined as

the transfer of information using particles as message carriers,
is considered one of the most promising. The particles can
either follow a specific path or be guided by a fluidic medium
to reach the destination [1]. Diffusion-based communication
refers to the situation where molecules reach the destination
relying solely on the laws of particle diffusion. For example,
pheromone propagation in the air between insects [4] or
calcium signaling among living cells [5] fall into the category
of diffusion-based communications.

Though still at an early stage, there have been growing
interests and research efforts dedicated to diffusion-based
communications. Theoretical studies which try to provide a
realistic mathematical model of diffusion-based communica-
tion systems and characterize the fundamental limit of the
information transfer rate are at the cutting edge of nowadays
research. In [6]–[8], a mathematical end-to-end model along
with the noise analysis is proposed for diffusion-based com-
munication systems by assuming continuous particle emission
at the molecular transmitter. In [9], [10], an information theo-
retical framework for diffusion-based communication systems
is proposed. The channel capacity is obtained by assuming
a chemical reaction setup between nanomachines and by
utilizing the principles of mass action kinetics. In addition to
the theoretical studies, preliminary laboratory experiments are
also performed in an attempt to create and analyze biologically
engineered diffusion-based communication systems, e.g., [5],
[11]–[13].

In this paper, we propose the design of a diffusion-based
communication system for transmission of binary digital in-
formation. We consider a time-slotted system with stochastic
signaling and a diffusion channel with memory. The diffusion
is considered in the cases of one, two, and three dimen-
sions. On-Off Keying (OOK) is adopted at the transmitter for
molecular emission, where molecules are released instanta-
neously by following a fixed probability distribution, which
is assumed to be known by the receiver. The effect of Inter-
Symbol Interference (ISI) from the residual particle diffusion
of previous signaling intervals is considered. Two different
detection schemes are formulated based on the availability
of the a priori information by using an information-theoretic
approach. The optimal decision threshold is derived for mutual
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information maximization. Numerical results indicate that in
the case of diffusion in one or two dimensions, the information
of a priori probability plays a key role in optimizing the
system performance, while it does not when considering the
diffusion in three dimensions.

The rest of this paper is organized as follows. In Section
II, we introduce the system model of the diffusion-based
communication system. In Section III, we develop the receiver
detection scheme using an information-theoretic approach.
The achievable mutual information of the proposed system is
obtained for both cases of perfect and no knowledge of prior
information. In Section IV, the numerical results are presented.
Finally, conclusions are given in Section V.

II. SYSTEM MODEL

We propose a time-slotted system with signaling interval
Ts. In this paper, we assume perfect synchronization between
the transmitter and the receiver. Let Xi and Yi denote the
input and output random variables of the ith signaling interval,
respectively. OOK with stochastic signaling is considered as
the modulation technique. With a priori probability p1, a
random number of molecules is emitted in an instantaneous
fashion by the transmitter at the beginning of each signaling
interval to signify 1; no molecule is emitted to signify 0. It is
assumed that the number of molecules present in the system
is large enough such that the differential equations can be
applied to describe the dynamics. Let Qi denote the number
of molecules emitted at the ith signaling interval; we have
Qi � 1. We assume that {Qi} is a series of independent
and identically distributed (i.i.d.) continuous random variables
with finite mean and variance, which are denoted by µQ and
σ2
Q, respectively, and are assumed to be known by the receiver

through proper estimation techniques. Once released into the
propagation medium, the molecules are assumed to diffuse
freely, and the dynamics is described by the Brownian motion.

Let the molecule source be located at the origin of a
Cartesian coordinate, and the center of the receiver is located at
~r. Let φ(~r, t) denote the concentration function of molecules
at the location of the receiver ~r and time t. Fick’s second
law of diffusion [14] predicts how such concentration function
changes with time:

∂φ(~r, t)

∂t
= D∇2φ(~r, t), (1)

where D is the diffusion constant which is related to the
viscosity of the propagation medium. Due to the uncertainty
lying in the previous signaling intervals, ISI occurs as a
result of residual particle diffusion. We denote the number
of interfering signaling intervals by N . It can be shown that
the solution to (1) with a point source is of the form [15]

φ(r, t)=

i∑
j=i−N

Xj
Qj

(4πD(t−jTs))
d
2

exp

(
− r2

4D(t−jTs)

)
,

(2)
where d denotes the number of dimensions of the space; d ∈
{1, 2, 3}; t ∈ [iTs, (i+1)Ts). Note that in (2) we have omitted
the vector notation due to the isotropy of a point molecule
source with free Brownian motion.
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Fig. 1. Representation of the diffusion channel as a binary hypothesis testing
channel.

