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Abstract—Two-tier femtocell-based networks have been pro-
posed as an economic solution to improve coverage and ca-
pacity in wireless cellular systems. Although widely studied
in the literature, interference management in these networks
remains as a technical challenge in need of effective solutions.
In particular, the interference estimation is a relevant portion
of the problem that enables correct operation of interference
management schemes relying on this information. In this paper,
a novel downlink cross-tier interference estimation approach is
proposed based on spatio-temporal correlation techniques. An
ordinary Kriging interpolator using Semivariogram Analysis is
applied to the interfering signal followed by an autorregressive
model. The signal estimation at the interfered users’ location
is exploited at the radio resource manager of the femtocell
or macrocell base station by formulating a resource allocation
problem that is solved by means of a heuristic algorithm. A
practical procedure implementing this scheme in the network is
also proposed. Numerical results show how performance of cross-
tier interference management approaches can be optimized by
implementing this idea.

I. INTRODUCTION

Emerging and future cellular wireless systems like 3GPP’s
LTE and LTE-Advanced or IEEE 802.16e (WiMAX) are being
designed with the objective of satisfying an extraordinary
increase in the demand for data rates in wireless networks.
Recent studies have shown that a great amount of voice
and data services take place or are orginated indoors [1],
and offloading techniques have started being proposed. An
inexpensive solution that has emerged to increase both network
capacity and indoor coverage are femtocells [2]. Strictly speak-
ing, a femtocell is the coverage area created by a femtocell
access point (FAP) although the term femtocell is typically
used for the hadware device as well. A FAP is a short-range
low-power device owned and installed by the subscriber that
aims to achieve better service at places like a home, an office,
a supermarket, etc. by transmitting in licensed spectrum. The
traffic is sent over the IP (Internet Protocol) backhaul, which
also allows operators to offload macrocell traffic and release
resources for other macrocell users.

The major technical challenge and strongest performance
limiting factor concerning femtocells is the interference, clas-

sified as cross-tier if it occurs among macrocell and femtocell
elements (FAPs or users) or co-tier if the interference happens
among different femtocell elements. Numerous approaches
have been proposed in the literature to cope with cross-tier
interference, usually related to power control [3], [4], spec-
trum management techniques [5], [6], and open/closed/hybrid
access modes of operation [7], [8]. An additional critical issue
in all of them is the interference estimation, which triggers
all the above procedures but may undermine performance
if not correctly tackled. There is not much research done
especifically addressing this problem, although most of the
works assume that interference can be simply calculated based
on distance estimations on the uplink or downlink signal
measurements at the FAPs. None of these approaches provides
accurate interference estimations.

In this paper, we propose a novel downlink cross-tier
interference estimation approach for femtocell networks based
on spatio-temporal correlation techniques. The scheme can
be applied both at the femtocell and macrocell networks
depending on the specific scenario needs for downlink inter-
ference management. For instance, downlink interference at
the femtocell can be severe if the femtocell is located close
to the Macrocell Base Station (MBS). Similarly, downlink
interference at the macrocell is a serious issue for cell-edge
macrocell users near a femtocell. Without loss of generality,
we focus on the former scenario. Therefore, we perform
an estimation of the macrocell interference at the femtocell
users’ location. The Kriging Interpolator using Semivariogram
Analysis is adopted for the spatial estimation of the macrocell
signal. More specifically, the Kriging interpolation is an op-
timal prediction method which estimates the unknown values
from the data observed at known locations. This method uses
the Semivariogram Analysis to express the spatial variations
of the predicted values. The Semivariogram analysis can be
also used to analyze the spatial behavior of the users in
cellular networks as in [9]. At the MBS, macrocell users’
locations and signal attributes are utilized as inputs to the
estimation algorithm. The temporal estimation of the signal
is subsequently performed using autorregressive models of



different orders. With this estimation, the FAP can perform
accurate resource allocation functionalities by utilizing the
right amount of power so that femtocell users satisfy their
service requirements while the caused cross-tier interference
is minimized. We also present an analytical formulation of
the resource allocation problem and a suboptimal heuristic
algorithm. Finally, we propose a practical network procedure
enabling this scheme in the cellular network.

