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Abstract—Communications based on diffusion refers to the
transfer of information using molecules as message carriers
whose propagation is governed by the laws of Brownian motion.
Molecular communication is considered to be one of the most
promising approaches for the end-to-end communication between
nanoscale devices. In this paper, both an optimal and a subop-
timal receiver detection scheme are proposed for a diffusion-
based binary digital communication system in the presence of
ISI. The transmission of binary information is accomplished
by using On-Off Keying (OOK) with only one molecule. The
proposed system can serve as the theoretical basis for end-to-
end communication in molecular nanonetworks where molecules
of different types are used by different nanoscale devices. The
effect of channel memory resulting from the residual molecule
diffusion from previous transmissions is treated analytically in
the formulation of the detection schemes. Numerical results show
that the proposed detection schemes can maximize the mutual
information over a practical range of the parameter of signaling
interval without a priori information. A channel capacity of 1
bit per channel utilization during a signaling interval can be
ultimately achieved by extending the duration of the signaling
interval, even with infinite channel memory.

Index Terms—Molecular communication, diffusion process,
Brownian motion, Neyman-Pearson criterion, mutual informa-
tion, channel capacity

I. INTRODUCTION

Nanotechnology has seen dramatic progress in its devel-
opment over the past few years [1]. A nanomachine is a
device which is envisioned to perform a specific task, e.g.,
processing, sensing and actuation, and can be considered as the
most basic unit [2]. Molecular communication, defined as the
transfer of information using molecules as message carriers,
has been shown to be one of the most promising solutions
for communications between nanomachines. Molecular com-
munication based on diffusion refers to the situation where
molecules reach the destination relying solely on the laws of
molecular diffusion.

Based on the types of molecules, we envision two different
approaches for characterizing nanonetworks with molecu-
lar communication, namely homogeneous and heterogeneous
molecular nanonetworks. In the homogeneous case, the in-
formation molecules are all the same (i.e., indistinguishable).

An obvious advantage is the simplicity of generating infor-
mation molecules by nanomachines since only a single type
of molecule must be synthesized. However, the effect of
Multi-User Interference (MUI) arises due to the fact that the
nanomachine at the receiving end has no knowledge whether
the molecules were emitted from the intended transmitting
nanomachine or from any other interfering sources, which
complicates the design of the signaling and detection schemes.
In the heterogeneous case, the information molecules are
distinguishable for distinct communication channels such that
orthogonal molecular communication can be achieved [3]. The
cost and complexity of synthesizing the information molecules
in this case is expected to be higher when compared with
the homogeneous case. However, the signaling and detection
schemes can be largely simplified since the effect of MUI is
inherently nonexistent. As nanomachines are very limited in
functionality, the heterogeneous approach seems to be more
promising if the added overhead of synthesizing molecules is
justified by the simplicity of the signaling schemes.

A thorough investigation of the end-to-end communica-
tion mechanism between nanomachines is required before
the molecular nanonetworks can be practically considered.
Borrowing from the paradigm of traditional ElectroMagnetic
(EM) communications, molecular communication systems us-
ing digital signaling, e.g., binary signaling and multi-amplitude
signaling, are emerging and drawing increasing attention [5]–
[12]. It has been indicated that the effect of channel mem-
ory, hence Inter-Symbol Interference (ISI), resulting from the
residual molecule diffusion from previous transmissions in
diffusion-based digital communication is critically important
[6], [8]. However, simplified channel models and receiver
design without mathematical foundations are assumed for
making the analysis tractable. For example, a diffusion chan-
nel with limited orders of memory is assumed in [10]–
[12]. Stochastic degradation of the information molecules is
considered using simulations in [7]. Heuristic decision rules
where the detection threshold is not mathematically obtained
are considered in [9]–[12]. Such simplified channel model
and heuristic detection approaches raise the concern of the
feasibility of diffusion-based communication systems in the
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presence of large or even infinite channel memory.
In this paper, we propose the design of a diffusion-based