III. DETECTION SCHEMES

In this section, we apply an information-theoretic approach
for the detector design, since there is no assumption of any
favorable a priori distribution for binary signaling or a proper
definition of Bayesian cost of a diffusion-based communica-
tion channel. In Fig. 1, a binary hypothesis testing channel
representation of the diffusion channel is depicted, where PF
and PD denote the false alarm probability and the detection
probability, respectively. By definition, we have

P (Yi = 1 | Xi = 0) = PF ,

P (Yi = 1 | Xi = 1) = PD,

P (Yi = 0 | Xi = 0) = 1− PF ,
P (Yi = 0 | Xi = 1) = 1− PD. (3)

It is well-known that

IXi;Yi =

1∑
Xi=0

1∑
Yi=0

P (Yi|Xi)P (Xi) log
P (Yi|Xi)

P (Yi)
. (4)

We can thus represent the mutual information as a function
of the probabilities PF , PD, and p1. For ease of notation,
we omit the subscripts and denote the mutual information by
I(PF , PD, p1).

A. Detection with Perfect A Priori Information

For the case where the receiver has perfect knowledge but
no control over p1, the detector design is concerned with the
following optimization problem

max
PF ,PD

I(PF , PD, p1). (5)

Let Zi denote the random variable which is defined as the
integral of the concentration function at the receiver from iTs
to (i+ 1)Ts, i.e., Zi =

∫ (i+1)Ts
iTs

φ(r, t) dt. Here we consider
the binary hypothesis testing problem with continuous-type
observations Zi:

H1: molecules are emitted at t = iTs; Zi ∼ f1Zi(z),
H0: otherwise; Zi ∼ f0Zi(z), (6)

where fkZi(z) denotes the probability density function of Zi
given that Hk is true. By viewing the interfering input bits
as Bernoulli random variables with success probability p1, we
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have that Zi is a weighted sum of independent variables:

H1: Zi = a0Qi +

i−1∑
j=i−N

ai−jXjQj ,

H0: Zi =

i−1∑
j=i−N

ai−jXjQj , (7)

where we have defined

aj =

∫ Ts

0

1

(4πD(t+ jTs))
d
2

exp

(
− r2

4D(t+ jTs)

)
dt. (8)

In (7), we have formulated the diffusion channel into an
ISI channel with memory N . It is assumed that the series
of independent random variables, {ai−jXjQj}, satisfies the
Lindeberg’s condition [16] so that Zi converges to the Gaus-
sian distribution as N approaches infinity1. By applying the
Gaussian approximation, the binary hypothesis testing problem
can be written as

H1: z ∼ N (µZ1
, σ2
Z1

),

H0: z ∼ N (µZ0 , σ
2
Z0

), (9)

where it is straightforward that

µZ0 = p1µQ

N∑
j=1

aj ,

µZ1 = a0µQ + µZ0 ,

σ2
Z0

=
(
p21σ

2
Q + µ2

Q(p1 − p21) + σ2
Q(p1 − p21)

) N∑
j=1

a2j ,

σ2
Z1

= a20σ
2
Q + σ2

Z0
. (10)

It can be shown that given PF , the mutual information is
a monotonically increasing function of PD [17], [18]. Thus
an information-optimal detector is equivalent to a Neyman-
Pearson detector when PF is given. The Neyman-Pearson
decision criterion states that such a constrained optimization
problem is solved by forming the likelihood ratio test [19]

f1Zi(z)

f0Zi(z)
= Λ(z)

H1

≷
H0

λ, (11)

where λ is found by solving P (Λ(z) > λ | H0) = PF . Using
(9), the likelihood ratio function can be derived as

Λ(z) =

1√
2πσ2

Z1

e
−

(z−µZ1
)2

2σ2
Z1

1√
2πσ2

Z0

e
−

(z−µZ0
)2

2σ2
Z0

=
σZ0

σZ1

e

(σ2Z1
−σ2Z0

)z2−2(µZ0
σ2Z1

−µZ1
σ2Z0

)z+µ2Z0
σ2Z1

−µ2Z1
σ2Z0

2σ2
Z0
σ2
Z1 (12)

1Loosely speaking, the Lindeberg’s condition requires that all random
variables are independent, and each one of them contributes a vanishing part
to the total variance as N approaches infinity.