The remainder of this paper is organized as follows. Section
II describes the topology as well as the system model where
the problem is framed. The proposed scheme consisting of the
spatio-temporal estimation, the resource allocation step and the
overall network procedure, is presented in section III. Section
IV shows performance evaluation results and conclusions are
drawn in section V.

II. SYSTEM ARCHITECTURE AND MODEL

The considered topology shown in Fig.1 consists of an MBS
with several macrocell users in the sourroundings of the fem-
tocell. The femtocell network is located within the coverage
region of the macrocell and the FAP serves its femtocell users
by using a closed subscriber group approach. The analyzed
interference scenario is cross-tier, i.e. the interference between
femtocell and macrocell users.

Fig. 1. The Considered Topology

In order to maintain the generality of different types of
systems, we consider resources as generic channels that are
allocated by both macrocell and femtocell base stations to its
users. The Signal-to-Interference-and-Noise Ratio (SINR) per
channel is obtained by utilizing the following expression:

SINRn =
Pn

L(In + PN )
(1)

where Pn and In are the transmitted power and the received
interference power on channel n, respectively, and PN is the
noise power. L is the propagation pathloss between transmitter
and receiver. The propagation pathloss both for indoor, outdoor
and indoor to outdoor environments follow the channel models
suggested by 3GPP [10], as shown by Eqs. (2), (3) and (4).
• Indoors

L = 38.46 + 20 log10 di + 0.7di (dB) (2)

• Outdoors

L = 15.3 + 37.6 log10 do (dB) (3)

• Indoors-to-outdoors

L = 15.3 + 37.6 log10 di + F (dB) (4)

Here, f is the frequency in MHz, di is transmitter-receiver
distance measured in meters and do distance measured in kilo-
meters. F is the log-normal shadow fading random variable
with a standard deviation of 8.9 dB.

Finally, the signal power can be obtained from the temporal
signal s(k), where K is the number of samples:

Ps =
1

K

K∑
k=1

s(k)2 (5)

III. PROPOSED SCHEME

A. Spatio-temporal Estimation

In order to estimate the received signal of the Macrocell
Base Station (MBS) at a new unknown location, we propose
a spatio-temporal estimation module as shown in Fig. 2 with
four basic operations.

Fig. 2. The Proposed Spatio-Temporal Estimation Module

The module has four basic operations as it can be seen in
Fig. 2, which are explained as follows:
• The users located at n different positions estimate their

received SINR values S(t, xi, yi) (usually via pilot es-
timation followed by interpolation) for a given time t.
These values are sent to the MBS.

• The collected SINR S(t, xi, yi) are given as inputs to the
spatial estimator as shown in Fig. 2. The spatial estimator
uses an ordinary Kriging estimation [11], [12] to predict
received signal of the MBS S(t, xnew, ynew) for a new
location with coordinates (xnew, ynew).

• The spatially estimated SINR S(t, xnew, ynew) is then
temporally predicted using autoregressive models with
orders 1 and 2, AR(1) and AR(2), for a monitoring period
T = 1, 2, .., t.

• The module outputs Ŝ(t, xnew, ynew), which is the
spatio-temporally estimated received signal of the MBS,
for a new location with coordinates (xnew, ynew).



In the following two subsections, the spatial and temporal
estimations are analytically described.

1) Spatial Estimation: The spatial estimation is performed
by applying the ordinary Kriging interpolation method. This
method collects S(t, xi, yi), the received signal samples from
the MBS at different locations with coordinates (xi, yi) at a
given time t. It then estimates new SINR value for a new
location with coordinates (xnew, ynew), by using the spatial
correlation among the collected values. In order to achieve a
spatial correlation based estimation, the Kriging interpolator
uses the Semivariogram Analysis [9], [13], [14] which is
the characterization of the spatial correlation of the collected
signals in a given random field. The semivariogram γ(i,j) of
two signals S(xi, yi) and S(xj , yj) is calculated as:

γ(i,j) = 0.5× E[((S(xi, yi)− S(xj , yj))2]. (6)

The steps of the Kriging based spatial estimation method
are explained in the following.