communication system for transmission of binary digital in-
formation, which is accomplished by using On-Off Keying
(OOK) with only one molecule. The proposed system can
serve as the theoretical basis for end-to-end communication
in heterogeneous molecular nanonetworks. By adopting an
information-theoretic approach, the optimal detection strat-
egy is formulated with arbitrary orders of channel mem-
ory. Specifically, we propose a one-shot detector with two
detection schemes for mutual information maximization: an
information-optimal detection scheme with perfect a priori
information and a suboptimal detection scheme without a
priori information. To the best of the authors’ knowledge,
this is the first work that gives an analytical treatment of the
optimal detection problem for diffusion-based communication
in the presence of ISI. Numerical results indicate that the a
priori information is not needed, and the proposed suboptimal
detection scheme can achieve optimal detection performance
over a practical range of the parameter of signaling interval.
Also, it is shown that our receiver design guarantees diffusion-
based communication to operate without failure even in the
case of infinite channel memory. A channel capacity of 1
bit per channel utilization during a signaling interval can be
ultimately achieved by extending the duration of the signaling
interval.

The rest of this paper is organized as follows. In Section
II, we introduce the system model of the proposed communi-
cation system based on diffusion. In Section III, we propose
our design of the digital receiver and develop the detection
schemes using an information-theoretic approach. In Section
IV, the numerical results are presented. Finally, conclusions
are given in Section V.

II. SYSTEM MODEL

We propose a time-slotted system with signaling interval
T
s

in a one-dimensional diffusion space. In this paper, we
assume perfect synchronization between the transmitter and
the receiver. With a priori probability p, a single molecule is
emitted by the transmitter at the beginning of each signaling
interval to signify logical 1; no molecule is emitted to signify
0. The molecule moves toward one of the two ends of the
diffusion space by an infinitesimal length with equal proba-
bility, which results in a one-dimensional random walk of the
molecule from the transmitter to the receiver. We assume this
random walk stops once the molecule reaches the receiver. Let
T denote the random variable representing the first hitting time
of the molecule at the receiver side. This random variable is the
result of a random process which is described by the Brownian
motion. As a consequence, the cumulative distribution function
(c.d.f) of T is [13]

F (t) =
2p
2⇡

Z 1

rp
2Dt

e�y

2
/2 dy. = 2Q

✓
rp
2Dt

◆
, (1)

where r denotes the distance between the transmitter and the
receiver, D is the diffusion constant, and Q(·) is the standard
Q-function defined as Q(x) = 1p

2⇡

R1
x

e�y

2
/2 dy.
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Fig. 1. High-level scheme of the proposed digital receiver.
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Fig. 2. Illustration of the molecule counter. In this example, the intended
information is 1, and we have V = 3.

Due to the uncertainty lying in the hitting time T of the
molecule following the Brownian motion, channel memory
arises as the transmitted molecules stay in the diffusion
channel for an indefinite period of time, which leads to Inter-
Symbol Interference (ISI). In the following, we denote the
number of interfering signaling intervals by N .

III. RECEIVER DESIGN

We propose a high-level scheme for modeling the receiver
in the proposed molecular communication system as in Fig. 1.
The observation generator generates a quantitative description
V of the binary information X sent in the current signaling
interval T

s

based on a certain measurable characteristic of the
arriving molecules, e.g., the accumulated number of arriving
molecules and the time of arrivals. For the detector design,
we propose a one-shot detection approach which only utilizes
information in the corresponding decision duration T

d

, which
in general, can be different from the signaling interval T

s

.
The test statistic generator computes a test statistic, denoted
by T (V ), based on the quantitative description V . It is demon-
strated in Section IV that the proposed detection scheme with
T (V ) = V achieves maximum mutual information over a wide
range of system parameters, and it is particularly well-suited
for low-end nano-devices. The threshold comparator compares
the test statistic T (V ) with a predetermined threshold to
generate the binary decision Y .