Combining (11) and (12) and taking the natural logarithm at
both sides, we have

(σ2
Z1
−σ2

Z0
)z2−2(µZ0

σ2
Z1
−µZ1

σ2
Z0

)z+µ2
Z0
σ2
Z1
−µ2

Z1
σ2
Z0

H1

≷
H0

2σ2
Z0
σ2
Z1

(
lnλ− ln

σZ0

σZ1

)
. (13)

Using elementary algebra, we can solve (13) and obtain a
simplified test statistic of z under the condition

µ2
Z0

2σ2
Z0

−
µ2
Z1

2σ2
Z1

+ ln
σZ0

σZ1

< lnλ. (14)

The simplified test statistic of z is put in (15). It then follows

PF =

∫ ∞
η

f0Zi(z) dz = Q

(
η − µZ0

σZ0

)
, (16)

and the corresponding detection probability is

PD =

∫ ∞
η

f1Zi(z) dz = Q

(
η − µZ1

σZ1

)
. (17)

It remains to find the optimal threshold η∗(p1) which yields
the maximum mutual information. This is a numerical problem

η∗(p1) = argmax
η

I(PF (η), PD(η), p1). (18)

In the case where the receiver has control over the a pri-
ori probability, e.g., by affecting the coding scheme, it is
straightforward that the optimal value is determined such that
the mutual information is further maximized over all possible
values of p1 as

p∗1 = argmax
p1

I(PF (η∗(p1)), PD(η∗(p1)), p1). (19)

Note that the corresponding maximum mutual information
I(PF (η∗(p∗1)), PD(η∗(p∗1)), p∗1) represents the theoretically
maximum throughput of the considered diffusion-based com-
munication system instead of the channel capacity, since a
specific modulation technique and channel observation are
involved.

B. Detection with No A Priori Information

In the case where the receiver has no information of the a
priori probability at all, the concept of minimax [19] which
tries to mitigate the worst possible situation should be applied.
However, as discussed in [18], the fact that I(PF , PD, p1) = 0
when p1 = 0 or 1 renders the approach of minimax inappropri-
ate. Alternatively, we propose the use of a decision threshold
which is optimized at the a priori probability p†1 such that

p†1 = argmax
p1

∫
I(PF (η∗(p1)), PD(η∗(p1)), p) dp. (20)

The decision threshold η∗(p†1) thus maximizes the integrated
information amount independent of the actual a priori proba-
bility.
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z
H1

≷
H0

µZ0σ
2
Z1
−µZ1σ

2
Z0

+

√
(µZ0σ

2
Z1
−µZ1σ

2
Z0

)2−(σ2
Z1
−σ2

Z0
)
(
µ2
Z0
σ2
Z1
−µ2

Z1
σ2
Z0
−2σ2

Z0
σ2
Z1

(
lnλ−ln

σZ0

σZ1

))
σ2
Z1
−σ2

Z0

≡ η, (15)
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Fig. 2. Attainable mutual information for short-range diffusion-based
communications with perfect prior information.
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Fig. 3. Attainable mutual information for long-range diffusion-based com-
munications with perfect prior information.

IV. NUMERICAL RESULTS

In this section we present numerical results for the attainable
mutual information of the proposed diffusion-based commu-
nication system. Both short-range and long-range communica-
tion scenarios are investigated. Short-range molecular commu-
nications happens naturally as the mechanism for biochemical
signaling in living cells, e.g., calcium ion signaling and neural
signaling; while long-range molecular communications mostly
serves as the signaling method among living organisms, e.g.,
pheromone propagation and the dispersal of pollen and spores
[4]. In the following, we set D = 10−6 cm2/s, r = 20 µm, and
µQ = 1 mol, for short-range molecular communications. For
the case of long range, we set D = 0.43 cm2/s, r = 2 cm, and
µQ = 1000, 000 mol. For both scenarios we set N = 20, and
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Fig. 4. Attainable mutual information for short-range diffusion-based
communications both with and without knowledge of prior information.
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Fig. 5. Attainable mutual information for short-range diffusion-based
communications in different dimensions; Ts = 10 s.

σQ = 0.3 µQ, which gives a medium coefficient of variation
(CV) of 0.3. Unless otherwise stated, we set d = 1, i.e., one-
dimension diffusion.

In Fig. 2 and Fig. 3, we plot the maximum attainable mutual
information for the diffusion-based communication system for
the cases of short range and long range, respectively. Perfect
prior information is assumed to be known by the receiver.
Truncations can be seen at p1 close to 1 in both figures due
to the constraint on the minimum threshold given in (14).
Since the curves have already covered most operating regions
of interest, we omit the discussion if (14) is not satisfied,
which requires much more complicated forms of PF and
PD. The circles indicate the point which achieves the channel
capacity of the system as given in (19). It is observed that
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the higher mutual information is achieved in the short-range
case for the same signaling interval due to less effect of ISI,
as one would expect. It is also observed that the achievable
mutual information increases along with Ts due to the same
reason. Though the results indicate that the system achieves
the channel capacity at p1 < 1

2 , which is dependent on the
level of ISI experienced, we see rather flat curves over a wide
region of p1. It is thus concluded for one-dimension diffusion,
an exact control over the a priori probability is not vital for
achieving a desirable amount of information transfer. In this
case, a priori probability around 0.2 ∼ 0.6 can achieve over
95% of the channel capacity.