The spatially estimated SINR S(t, xnew, ynew) for a new
location with coordinates (xnew, ynew)is given by:

S(t, xnew, ynew) =
n∑
i=1

[λi × S(t, xi, yi)] (7)

where S(t, xi, yi) in Eq. 7 is the received signals from the
MBS at different locations with coordinates (xi, yi) at a given
time t and λi is the Kriging coefficient for the ith location
with coordinates (xi, yi). The λi in Eq. 7 is expressed as:

λi =
γ(new,j)

γ(i,j)
∀ i, j (8)

where γ(new,j) is the semivariogram value of the the signal
at position (xnew, ynew) and the signal with position (xj , yj).
Note that the signal at (xnew, ynew) is the new position which
we want to estimate and the signal at (xi, yi) is one of the
collected signal. Moreover, γ(i,j) is the semivariogram value
of the the signal at position (xi, yi) and the signal at position
(xj , yj).

There exist several analytical semivariogram models in
the literature to represent the spatially collected signals in
a random field [14], [13]. We consider three semivariogram
models in this work: The exponential semivariogram λ

(exp)
i ,

the gaussian semivariogram λ
(gauss)
i and the linear semivar-

iogram λ
(lin)
i . These are expressed respectively by the Eqs.

(9), (10) and (11) as follows.

λ
(exp)
i =

γ(new,j)

γ(i,j)
=
c(1− e[−3×

√
(xnew−xj)

2+(ynew−yj)
2

a ])

c(1− e[−3×
√

(xi−xj)
2+(yi−yj)

2

a ])
(9)

λ
(gauss)
i =

γ(new,j)

γ(i,j)
=
c(1− e[−3×

(xnew−xj)
2+(ynew−yj)

2

a ])

c(1− e[−3×
(xi−xj)

2+(yi−yj)
2

a ])
(10)

λ
(lin)
i =

γ(new,j)

γ(i,j)
=
c+ a×

√
(xnew − xj)2 + (ynew − yj)2

c+ a×
√
(xi − xj)2 + (yi − yj)2

.

(11)
In Eqs. (9) ,(10) and (11), the parameter c is the sill value

which represents the maximum spatial correlation level for
any two points and a is the range value which represents
the longest Euclidian distance between two points at which
these two points have reached the sill value. In other words,
a is the lag distance for the two points having the highest
spatial correlation value. For further information about these
parameters, one can refer to [14].

The spatially estimated SINR, if the received signals in the
random field are exponentially distributed, can be expressed
by inserting Eq. (9) into Eq. (7) as follows:

S(exp)(t, xnew, ynew) =

n∑
i=1

[
c(1− e[−3×

√
(xnew−xj)

2+(ynew−yj)
2

a ])

c(1− e[−3×
√

(xi−xj)
2+(yi−yj)

2

a ])

× S(t, xi, yi)] ∀ j.

(12)
The spatially estimated SINR, if the received signals in the
random field are gaussian distributed, can be expressed by
inserting Eq. (10) into Eq. (7) as follows:

S(gauss)(t, xnew, ynew) =

n∑
i=1

[
c(1− e[−3×

(xnew−xj)
2+(ynew−yj)

2

a ])

c(1− e[−3×
(xi−xj)

2+(yi−yj)
2

a ])
× S(t, xi, yi)] ∀ j.

(13)
The spatially estimated SINR of the received signal from the
MBS at a new location (xnew, ynew), if the received signals
in the random field are linearly distributed, can be expressed
by inserting Eq. (11) into Eq. (7) as:

S(linear)(t, xnew, ynew) =

n∑
i=1

[
c+ a×

√
(xnew − xj)2 + (ynew − yj)2

c+ a×
√
(xi − xj)2 + (yi − yj)2

×S(t, xi, yi)] ∀ j.

(14)
2) Temporal Estimation: The temporal estimation of the

spatially estimated signals which are expressed by Eqs. (9),
(10) and (11) can be found by using AutoRegressive Model
with order p (AR(p)). Thus, the spatio-temporal estimation
of the received signal from the MBS at a new location with
coordinates (xnew, ynew) is given by Ŝ(t, xnew, ynew) and
expressed as:

Ŝ(t, xnew, ynew) = β0+[

p∑
n=1

βn×S(t−n, xnew, ynew)] (15)



where β0 and βn are the coefficients of the autoregressive
model which are calculated using Ordinary Least Square
(OLS) method as:

βn =

∑n
i=1(S(t− i)S(t)− nE[S(t− i)S(t)])∑
i=1 n(S

2(t− i)− nE[S2(t− i)])
(16)

and

β0 = E[S(t)]−
n∑
i=1

βi × E[S(t− i)] (17)

B. Resource Allocation

In this section, we formulate the problem of allocating
resources at the FAP as an optimization problem exploiting
the previously estimated interference at the femtocell users.
Let F andM be the number of femtocell and macrocell users
respectively, and N the total number of channels available at
the femtocell. Let α(u, n) be a binary indicator that contains
1 if channel n is assigned to user u or 0 otherwise. We define
a matrix PF of F rows and N columns that contains the
femtocell power allocation. If the user i is assigned the channel
j with transmission power p, then the ijth element of PF

will contain the value p. Let Iun be the interference power
estimated at femtocell user u on channel n. Given that we want
to minimize the cross-tier interference, the objective function
to be minimized is the total emplyed power, i.e. the sum of
all the elements of PF , as shown by Eq. (18).

The optimization problem can be formulated as follows:

min
P,α

F∑
u=1

N∑
n=1

PFun · α(u, n) (18)

Subject to:

C1 :
PFun

LFu (Iun + σ2)
≥ βFα(u, n) ∀n,∀u = 1, ...,F

C2 :

(
F∑
u=1

N∑
n=1

PFun)
2

M(
N∑
n=1

Pun)2
= 1

C3 :
F∑
u=1

α(u, n) = 1 ∀n

C4 :
SMun

1
LM

u

M∑
u=1

PFun + σ2

≥ βMγ(u, n) ∀n,∀u = 1, ...,M

PFun ≥ 0, α(u, n), γ(u, n) ∈ {0, 1} ∀n,∀u = 1, ...,F

where C1 sets the SINR constraint to βF on every channel
n allocated to femtocell user u; C2 is the fairness constraint
among femtocell users implemented by a Jain’s fairness index
of 1 [15] guaranteeing that all users will receive same power;
C3 ensures that no interference will appear among femtocell

users in any channel; and C4 sets the SINR contraint for the
macrocell users, where γ(u, n) is a known function containing
the macrocell channel allocation.

The problem specified by Eq. (18) and constraints C1 to C4
is not a convex optimization problem and cannot be solved
by standard methods in optimization theory. Therefore, we
propose an alternative simple heuristic algorithm as shown in
Algorithm 1. This algorithm assumes interference minimiza-
tion is effectively achieved by minimizing femtocell transmit
power. The idea is summarized as follows: Channels are
assigned to users based on their requested power to achieve the
target SINR. Users with channels requesting a lesser amount
of power are served first and fairness is guaranteed by trying
to assign the same number of channels to each user.

Algorithm 1

1: Maximum number of channels per user
2: max channels ← dNM e
3: Power requested for each user in each channel
4: for u← 1,M do
5: for n← 1, N do
6: P requn = βF

(
Iun + σ2

)
LFu

7: end for
8: end for
9: Channel and power allocation

10: while P req 6= ∅ do
11: [p∗, u∗, n∗]← minP req

12: if Channels assigned to u∗ < max channels then
13: Remove column n∗ from P req

14: P (u∗)← P (u∗) + p∗

15: else
16: Remove row u∗ from P req

17: end if
18: end while

C. Network Implementation Procedure

The above resource allocation procedure must be performed
at the FAP. For this we need a network procedure that allows
the exchange of signalling information between the macrocell
and the femtocell taking place over the air or via the backhaul
network. It is not realistic to assume known at the MBS the
position of the macrocell users; however, the FAP can perform
estimations on the location of both the femtocell and close-
by macrocell users since the femtocell itself will be aware
of its location via e.g. a GPS receiver. Techniques based on
signal strength or more sophisticated MIMO approaches based
on direction-of-arrival estimation could be employed. The
procedure enabling this exchange of information is described
as follows:

1) The FAP estimates the users’ locations and sends them
to the MBS along with their identification. This in-
formation is available at the FAP since both femtocell



subscribers and non-subscribers can attempt to camp on
the femtocell.

2) Macrocell users provide SINR feedback to the MBS, and
users interfering with the femtocell will be identified.

3) The MBS, using its own users’ location information and
their received signal attributes, runs the spatio-temporal
framework to estimate the interference at the femtocell
users’ location for a certain period of time.