We remark that a sequence detector, e.g., a Maximum
Likelihood (ML) detector, can also be employed in place of
the one-shot detector by jointly deciding on a sequence of
transmitted binary information based on the corresponding se-
quence of observations. The tradeoff between the performance
boost and the computational complexity, however, must take
into account the limited capabilities of nanoscale devices. The
study of such an issue should be based on top of the proposed
detection framework, and it is out of the scope of this paper.

3820



3

A. Observation Generator

In this work, we consider the observation generator as a
molecule counter. The molecule counter counts the total num-
ber of molecules hitting the receiver within a predetermined
decision duration, denoted by T

d

. As demonstrated in Section
IV, the setting of T

d

is to be optimized and is not necessarily
equal to T

s

. A predetermined delay ⌧ is applied to account for
the propagation delay. Note that if T

d

+ ⌧ > T
s

, interference
from the following signaling intervals also arises since the
molecules emitted in the the following signaling intervals
could fall into the current decision duration T

d

. Fig. 2 provides
an illustration of the molecule counter.

For a given value of T
d

, we propose to apply a prede-
termined delay ⌧ which maximizes the probability that the
emitted molecule falls into the decision duration. This is
expressed as follows

⌧ = argmax

⌧̃

P (⌧̃  T < T
d

+ ⌧̃)

= argmax

⌧̃

F (T
d

+ ⌧̃)� F (⌧̃). (2)

By applying (1) to (2), and after some manipulations, we
obtain the following equation in the variable ⌧

exp

✓
� r2T

d

2D⌧(T
d

+ ⌧)

◆
�
✓

⌧

T
d

+ ⌧

◆3

= 0, (3)

which can be computed numerically.

B. Detector

Since there is no assumption of any favorable value for the a
priori probability p for binary signaling or a proper definition
of Bayesian cost [14] for a diffusion-based communication
channel, we adopt an information-theoretic approach. Accord-
ing to this approach, the ultimate goal of the detector design
is concerned with the following optimization problem

max I(X;Y ), (4)

where I(·) refers to the mutual information, which is defined
as follows [14]

I(X;Y ) =

1X

x=0

1X

y=0

P (Y |X)P (X) log

P (Y |X)

P (Y )

. (5)

By definition, we have

P (Y = 1 | X = 0) = P
F

,

P (Y = 1 | X = 1) = P
D

,

P (Y = 0 | X = 0) = 1� P
F

,

P (Y = 0 | X = 1) = 1� P
D

, (6)

where P
F

and P
D

denote the false alarm probability and the
detection probability, respectively. The mutual information is
therefore a function of P

F

, P
D

, and the a priori probability
P (X = 1) = p. We henceforth denote the mutual information
by I(P

F

, P
D

, p). It is shown in [15] that given P
F

, the
mutual information is a monotonically increasing function of
P
D

. Thus an information-optimal detector which maximizes
the mutual information is equivalent to a Neyman-Pearson

detector [16] when P
F

is given. In the following, we first
formulate the binary hypothesis testing problem and then
apply the Neyman-Pearson decision rule to derive the optimal
detection scheme, including the corresponding test statistic and
the decision threshold.

1) Detection with Perfect A Priori Information: First we
consider the case where the receiver has perfect knowledge of
the a priori probability p. The detector is concerned with the
binary hypothesis testing problem

H1: a molecule is emitted at t = 0; V ⇠ P 1
V

(v),

H0: otherwise; V ⇠ P 0
V

(v), (7)

where P k

V

(v) denotes the probability mass function of V given
that hypothesis H

k

is true. To characterize the probability
distribution of V , let W

j

denote the random variable which
is defined as the event in which the molecule from the j-th
previous signaling interval arrives within the current decision
duration [⌧, T

d

+ ⌧). W
j

represents the ISI component from
the j-th previous signaling interval, with the exception of
j = 0 being the event concerning the arrival of the intended
information molecule from the current signaling interval in
the current decision duration. It is clear that W

j

is a Bernoulli
random variable with success probability

pj
s

= p ·
�
F (jT

s

+ T
d

+ ⌧)� F (jT
s

+ ⌧)
�
, (8)

where j = 0, · · · , N . In the case that T
d

+ ⌧ > T
s

, and hence
interference from the following signaling intervals arises, we
define K = bTd+⌧