In Fig. 4, we compare the maximum attainable mutual
information (perfect prior information) with the other extreme
where no prior information is available for short-range com-
munications. The squares correspond to the values of prior
probabilities which give the maximum amount of information
as defined in (20). We observe that in general the value of
p1 at which the decision threshold should be optimized when
no prior information is available is relatively insensitive to the
level of ISI experienced. In this case, we have p†1 ' 0.45.
The results suggest that the system entails huge performance
loss when there is a mismatch between a presumed prior
probability and the actual prior probability. This is expected
since the distribution of ISI is dependent on p1 as shown
in (10). We thus conclude that the exact knowledge of the
prior information at the receiver is important for the system
to operate satisfactorily.

In Fig. 5, we plot the attainable mutual information both
with and without prior information for different dimensions;
d = 1, 2, and 3. The signaling interval is set to 10 seconds.
It is observed that the higher mutual information can be
achieved at higher dimensions. This results from the fact that
the dimension serves as the exponent affecting the decaying
rate of the concentration function with time, which in turn
lowers the effect ISI. Specifically, when d = 3, we observe that
a channel capacity of 1 bit per channel use is almost attained,
and the two corresponding curves nearly overlap. This suggests
that knowledge of prior information can offer only little
performance improvement in terms of mutual information in
this case. On the other hand, however, control of the a priori
probability to be around 0.5 has a major effect on optimizing
the system performance.

V. CONCLUSIONS

In this paper, we have proposed a diffusion-based commu-
nication system for transmission of binary digital information.
At the transmitter, we have considered OOK with stochastic
signaling, where the number of particle emitted per symbol
is random with known probability. The detector has been
designed following an information-theoretic approach. The
mutual information between the channel input and the decision
is optimized for both cases where the a priori probability
is perfectly known or completely unavailable to the receiver.
Numerical results indicate that in the case of diffusion in one
or two dimensions, the information of a priori probability
plays a key role in optimizing the system performance, while
it does not when considering the diffusion in three dimensions.

By proposing and analyzing the diffusion-based communi-
cation system, our purpose is to establish a framework under
which different signaling methods and receiver structure can
be studied. A well-defined noise model will also be included
in our future work.
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[4] L. P. Giné and I. F. Akyildiz, “Molecular communication options for
long range nanonetworks,” Computer Networks, vol. 53, pp. 2753–2766,
Nov. 2009.

[5] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, and K. Arima,
“Molecular communication for nanomachines using intercellular calcium
signalling,” in Proc. 5th IEEE Conference on Nanotechnology, vol. 2,
July 2005, pp. 478–481.

[6] M. Pierobon and I. F. Akyildiz, “A physical end-to-end model for molec-
ular communication in nanonetworks,” IEEE J. Sel. Areas Commun.,
vol. 28, no. 4, pp. 602–611, May 2010.

[7] ——, “Diffusion-based noise analysis for molecular communication in
nanonetworks,” IEEE Trans. Signal Processing, vol. 59, pp. 2532–2547,
June 2011.

[8] ——, “Noise analysis in ligand-binding reception for molecular com-
munication in nanonetworks,” IEEE Trans. Signal Processing, vol. 59,
pp. 4168–4182, Sept. 2011.

[9] B. Atakan and O. Akan, “An information theoretical approach for
molecular communication,” Bionetics 2007. 2nd, pp. 33–40, Dec. 2007.

[10] B. Atakan and O. B. Akan, “On molecular multiple-access, broadcast,
and relay channels in nanonetworks,” in Proc. ICST/ACM Conference
BIONETICS 2008, Nov. 2008.

[11] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja,
and I. Netravali, “Genetic circuit building blocks for cellular compu-
tations, communications, and signal processing,” Natural Computing,
vol. 2, pp. 47–84, Mar. 2003.

[12] R. Weiss and T. Knight, “Engineered communications for microbial
robotics,” in Proc. 6th International Meeting on DNA Based Computers,
2000.

[13] T. Nakano, T. Suda, T. Kojuin, T. Haraguchi, and Y. Hiraoka, “Molecular
communication through gap junction channels: System design, exper-
iments and modeling,” in Proc. 2nd International Conference on Bio-
Inspired Models of Network, Information, and Computing Systems, Dec.
2007, pp. 139–146.

[14] J. Philibert, “One and a half century of diffusion: Fick, Einstein, before
and beyond,” Diffusion Fundamentals, 2005.

[15] A. Einstein, “Investigations of the theory of Brownian movement,”
Dover, 1956.

[16] R. B. Ash, Probability and Measure Theory, 2nd ed. Academic Press,
Dec. 1999.

[17] D. Middleton, An Introduction to Statistical Communication Theory.
New York: McGraw-Hill, 1960.

[18] T. Gabriele, “Information criteria for threshold determination (corresp.),”
IEEE Trans. Inform. Theory, vol. 12, no. 4, pp. 484 – 486, Oct. 1966.

[19] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
Springer, Mar. 1994.