4) Interference power values are sent back from the MBS
to the femtocell.

5) The FAP runs a resource allocation algorithm exploiting
the estimated interference values.

6) The procedure is repeated once the estimation period
expires or the femtocell users substantially change loca-
tions.

Overall, only some signalling information need to be ex-
changed between macrocell and femtocell. The necessary
amount of such information is another interesting research
question, since spatial correlation properties of both the fem-
tocell and macrocell users could be exploited to reduce the
amount of exchanged data.

In order to guarantee certain quality of service at the macro-
cell users, this scheme could be reciprocally triggered at the
macrocell to estimate and optimize the amount of interference
that femtocell users are causing to macrocell users. In addi-
tion, this interference estimation approach can be utilized to
improve other power control based interference management
schemes (such as the one in [4]) whose performance may be
undermined by inaccurate interference estimation.

IV. PERFORMANCE EVALUATION

We perform several experiments with the objective of
evaluating the performance of the different proposed spatio-
temporal estimators. The scenario is similar to the one depicted
in Fig. 1, with five macrocell users (mUEs) radomly deployed
in the surroundings of the femtocell (up to 40 meters). We
perform simulations for one single femtocell with a varying
number of users suffering from cross-tier interference and
randomly deployed in a coverage radius of 20 meters. The
relevant simulation parameters common to all the experiments
are shown in Table I.

TABLE I
SIMULATION PARAMETERS

Carrier frequency (fc) 2 GHz
Simulation time 500 ms

Noise power (σ2) −115 dBm/channel
MBS coverage distance 1km

MBS transmission power 42dBm
Number of macrocell users 5

Femtocell range 20m
FAP maximum transmission power 0.375mW/channel

Femto user SINR requirements 15 dB

The first experiment investigates how the different esti-
mation approaches affect the total transmit power of the

femtocell, i.e. the interference caused to the macrocell. A total
number of six spatio-temporal techniques are to be simulated,
combining the three spatial schemes (linear, exponential and
gaussian) and two temporal autorregresive models of order
one and two, as shown in Fig. 3. The number of femtocell
users is fixed to four and the y axis represents the number
of available channels at the femtocell. The results show
significant differences among the spatial approaches, being
the linear estimator the lowest-energy interference estimator
and therefore allowing the FAP to satisfy users’ requirements
causing the lowest cross-tier interference.
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Fig. 3. Femtocell transmit power with number of available channels.

Fig. 4 shows the results of the next experiment, where we
compare the quality of the spatio-temporal linear estimator (of
AR order 1) with other interference estimation approaches.
The interference signal is generated at the MBS, delivered
to the macrocell users and measured at the femtocell users.
The optimal femtocell power corresponds to the minimum
value that is needed to meet SINR constraints at the femtocell
users. We seek the closest scheme to this curve, knowing
that excessive power will cause more interference and not
enough power will not allow femtocell users achieve their
requirements. We compare linear estimation with several
schemes: An estimation-free approach where power is al-
located based on distance and interference is neglected, a
maximum power approach delivering the maximum allowable
power in each channel, and a conventional FAP interference
estimation scheme where macrocell signal is estimated directly
at the FAP from the received signal strength and the pathloss
formula. The spatio-temporal estimation is the closest curve to
the optimal one, and the conventional FAP approach happens
to deliver a much larger power value than the spatio-temporal
one.

The last two experiments are depicted in Fig. 5 and Fig.
6, respectively. The first one shows the total femtocell power
allocation for an increasing number of femtocell users in the
three spatial estimation cases. Since requirements are set in
terms of SINR per assigned channel and fairness must be
satisfied, the larger the number of users the larger the flexibility
to minimize total power. Fig. 6 explores the inaccuracy of the
power assignment when the femtocell users move away from
the locations utilized for the spatial estimation. The X-axis
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shows the magnitude of the displacement although the distance
to the FAP is kept constant. The Y-axis shows the difference
of the old-coordinates and the new-coordinates power alloca-
tions. Clearly the gaussian estimator is the most sensitive one
to the changes in the users’ location, an interesting result since
the location information exchange is a signalling overhead that
should be kept as low as possible.
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V. CONCLUSION

This paper presents a novel spatio-temporal approach to
estimate the downlink cross-tier interference in femtocell

networks, an important part of the interference management
problem that challenges two-tier networks. The scheme is
composed of a spatial estimation step that makes use of an
ordinary Kriging interpolator using Semivariogram Analysis
followed by a temporal estimation step implemented by an
autorregressive model. This estimation is exploited via a
resource allocation algorithm, and the whole scheme is enabled
through a network procedure. Simulation results show the
validity and potential of this approach, establishing the linear
estimator followed by an autorregressive model as the most
suitable option to solve this problem.