Ts
c, and W

l

as a Bernoulli random variable
with success probability

pl
s

=p·
�
F (T

d

+⌧�(l�N)T
s

)�F (max{⌧�(l�N)T
s

, 0})
�
, (9)

where l = N+1, · · · , N+K. W
l

represents the ISI component
from the (l�N)-th following signaling interval. Due to the
properties of the Brownian motion [17], the molecules arriving
from different signaling intervals are independent. We can thus
express V as a sum of independent non-identically distributed
Bernoulli trials

P 1
V

(v) = W0 +

NX

j=1

W
j

+

N+KX

l=N+1

W
l

,

P 0
V

(v) =

NX

j=1

W
j

+

N+KX

l=N+1

W
l

, (10)

where
P

N

j=1 Wj

+

P
N+K

l=N+1 Wl

represents the aggregate effect
of the ISI. In this case, the probabilities can be computed in
an iterative fashion as [18]

P 1
V

(v) =
1

v

N+KX

j=0

pj
s

P 1
N+K

(v � 1; j), (11)

where v = 1, · · · , N +K +1, and P 1
N+K

(v� 1; j) is defined
as the probability of v � 1 successes from the N + K trials
excluding the j-th trial. For v = 0, it is straightforward that
P 1
V

(0) =

Q
N+K

j=0 (1�pj
s

). P 0
V

(v) can be computed in a similar
fashion.
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The Neyman-Pearson decision criterion states that the con-
strained optimization problem of maximizing P

D

given a max-
imum allowable P

F

is solved by formulating the likelihood
ratio test [19]

8
><

>:

1, if ⇤(v) > �,
⇢, if ⇤(v) = �,
0, if ⇤(v) < �.

, (12)

where ⇤(v) =
P

1
V (v)

P

0
V (v)

, and ⇢ stands for a randomized decision
such that it is equal to hypothesis H1 with probability ⇢. �
and ⇢ are determined by first finding ṽ such that

0  P
F

�
X

8v,⇤(v)>⇤(ṽ)

P 0
V

(v) <
X

8v,⇤(v)=⇤(ṽ)

P 0
V

(v). (13)

We then have

� = ⇤(ṽ),

⇢ =

P
F

�
P

8v,⇤(v)>⇤(ṽ) P
0
V

(v)
P

8v,⇤(v)=⇤(ṽ) P
0
V

(v)
. (14)

The corresponding P
D

is then

P
D

(P
F

) =

X

8v,⇤(v)>�

P 1
V

(v) + ⇢
X

8v,⇤(v)=�

P 1
V

(v). (15)

Note we consider P
D

as a function of P
F

, P
D

(P
F

), as P
D

is uniquely determined by P
F

after applying the Neyman-
Pearson decision rule [16].

To formulate the optimal detection scheme, it remains to
find the optimal value of P

F

which yields the maximum
mutual information given the knowledge of the a priori
probability p. This is expressed as follows

P ⇤
F

(p) = argmax

PF

I(P
F

, P
D

(P
F

), p). (16)

By using (13) and (14), we can obtain the corresponding
information-optimal decision thresholds �⇤

(p) and ⇢⇤(p). It
thus follows that an information-optimal test statistic generator
is T (V ) = ⇤(V ), and the threshold comparator policy is given
in (12) when �⇤

(p) and ⇢⇤(p) are applied.
In the case where the receiver has control over the a

priori probability p, e.g., by affecting the coding scheme, it is
straightforward that the optimal value is determined such that
the mutual information is further maximized over all possible
values of p as

p⇤ = argmax

p

I(P ⇤
F

(p), P
D

(P ⇤
F

(p)), p). (17)

Note that the corresponding maximum mutual information
I(P ⇤

F

(p⇤), P
D

(P ⇤
F

(p⇤)), p⇤) represents the theoretically maxi-
mum achievable information rate of the considered molecular
communication system instead of the channel capacity, since
a specific modulation technique and channel observation are
considered in this paper.

2) Detection without A Priori Information: In the case
where the receiver has no information of the a priori proba-
bility, the concept of minimax [19] which tries to mitigate the
worst possible situation, i.e., maximizing the mutual informa-
tion at the a priori probability which yields the lowest mutual
information, should be applied. However, as discussed in [15],
the fact that I(P

F

, P
D

, p) = 0 when p = 0 or 1 renders the
approach of minimax inappropriate. Alternatively, we apply a
suboptimal threshold detection method which operates directly
on the number of hitting molecules, i.e., T (V ) = V , and

(
1, if V � ⌘,
0, if V < ⌘.

, (18)

where ⌘ denotes the threshold on the number of hitting
molecules for discriminating logical 1 from 0. It is straight-
forward that given the threshold ⌘, P

F

and P
D

are obtained
as

P
F

(⌘) =

N+KX

v=⌘

P 0
V

(v),

P
D

(⌘) =

N+K+1X

v=⌘

P 1
V

(v). (19)

We propose the use of a decision threshold ⌘† such that

⌘† = argmax

⌘

Z
I(P

F

(⌘), P
D

(⌘), p) dp. (20)

The setting of the threshold ⌘† thus maximizes the integrated
information amount and it is independent of the actual a priori
probability p.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the at-
tainable mutual information of the molecular communication
system by applying the proposed detection schemes. We adopt
typical parameters for short-range molecular communication,
which happens naturally as the mechanism for biochemical
signaling in living cells, e.g., calcium ion signaling [4] and
neural signaling [20]. In the following, we set the diffusion
constant D = 10

�6 cm2/s, the communication distance
r = 20 µm. Unless otherwise stated, we set the number of
interfering signaling intervals N = 50. Note that the parameter
K is dependent on the adopted settings of the delay ⌧ and the
decision duration T

d

.
In Fig. 3, we plot the attainable mutual information of the

proposed communication system by using the information-
optimal detection with perfect a priori probability. Two sets
of results which correspond to T

s

= 1 s and T
s

= 8 s are
provided. For each set of results, we plot three curves for
different settings of the decision duration: T

d

= T
s

, T
d

= 2T
s

,
and T

d

=

Ts
2 . The circles indicate the points which achieve the

channel capacity of the system as given in (17). We observe
that higher mutual information can be achieved with longer
signaling interval as one would expect due to a lower ISI. For
the case that T

s

= 8 s, the setting of T
d

= T
s

yields the best
performance out of the three; while the setting of T

d

= 2T
s

yields the best performance for the set of results with shorter
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Fig. 3. Attainable mutual information versus the a priori probability p for
different observation intervals using the optimal detection method. The circles
indicate the points which achieve the maximum mutual information.

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

T
d
 (sec)

A
ch

ie
va

lb
e

 c
h
a
n
n
e
l c

a
p
a
ci

ty
 (

b
its

/c
h
a
n
n
e
l u

se
)

 

 

T
s
 = 10 s

T
s
 = 4 s

T
s
 = 1 s

T
s
 = 6 s

T
s
 = 2 s

T
s
 = 8 s

Fig. 4. Attainable channel capacity versus the decision duration Td using
the optimal detection method. The squares indicate the points which achieve
the maximum channel capacity.

signaling interval. This suggests that the optimal value for the
decision duration T

d

is dependent on the signaling interval,
and a relatively longer decision duration is desirable when
the effect of ISI is more prominent. Finally, we observe that
the system achieves the channel capacity at p < 1

2 . This is
expected as fewer molecules cause less ISI, which in turn
raises the mutual information.