ACKNOWLEDGEMENTS

This work was partly developed with the support of Funda-
cion Caja Madrid.

REFERENCES

[1] G. Mansfiel, “Femtocells in the US market -business drivers and
consumer propositions,” Femtocells Europe, June 2008.

[2] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks:
A survey,” IEEE Communications Magazine, vol. 46, no. 9, pp. 59 –
67, September 2008.

[3] H.-S. Jo, C. Mun, J. Moon, and J.-G. Yook, “Interference mitigation
using uplink power control for two-tier femtocell networks,” IEEE
Transactions on Wireless Communications, vol. 8, no. 10, pp. 4906 –
4910, October 2009.

[4] V. Chandrasekhar, J. Andrews, T. Muharemovic, S. Zukang, and
A. Gatherer, “Power control in two-tier femtocell networks,” IEEE
Transactions on Wireless Communications, vol. 8, no. 8, pp. 4316–4328,
August 2009.

[5] C. Young-June, K. C. Seung, and B. Saewoong, “Flexible design of
frequency reuse factor in ofdma cellular networks,” in Proc. of IEEE
International Conference on Communications (ICC), June 2006, pp.
1784–1788.

[6] I. Guvenc, J. Moo-Ryong, F. Watanabe, and H. Inamura, “A hybrid
frequency assignment for femtocells and coverage area analysis for co-
channel operation,” IEEE Communications Letters, vol. 12, no. 12, pp.
880–882, December 2008.

[7] D. Choi, P. Monajemi, K. Shinjae, and J. Villasenor, “Dealing with load
neighbours: the benefits and tradeoffs of adaptive femtocell access,” in
Proc. of IEEE Global Telecomm. Conf. (GLOBECOM), Nov-Dec 2008,
pp. 1–5.

[8] A. Valcarce, D. Lopez-Perez, G. de la Roche, and Z. Jie, “Limited access
to ofdma femtocells,” in Proc. of IEEE Int. Sympo. on Personal, Indoor
and Mobile Radio Comm. Systems, September 2009, pp. 1–5.

[9] D. Willkomm, S. Machiraju, J. Bolot, and A. Wolisz, “Primary users
in cellular networks: A large-scale measurement study,” in 3rd IEEE
Symposium on New Frontiers in Dynamic Spectrum Access Networks,
2008 (DySPAN)., Oct. 2008, pp. 1 –11.

[10] 3GPP, “TR 36.814 v9.0.0.” Tech. Rep. [Online]. Available:
www.3gpp.org/ftp/Specs/archive/36 series/36.814/

[11] A. Dalla’Rosa, A. Raizer, and L. Pichon, “Optimal indoor transmitters
location using tlm and kriging methods,” IEEE Transactions on Mag-
netics, vol. 44, no. 6, pp. 1354 –1357, June 2008.

[12] ——, “Deterministic tool based on transmission line modelling and
kriging for optimal transmitter location in indoor wireless systems,” IET
Microwaves, Antennas Propagation, vol. 5, no. 13, pp. 1537 –1545,
October 2011.

[13] D. Mondal and D. Percival, “Wavelet variance analysis for random fields
on a regular lattice,” IEEE Transactions on Image Processing, vol. 21,
no. 2, pp. 537 –549, Feb. 2012.

[14] G. Bohling, “Introduction to geostatistics and variogram analysis,”
Online Available: http://people.ku.edu/gbohling/ cpe940/Variograms.pdf,
2005.

[15] R. K. Jain, D. Chiu, and W. R. Hawe, “A quantitative
measure of fairness and discrimination for resource allocation in
shared computer systems,” DEC, Tech. Rep. [Online]. Available:
http://www1.cse.wustl.edu/ jain/papers/ftp/fairness.pdf