In Fig. 4, we experiment with the optimal value for the
decision duration and plot the attainable channel capacity
as a function of the decision duration T

d

. The information-
optimal detection with perfect a priori probability is applied.
The squares indicate the points which achieve the maximum
channel capacity over all possible values of T

d

. We again
observe that a relatively long T

d

is favorable when a short T
s

is adopted. For T
s

� 4 s, the results indicate that the optimal
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Fig. 5. Comparison between the attainable mutual information by using the
optimal detection method and the suboptimal detection method. The optimal
Td is applied.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

I(
X

;Y
)

 

 

N = 10

N = 50

N = ∞

T
s
 = ∞

T
s
 = 100 s

T
s
 = 8 s

Fig. 6. Attainable mutual information versus the a priori probability p with
different degrees of channel memory using the suboptimal detection method.
Td = Ts.

setting of T
d

is consistently equal to T
s

. Since it is not of
practical interest to consider the case where T

s

< 4 s due to
the strong ISI and hence low channel capacity, we conclude
that the setting of T

d

= T
s

is optimal for all values of T
s

which are of practical interest.
In Fig. 5, we compare the information-optimal detection

(perfect knowledge of p) with the proposed suboptimal de-
tection without a priori information. The optimal T

d

derived
from Fig. 4 is applied here. We observe that by applying
the proposed suboptimal detection scheme, the penalty of not
knowing p only exists for small values of T

s

. For values
of T

s

of practical interest, the two detection schemes yield
identical performance. It is also worth noting that the detection
threshold ⌘† given in (20) is equal to 1 for all values of
T
s

considered here. Such result is satisfactorily intuitive as
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there is one molecule emitted per signaling interval. We thus
conclude that the proposed suboptimal detection scheme is
information-optimal for all values of T

s

of practical interest
without the need of the a priori information.

In Fig. 6, we plot the attainable capacity with varying
degrees of channel memory: N = 10, N = 50, and N = 1.
Three sets of results are provided corresponding to different
lengths of signaling intervals: T

s

= 8, T
s

= 100, and T
s

= 1.
Following the conclusions drawn from the previous results, we
set T

d

= T
s

and employ the proposed suboptimal detection
scheme. We observe that the attainable mutual information
decreases by a small amount with increasing N due to the
inclusion of more ISI, except for the case in which T

s

= 1
where all three curves overlap. The results suggest that the
analytical system performance with N = 50 is very close
to the case where there is infinite channel memory. More
important, a channel capacity of 1 bit per channel utilization
can be ultimately achieved with all degrees of channel memory
by extending the duration of the signaling interval.

V. CONCLUSIONS

In this paper, we have proposed the design of a digital
molecular communication system based on diffusion along
with an optimal receiver detection scheme. Binary digital
signaling is accomplished by using OOK with only one single
molecule in each signaling interval. The effect of channel
memory resulting from the residual molecule diffusion has
been considered and analyzed. The general framework for
constructing the receiver as well as two detection schemes
for mutual information maximization based on the availability
of the a priori probability have been proposed. Numerical
results indicate that the a priori probability is not needed to
achieve the optimal detection performance, and the proposed
suboptimal detection scheme can achieve the optimal detec-
tion performance over a practical range of the parameter of
signaling interval. Also, it is shown that our receiver design
guarantees diffusion-based communication to operate without
failure even in the case of infinite channel memory. A channel
capacity of 1 bit per channel utilization during a signaling
interval can be ultimately achieved by extending the duration
of the signaling interval.

By proposing and analyzing the binary digital communi-
cation system based on diffusion, we have devised a frame-
work under which different signaling methods and detection
schemes can be studied. A well-defined noise model as well
as mutli-amplitude digital signaling schemes will be included
in our future work. Such a framework also serves as the the-
oretical basis for our future study of various nanonetworking
behaviors based on molecular communication.
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